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Abstract— This paper aims to present the literature related to the regulation of 

Type 1 Diabetes Mellitus (T1DM) via positive control and constrained control. 

This idea of positive control was derived because the control input (insulin) can 

only be infused/injected (one direction control). The main operation of insulin is 

to reduce glycemia back to euglycemia. If glycemia goes into hypoglycemia; the 

only possible way is to stop insulin injection temporarily, and the patient must 

take some carbohydrates to raise glycemia. Also, hyperglycemia can be treated 

by estimating the amount of meals taken by the patient using an estimator. Since 

meals are a positive factor, the controller gives an adequate positive action to 

eliminate the effect of meals. This paper reviews the research work related to 

regulating glycemia that considered the positivity of insulin as a control input. 

The impact of considering the positive control in the design is the fact that any 

negative decision will be cut off to zero. In such case, the system is left open-

loop and will be out of control. 

 

Index Terms— Artificial Pancreas, Constrained Contro , T1DM, Positive Control. 
 

 

I. INTRODUCTION 

Diabetes is one of the most critical diseases in the world [1]. It is a chronic illness 

mainly caused by incomplete insulin production or less insulin sensitivity (T1DM) [2]. 

Also, T1DM requires glucose monitoring and intensive insulin therapy [3]. In the 

bloodstream, glucose concentration (The difference between the stream of glucose into the 

blood and its uptake by the cells [4]) is naturally regulated by two hormones: insulin 

generated by (βeta –cells) and glucagon generated by (αlfa-cells). These hormones are 

together secreted by the islets of Langerhans in the pancreas [5,6]. These hormones have a 

reciprocal effect. Type One Diabetes Miletus (T1DM) is caused by the destruction or loss 

of (β –cells), thus, insulin production stops [7,8]. When the Blood Glucose (BG) 

concentration increases by more than 180 mg/dl (hyperglycemia) the risk of cerebral stroke, 

cardiac arrests, renal failure, and loss of vision increases [9]. In this case, insulin may be 

injected/infused exogenously to return glucose to its normal concentration (80 mg/dl – 120 

mg/dl). Injection/Infusion of insulin is done in two ways: manually or automatically. 

Manual injection/infusion of insulin may lead to overdose and this causes hypoglycemia 

(glucose concentration less than 70 mg/dl). Hypoglycemia has a more sudden effect and can 

quickly escalate to become life-threatening, so the risk of infection of diabetic coma may 

occur [9,10,11]. 
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Therefore, an Artificial Pancreas (AP) platform has been envisioned for more than 50 

years. AP is a device designed to automatically regulate the needed blood glucose 

concentration [12] because it provides sufficient insulin automatically throughout the day 

[13]. An (AP) has intended perfection for patients with T1DM in their lifestyle since it does 

not only permit automatic control of the levels of glycemia, but it also keeps patients 

comfortable. Where the patient avoids manual insulin injection throughout the day [12]. AP 

consists of a glucose sensor for computing glucose concentration, an insulin pump that 

helps infusion insulin, and a control algorithm [14,15]. The control algorithm must depend 

on feedback to compute the correct dose [16,17]. Concerning it must take into account that 

insulin is a non-negative input i.e. insulin can not be taken out from the bloodstream and 

insulin can reduce glycemia only. Therefore, the control algorithm must be designed to be 

positive (operate in one direction (injection only)) and robust to prevent hypoglycemia 

episodes [18,19]. Thus in the case of hypoglycemia, insulin (infusion/injection) must be 

stopped immediately. Hence the importance of the positive control design arises. Fig.1 

shows the AP components: 

 

 

  FIG. 1. BLOCK DIAGRAM OF AP COMPONENTS 

 

 For this reason, a research on this topic will be presented here. For any research, the 

main challenge is to design an adaptable AP that protects the trade-off between postprandial 

hyperglycemia and delayed hypoglycemia [20,21]. Long-period hyperglycemia can be 

prevented by giving a suitable positive control action. This control action (amount of 

insulin) is dependent on the amount of glucose that enters the body.  

In the next section, T1DM treatments are presented after that a general idea about the 

concept of positivity control will be presented. Then, a literature review related to positivity 

and positive control is illustrated. Finally, a brief conclusion and perspective of future work 

are given. 

II. T1DM TREATMENTS 

T1DM is also known as juvenile diabetes because it most often affects children and 

adolescents. It happens as a result of the autoimmune destruction of beta cells, which leads 

to the loss of insulin production. Because of a long time between the onset of autoimmunity 

and the onset of diabetes, more than 80-90 percent of the beta cells have been destroyed 

[22]. 

After the discovery of insulin in 1921 [20], exogenous insulin is the only treatment for 

T1DM. At the beginning of treatment, insulin is injected manually without testing the BGC 
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in the bloodstream. Because the methods used to calculate BGC and previous medical 

treatment methods for maintaining and controlling BGC were ineffective. In fact, it is 

difficult to give a diabetic patient the correct amount and type of insulin [5]. 

Then, in the middle of the last century, a sensor ( Continuous Glucose Monitoring 

(CGM)), was discovered to measure the concentration of blood glucose as shown in Fig. 2. 

Therefore, in order to overcome these shortcomings of modern medical treatments, several 

studies have been conducted in recent years to address the limitations of current medical 

treatments. Studies have found that diabetics need regular and appropriate therapeutic doses 

to treat high blood glucose levels. Also, doses should not be excessive so as not to lead to 

low blood glucose levels. So this could be with multiple regular insulin injections or 

"continuous subcutaneous insulin injections" (CSII) delivered through an automated pump 

as shown in Fig. 2 [20]. 

 

 

FIG. 2. INSULIN DELIVERY SYSTEM MINIMED640G SYSTEM, INSULIN PUMP IN BLACK; AND A CGM IN WHITE 

 

III. INPUT CONSTRAINT: POSITIVITY OF THE CONTROL 

The majority of biological processes have positive input. Glucose-insulin dynamics is 

one of these biological processes that do have not the physiological ability to deal with non-

positive actions.  

To clarify the idea of a positive system mathematically, the model (Magdelaine model 

[23]) can be given as follows: 

𝑥(𝑡)̇ = [

0 −𝑘𝑐𝑖            0
0     0                1

0 −
1

𝑇𝑒2
    −

2

𝑇𝑒2
 
] 𝑥(𝑡) + [

0
0
𝐾𝑚

𝑉𝑚 𝑇𝑒2

] 𝑢(𝑡) + [
𝑘𝑖 − 𝑘𝑜

0
0

]                          (1) 

 

where 𝑥1(𝑡)[mg/dL] blood glucose, 𝑥2(t) [U/dL]  plasma insulin, and 𝑥3(t) [U/(dL.min)] 

rate of change, 𝐾𝑐𝑖 insulin sensitivity [mg/(U min)]. 𝐾𝑖  liver production of glucose  

[mg/dL/min]. 𝐾𝑜 =  128/M [mg/dL/min] consumption of brain, km[min]a static gain, 

𝑉𝑚[dL] =  2,5M is the insulin distribution volume, and 𝑢(𝑡)[U/min]  is the external 

injection of insulin (it is the control action). Glycemia is physically a positive variable [21]. 
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Therefore, the system must be subject to positive constraint with a lower bound u ≥ 0 

[19,24]. 

The system is under positive constraints namely i) avoided hypoglycemia ii) the 

control action is non-negative: (injection/infusion) of insulin can’t be taken out of the body 

[25].  

This review is presented for the following reasons: 

1. Any negative control action means, there is over-dose, therefore hypoglycemia 

happens. 

2. If the controller is not designed to be positive, this means the saturation must be 

used to cut the control action when u<0 and this means the system behaves like an 

open-loop system. 

In the next section, previous studies are concerned with designing a positive control or 

constraint control such (model predictive control) to regulate glycemia at a target range will 

present. 

IV. LITERATURE REVIEW 

In this section, the literature related to design a positive control for glycemia regulation 

will be presented. One of the most and famous studied control strategies is Model 

Predictive Control, (MPC); which has viewed suitable performances in clinical and in silico 

environments [26-28]. MPC was chosen because of its demonstrated ability to estimate the 

best control action and deal with feedback, state constraints, and disturbances [29,30]. In 

MPC, the aim is to compute the better value for the manipulated variable u(t) [22]. MPC is 

well-known in this area because it takes care of the design's device constraints. This model-

based controller often needs model linearization (if nonlinear models are used) and 

parameter recognition to cope with changes in device parameters, which is the main 

disadvantage of MPC. This makes individual parameter tuning more difficult. Below some 

studies in this field are presented. 

 

A. Model Predictive Control (MPC) 

Insulin injection doses are not continuous or discrete input. Because insulin doses are 

injected into the patient as small pulses [31]. Therefore, in [32], Impulsive Zone Model 

Predictive Control (IZMPC) was applied to T1DM. It was satisfying for a good 

performance in long-term-model. The main disadvantage, this controller was examined on 

one patient with known and regular meals. Both the control input (insulin injection) and 

state (BG) are constraints to be positive. Therefore, hypoglycemia and hyperglycemia are 

prevented. Also, from the result, the first case assumed in hyperglycemia condition, the 

controller was steer glycemia to normal zone in only 3.5 hours. This controller may be 

examining in more than one patient (many patients) with unknown and irregular meals to 

show if it satisfying the AP condition. 

In [33], impulsive Zone Model Predictive Control, (iZMPC) was studied. Constraints 

were considered for both state and input (insulin injection/infusion). In a region that is 

assumed to be polyhedron. The (control/prediction) horizon should be large enough to 

computation for the entire insulin effect (because of its positive-ness, the overdoses are hard 

to compensate).  But in this work, only the worst case of the prediction disturbance was 

considered for the MPC. Then, it was assumed to be zero. That’s mean no information 

regarding the meals was passed to the MPC. This study was tested on 5 patients that are 

considered as in, (Magdelaine et al. (2015)). At the end, the problem of glycemic regulation 
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in T1DM patients in a target window was satisfied. The insulin injection (controller) 

remained positive in contrast if a disturbance (meal) enters the system. But the controlled 

process is slightly slower because the controller takes more time to compensate for 

disturbances. 

In [34], it was dealt with a new estimation and control approach (MPC and Moving 

Horizon Estimation (MHE)) for glycemia managing in T1DM. A constraint was added to 

both input (control input) and output (blood glucose) to remain on the safe side (positive 

quantities). This combination of MPC/MHE was tested in silico trials of ten virtual patients 

using the commercially available UVA/Padova. The results show several notes of this 

simulation, containing less (hypoglycemia) status, without raising the number of 

(hyperglycemia) status. This means after meal intake blood glucose had hypoglycemic 

events with the same number of hyperglycemic events. This is not acceptable for a patient 

with T1DM as mentioned above.  The advantage of this controller had faster insulin 

delivery to meal consumption, and shorter insulin pump suspension, resulting in smoother 

blood glucose trajectories.  

In [35], an MPC with integral action, (called Integral MPC (IMPC)) was proposed. 

Glycemia was regulated to target the existence of disturbance and model uncertainties. The 

main advantages over designing an IMPC are a control scheme, an augmented system. 

Which takes into consideration the (integral action), a cost function, and a model-based 

optimization issue. Although, the system has significant constraints, on the control input 

(insulin injection) and output (blood glucose limitation) together. This study was examined 

on the one hundred pragmatic patients of the UVA/Padova simulator for 14 days. IMPC has 

steered the glycemia to the normal range, by reducing hyperglycemic events without any 

hypoglycemic events. This means this controller not fully managing hyperglycemic events 

and the blood glucose remains unsmooth in the target zone. 

In [36], a pulsatile zone model predictive control (pZMPC) was presented to glycemic 

regulation in (T1DM). The main advantage of this algorithm in disparity with the others, 

glycemia is regulated in the patient by infusing a short duration insulin bolus, both 

hypoglycemia and hyperglycemia are predicted and estimated. An observer was employed 

to compute plant model uncertainties also it was ensured the stability of the closed-loop, 

and it can be applied under small modifications. Constraints were included in both input 

(insulin infusion) and state (glycemia). Tow state observer was considered in this work, for 

calculation of plant-model uncertainties, where the (meals) considering as the most 

considerable disturbance.  This controller was tested on 10 virtual adult patients. For the 

mutual closed-loop planner the controller administration insulin in elegant-bolus style, since 

a full carbohydrate meal take-in rate was considered. When meals are declared with a 30% 

error, the performance was not significantly degraded. In contrast, for the full closed-loop 

planner, the input disturbance observer allowed an improvement of glycemic control 

concerning missed announced cases. While in [37], pZMPC was published under a real 

observer. Thus, the sensitivity of insulin was observed throughout the day. pZMPC in this 

case was taken into account along with the nominal information of the sensitivity of insulin 

in the postprandial phase. The results showed the best information in time-invariant 

environments. Also, the results showed the blood glucose rises to hyperglycemic after meal 

intake, this indicates low response and low sensitivity to a meal. 

 The standard ZMPC is one of the types of MPC, that controlled the predicted output 

(glycemia) at a target range rather than in a specific set-point. This operation is done by 

obtaining the optimal insulin injection (optimal future inputs) [38,39]. But the study in [40] 

showed that the iZMPC had the best qualification than ZMPC. The iZMPC was present less 
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time out the euglycemia range. The comparison of the performance of these controllers 

showed that the standard ZMPC was present 70% of the time inside the normal zone, and 

on the other side, the iZMPC was spent 92.5%. 

Studies above depending on constrained both the input and output to remain in the 

safety zone. This sometimes leads to saturating the system. The solution is to design a 

positive control for glycemia regulation without any constrained and any saturates. This 

controller depending on the computing of the positively invariant set of the system under 

the closed-loop. This is due to the fact that blood glucose management is a non-negative 

control problem. In the following, there is another controller designed to be positive in the 

design. 

 

B. Positive Sliding Mode Controller 

A positive Sliding Mode Control (SMC) was designed in [2], to deal with physical 

constraints of biological systems for glycemia regulation on the fasting phase. The 

constraints of positivity were applied to this controller and PIS computed her for the first 

time for two states only. This non-negative control was examined in silico on the (T1DM) 

patients model. This model was derived from real-life clinical data. The simulation results 

were performed on three virtual patients only. The results show that glycemia was taken 

more time to regulated in the target zone (response relatively slow) and the hypoglycemic 

events were fully prevented, this is one of the main challenges of any controller. The 

positive SMC is a proof of concept and the design can be extended to include hypoglycemia 

constraint. This controller must be examined on more patients and must take the case of 

after meal. Also, the robustness of this controller was not examined. 

The MPC and SMC were both applied in [41]. A nominal plant model identified was 

assumed for each controller. Also, the common dynamic parameters were computed under 

60% variation, insensitivity of insulin, time action of insulin, and absorption time of 

carbohydrate (CHO). The results showed that the MPC had the best efficiency in preventing 

hypo and hyperglycemic episodes. Although, it was not eligible for protection in its 

performance under parametric divergence in the model. In contrast case, the SMC and the 

nominal case had the ability to maintain results. From these results, this study aims to take 

the advantage of MPC and SMC (hybrid control) should be taken to improve the model 

performance, for disturbance and parametric variation. But in this case, the hybrid 

controller does not fully guarantee the prevention of hypoglycemia events. 

 

C. Positive State Feedback Controller  

In [42,20], a non-negative (positive) state feedback control was designed for the long-

term T1DM model. The Positive state feedback, in which all system states are positive, is 

less challenging to design than SMC. Positivity constraints were inserted in the design. This 

leads to calculating the largest Positive Invariant Set (PIS). Therefore, the control action 

(insulin injection) remains positive for all times. Although (PIS) is a specific region and 

limits the movement of system trajectories, it was guaranteed that the glycemia error 

remains positive under this controller. This controller was examined through the fasting 

phase on 5 T1DM virtual patients. This controller was failed to regulate glycemia in the 

postprandial phase. After meal injection, the glucose concentration remains a long period in 

hyperglycemia. However, in the fasting phase, it is preventing hypoglycemic events and it 

is faster than SMC.  

A positive state feedback control (which so-called hypo-free strategy (HFS)) was 

designed in [43]. It is different from the study in [42]. In this study, the desired 
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hyperglycemia rectification bolus was found in actual time to significantly derive glycemia 

to the normal range. The positivity of input/state trajectories was proven using the notion of 

PIS. This control strategy was examined for all the UVA/Padova virtual patients. This was 

happened during the fasting phase and in a hybrid closed-loop phase. For state estimation, a 

standard (Luenberger Observer) was used. From the results, hypoglycemia was avoided in 

both the fasting and meal phases. In meals, where carbohydrate (CHO) was intake, it was 

wrongly estimated by the patient. Therefore, in the case of under-estimates of the CHO, the 

percentage of time in an objective level increased in comparison HFS with Open-Loop 

(OL). While the percentage of time above the target level decrease with the same 

comparison. This leads to the hyperglycemia was minimized. In the case of overestimates 

of CHO. The ratio of time in the objective level was the same in (HFS) and OL. But the 

ratio of time above objective was a little increased in (HFS). Therefore, hypoglycemia was 

avoided. The control law may be too conservative for some patients, which is a 

disadvantage of this tuning procedure. Also, in the postprandial phase, the system remains 

long period in the hyperglycemic region, and this danger for patients. 

 

D. PID Controller 

The PID controller was built to reach minimum steady-state error for the output [44]. 

The architecture of a PID controller does not necessitate a detailed mathematical model for 

tuning. Proportional – Integral - Derivative controller parameters Kp, Ki, and Kd were 

tuned to the find best values, of the control action [45]. However, optimal tuning cannot be 

easy, particularly when there are external disruptions such as meals. It was discovered that a 

fully automatic PID is insufficient to achieve the hyperglycemia reduction and 

hypoglycemia prevention trade-off. PID does not cope with the constraint of positivity 

alone. For example, in [46], an anti-reset windup strategy was implemented to prevent 

undershooting dangerous toward hypoglycemia.  

Therefore, in [47] two strategies of the controller were applied. These are the 

proportional, integral, and derivative (PID) control in the state space form. It was applied 

during the fasting phase. This control was composed of a combination of both state 

feedback and positive PID control. Constraints were developed to state and input. The state 

feedback control is responsible for steering the glycemia to a target range. PID is 

responsible for refusing any disturbances when glycemia is in the normal zone. 

Another controller was applied and tested in this study. It is an MPC with an impulsive 

input with satisfying input and state constraints. It could be used at any time of the day 

(during fasting or the postprandial phase). 

The controller of the strategy was tested with a one-day virtual protocol on 50 virtual 

patients. From the simulation result of this study. See that the PID was spent less time than 

iZMC in the range (140 – 180 mg/dl). PID was spent 76.09 min. while iZMPC spent 83.91 

min. Also, in the range greater than 180 mg/dl. The PID controller was spent 4.99 min, 

while iZMPC spent less time (1.87 min.). Thus these strategies are needed more accurately 

for disturbance estimation and more robustness to prevent glycemia from raising 

hyperglycemia. Also, the results show that both strategies have a good performance with 

low to moderate plant-model mismatch.  

In [48], the author suggested a multiple model strategy by alternative closed-loop 

method for subcutaneous insulin delivery in T1DM. The proposed system was modeled 

around five different operating points. Then, five PID controllers are tuned to achieve the 

objectives of control performance such as required settling time and bounded of overshot 

and undershoot are obtained for each transfer function related to the operating point. The 
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main in silico results of this work is no severe hypoglycemia with limited hyperglycemia 

events. In this work, the hyperglycemia risk does not completely treat. 

New modern technology for hypoglycemia avoidance was suggested in [49]. The 

insulin algorithm employs a proportional–derivative controller with insulin feedback, 

whereas the CHO algorithm employs a predictive, quantified proportional–derivative 

controller. The proposed closed-loop algorithm prevented hypoglycemia episodes by 

issuing alarms to encourage patients to consume carbohydrates. The study indicates that 

blood glucose levels may be anticipated and that most hypoglycemia occurrences caused by 

external disturbances can be avoided. Extra fast-acting CHO is consumed to avoid 

hypoglycemia. However, in a closed-loop system, the CHO action is insufficient. The 

system must be notified of the ingested CHO; otherwise, the insulin controller will over-act 

to any BG rise, perhaps causing hypoglycemia again. 

 

TABLE 1. OVERVIEW OF THE SELECT STUDIES ON AP CONTROLLER DESIGN AUTHOR  

Author Study Design Comment 

P. S. Rivadeneira, A. 

Ferramosca, and A. 

H. Gonz 2016 

IZMPC examined on one patient with known and regular 

meals. Both the control input (insulin injection) and 

state (BG) are constraints to be positive. 

A. H. González, P. S. 

Rivadeneira, A. 

Ferramosca, N. 

Magdelaine, and C. 

H. Moog, 2017. 

iZMPC Constraints were considered for both state and input. 

This study was tested on 5 patients with disturbance 

meal 

D. A. Copp, R. 

Gondhalekar, and J. 

P. Hespanha 2018. 

MPC/MHE tested in silico trials of ten virtual patients. The results 

show several notes of this simulation, containing less 

(hypoglycemia) status, without raising the number of 

(hyperglycemia) status. 

P. Abuin, P. S. 

Rivadeneira, A. 

Ferramosca, and A. 

H. González, 2020. 

pZMPC pZMPC was published under a real observer and 

tested on 10 virtual adult patients. The controller 

mange the BGC to normal range, but BGC raises to 

hyperglycemia after meal intake. 

E.S. Juan, H. 

Alejandro, and P. S. 

Rivadeneira, 2017. 

ZMPC The comparison of the performance of these 

controllers showed that the standard ZMPC was 

present 70% of the time inside the normal zone, and 

on the other side, the iZMPC was spent 92.5%. 

K. Menani, T. 

Mohammadridha, N. 

Magdelaine, M. 

Abdelaziz, and C. H. 

Moog, 2017. 

positive Sliding Mode 

Control (SMC) 

Firstly the PIS was found in this study. This controller 

was examined on 3 patients and take more time to 

regulate glycemia to normal range in the fasting 

phase. 

T. MohammadRidha, 

P. S. Rivadeneira, N. 

Magdelaine, M. 

Cardelli, and C. H. 

Moog, 2019. 

Positive State Feedback 

Controller 

The PIS was found under this controller for all system 

states, and BGC was regulated without hypoglycemia 

in fasting phase. 

L. M. Huyett, E. 

Dassau, H. C. Zisser, 

and F. J. Doyle, 

2015. 

PID controller Robust controller against disturbances but not cope 

with positivity constrained 

E. Sereno, M. A. 

Caicedo, and P. S. 

Rivadeneira, 2018. 

PID in state-space form Hybrid controllers consist of a combination of a PID 

controller for disturbance rejection and a state 

feedback controller for positivity constrained. The 

BGC was regulated to the normal range. 
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From the above studies related to design a positive controller, one can see all the 

preventing hypoglycemic events in both scenarios ( with or without meal). However, 

hypoglycemic events were fully prevented at all times but there was no guaranty for such 

prevention. This represents an important challenge for any controller in designing any AP. 

The block diagram in Fig. 3, shows the formulation of this controller. See that there is no 

estimator, thus the controller can not cancel the effect of the disturbances (meals). 

Therefore the hypoglycemic events can not be eliminated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 3. BLOCK DIAGRAM OF THE APPLIED CONTROLLER 

 

V. CONCLUSIONS  

In any study, managing glycemia in the normal zone is the main challenge. Therefore, 

the main problem is to design AP that matches the functioning of the real pancreas.  

In this paper, a simplified explanation is provided about T1DM, its causes, and how it 

is treated. Then, a brief idea of positive control is presented. This paper also includes 

previous studies in which a positive control was designed along with the reasons that lead to 

applicate positive control on T1DM models. 

 Therefore, the following can be concluded from the studies related to design a positive 

control that: 

Hypoglycemia is completely avoided due to the preventing of any overdoses of insulin. 

This is the main benefit of positive control. However, the hypoglycemia was prevented 

before the meal intake, whereas the hyperglycemia was not completely prevented after meal 

intake. Since meal intake is a positive factor, the control action remains positive, but will 

not maintain hyperglycemia.  

The perspective is to design a positive control able to maintain glycemia in a normal 

zone after meal intake. This depends mainly on the estimation of the meal intake. Thus, this 

operation is required to design a suitable robust observer. The block diagram in Fig. 4, 

shows a brief idea of the operation. 
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FIG. 4. BLOCK DIAGRAM OF THE PROPOSED CONTROLLER 

 

 

REFERENCES 

 

[1] S. Dawood S. & Shibly Ahmed ALSamarraie" Adaptive Control Design to the Blood Glucose Control System Based 

on Backstepping Approach " Thesis Submitted to the Department of Control and Systems Engineering at University 

of Technology, January 2019. 

[2] K. Menani, T. Mohammadridha, N. Magdelaine, M. Abdelaziz, and C. H. Moog, “Positive sliding mode control for 

blood glucose regulation,” Int. J. Syst. Sci., vol. 48, no. 15, pp. 3267–3278, 2017. 

[3] S. Kapil, R. Saini, S. Wangnoo, and S. Dhir, “Review Article Artificial Pancreas System for Type 1 Diabetes — 

Challenges and Advancements,” Explor. Res. Hypothesis Med. 2020;5(3)110–120., vol. 5, no. 3, pp. 110–120, 2020. 

[4] D. M. AL-Gebori et al., “Correlation of Total Cholesterol and Glucose in Serum of Iraqi Patients with 

Atherosclerosis and Diabetes Mellitus Type 2,” Eng. Tech. J., vol. 31, no. 6, pp. 801–808, 2013. 

[5] S.S. Hacısalihzade."  Diabetes and Control of Blood Glucose "in Biomedical Applications of Control Engineering.  

LNCIS 441.  Istanbul, Springer  Verlag Berlin Heidelberg,  pp.  137-173, 2013. 

[6] K. Y. Zhu, W. D. Liu, and Y. Xiao, “Application of Fuzzy Logic Control for Regulation of Glucose Level of 

Diabetic Patient,” Intell. Syst. Ref. Libr., vol. 56, pp. 47–64, 2014. 

[7]  P. S. Rivadeneira, J. E. Sereno, N. Magdelaine, and C. H. Moog, “Blood Glycemia Reconstruction from Discrete 

Measurements using an Impulsive Observer,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 14723–14728, 2017. 

[8] S. Mehmood, I. Ahmad, H. Arif, U. E. Ammara, and A. Majeed, Artificial pancreas control strategies used for type 1 

diabetes control and treatment: A comprehensive analysis, vol. 3, no. 3. 2020. 

[9] A. Nath, R. Dey, and C. Aguilar-Avelar, “Observer based nonlinear control design for glucose regulation in type 1 

diabetic patients: An LMI approach,” Biomed. Signal Process. Control, vol. 47, pp. 7–15, 2019. 

[10] Diabetes Control and Complications Trial Research Group. "The effect of intensive treatment of diabetes on the 

development and progression of long-term complications in insulin-dependent diabetes mellitus." New England 

journal of medicine, vol.329, no.14, pp.977-986, 1993.  

[11] T. Mohammadridha, and C. H. Moog. " Closed-Loop Control of Blood Glucose control for type-1 diabetes: A 

fasting-phase study, 9th IFAC Symp." Biol. Medic. Syst., Berlin (2015).   

[12] B. Moreano and J. Pumisacho, “Comparison between PID-Fuzzy and Numerical Methods based on linear Algebra 

controllers for Glucose control in Type 1 Diabetes treatment .,” 2019 Int. Conf. Inf. Syst. Comput. Sci., pp. 156–162. 

[13] A. K. Patra, A. K. Mishra, and P. K. Rout, “Backstepping Model Predictive Controller for Blood Glucose Regulation 

in Type-I Diabetes Patient,” IETE J. Res., vol. 66, no. 3, pp. 326–340, 2020. 

[14] Y. C. Kudva, R. E. Carter, C. Cobelli, R. Basu, and A. Basu, “Closedloop artificial pancreas systems: physiological 

input to enhance nextgeneration devices,” Diabetes care, vol. 37, no. 5, pp. 1184–1190, 2014. 

[15] Ban K. Abd-AL Amear, S. M. Raafat " Adaptive Blood Glucose Control for Type1 Diabetes " Thesis Submitted to 

the Department of Control and Systems Engineering at University of Technology, 2019. 

[16] T. Mohammadridha, C. H. Moog, E. Delaleau, M. Fliess, and C. Join, “A variable reference trajectory for model-free 

glycemia regulation,” SIAM Conf. Control Its Appl. 2015, pp. 60–67, 2015. 

[17]  B. K. Abd-Al Amear, S. M. Raafat, and A. Al-Khazraji, “Glucose controller for artificial pancreas,” 2019 Int. Conf. 

Innov. Intell. Informatics, Comput. Technol. 3ICT 2019, pp. 1–6, 2019. 

Dynamical 

System Controller 

Observer 

Reference 

 input 
output 

u(t) 

D(t) 

feedback 

e(t) 

𝑫  (t) 



 22 

Received 16/4/2021; Accepted 25l7l2021 

  

 

Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 21, No. 3, Sep 2021 

@ 2017 University of Technology, Iraq               ISSN (Print) 1811-9212                       ISSN (Online) 2617-3352  

DOI: https://doi.org/10.33103/uot.ijccce.21.3.2 

 

[18] S. F. Fadhel and S. M. Raafat, “H ∞ loop Shaping Robust Postprandial Glucose Control for Type 1 Diabetes,” Eng. 

Technol. J., vol. 39, no. 02, pp. 268–279, 2021. 

[19] S. M. Raafat, B. K. A. Amear, and A. Al-khazraji, “Engineering Science and Technology, an International Journal 

Multiple model adaptive postprandial glucose control of type 1 diabetes,” Eng. Sci. Technol. an Int. J., vol. 24, no. 1, 

pp. 83–91, 2021. 

[20] T. MohammadRidha, “Automatic Glycemia Regulation of Type I Diabetes Automatic Glycemia Regulation of Type 

I Diabetes,” thesis doctor University BRETAGNE LOIRE, 2017. 

[21]  T. MohammadRidha et al., “Model free iPID control for glycemia regulation of type-1 diabetes,” IEEE Trans. 

Biomed. Eng., vol. 65, no. 1, pp. 199–206, 2018. 

[22] T. F. Frederick Chee, Closed-Loop Control of Blood Glucose", Springer Berlin Heidelberg New York, vol. 404. 

2010. 

[23] N. Magdelaine et al., “A long-term model of the glucose-insulin dynamics of type 1 diabetes,” IEEE Trans. Biomed. 

Eng., vol. 62, no. 6, pp. 1546–1552, 2015. 

[24] Taghreed Mohammadridha, P. S. Rivadeneira, J. E. Sereno, M. Cardelli, and C. H. Moog, “Description of the 

Positively Invariant Sets of a Type 1 Diabetic Patient Model,” 17th CLCA Lat. Am. Conf. Autom. Control., 2016. 

[25] Taghreed Mohammadridha, P. S. Rivadeneira, M. Cardelli, N. Magdelaine, and C. H. Moog, “Towards 

hypoglycemia prediction and avoidance for Type 1 Diabetic patients,” 2017 IEEE 56th Annu. Conf. Decis. Control. 

CDC 2017. 

[26] J. E. Pinsker, J. B. Lee, E. Dassau et al., “Randomized crossover comparison of personalized MPC and PID control 

algorithms for the artifcial pancreas,” Diabetes Care, vol. 39, no. 7, pp. 1135–1142, 2016. 

[27] S. Trevitt, S. Simpson, and A. Wood, “Artificial Pancreas Device Systems for the Closed-Loop Control of Type 1 

Diabetes : What Systems Are in Development ?,” J. Diabetes Sci. Technol., vol. 10, no. 3, pp. 714–723, 2016. 

[28] B. Grosman et al., “Zone Model Predictive Control: A Strategy to Minimize Hyper- and Hypoglycemic Events,” J. 

Diabetes Sci. Technol., vol. 4, no. 4, 2010. 

[29] Taghreed MohammadRidha, “Model Predictive Control of Blood Pressure by Drug Infusion”. IJCCCE, vol.11, no.1, 

p.32-45, 2011. 

[30] Amjad J. Humaid, Hamid M. Hasan & Firas A. Raheem, “Development of Model Predictive Control for Congestion 

Control Problem” IJCCCE, Vol.14, No.3, P. 42-51, 2014. 

[31] M. F. Villa-Tamayo and P. S. Rivadeneira, “Design of an impulsive offset-free MHE/ZMPC scheme for type 1 

diabetes treatment,” 4th IEEE Colomb. Conf. Autom. Control Autom. Control as Key Support Ind. Product. CCAC 

2019 - Proc., pp. 4–9, 2019. 

[32] P. S. Rivadeneira, A. Ferramosca, and A. H. Gonz, “Impulsive Zone Model Predictive Control with Application to 

Type I Diabetic Patients,” 2016 IEEE Conf. Control Appl. (CCA). IEEE, 2016.  ,2016 . 

[33] A. H. González, P. S. Rivadeneira, A. Ferramosca, N. Magdelaine, and C. H. Moog, “Impulsive Zone MPC for Type 

I Diabetic Patients based on a long-term model,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 14729–14734, 2017. 

[34] D. A. Copp, R. Gondhalekar, and J. P. Hespanha, “Simultaneous model predictive control and moving horizon 

estimation for blood glucose regulation in Type 1 diabetes,” Optim. Control Appl. Methods, vol. 39, no. 2, pp. 904–

918, 2018. 

[35] G. P. Incremona, M. Messori, C. Toffanin, C. Cobelli, and L. Magni, “Model predictive control with integral action 

for artificial pancreas,” Control Eng. Pract., vol. 77, no. January, pp. 86–94, 2018. 

[36] P. Abuin, P. S. Rivadeneira, A. Ferramosca, and A. H. González, “Artificial pancreas under stable pulsatile MPC: 

Improving the closed-loop performance,” J. Process Control, vol. 92, pp. 246–260, 2020. 

[37] P. Abuinet A. Ferramosca, "Closed-loop MPC-based artificial pancreas: Handling circadian variability of insulin 

sensitivity." 2020 Argentine Conference on Automatic Control (AADECA). IEEE, 2020. 

[38] E. Camacho and C. Alba, Model Predictive Control, ser. Advanced Textbooks in Control and Signal Processing. 

Springer London, 2013. 

[39] J. J. Lee, E. Dassau, H. Zisser, and F. J. Doyle, “Design and in silico evaluation of an intraperitoneal-subcutaneous 

(IP-SC) artificial pancreas,” Comput. Chem. Eng., vol. 70, pp. 180–188, 2014. 

[40] E.S. Juan, H. Alejandro, and P. S. Rivadeneira. "A performance comparison between standard and impulsive zmpc 

on type 1 diabetic patients." 2017 IEEE 3rd Colombian Conference on Automatic Control (CCAC). IEEE, 2017. 

[41] J. E. Sereno, M. A. Caicedo, P. S. Rivadeneira, and O. E. Camacho, “In Silico Test for MPC and SMC Controllers 

under Parametric Variations in Type 1 Diabetic Patients,” 2018 Argentine Conf. Autom. Control. AADECA 2018, 

pp. 1–6, 2018. 

[42] Thaghreed MohammadRidha, P. S. Rivadeneira, N. Magdelaine, M. Cardelli, and C. H. Moog, “Positively invariant 

sets of a T1DM model: Hypoglycemia prediction. 

[43]  N. Magdelaine et al., “Hypoglycaemia-free artificial pancreas project,” IET Syst. Biol., vol. 14, no. 1, pp. 16–23, 

2020. 



 23 

Received 16/4/2021; Accepted 25l7l2021 

  

 

Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 21, No. 3, Sep 2021 

@ 2017 University of Technology, Iraq               ISSN (Print) 1811-9212                       ISSN (Online) 2617-3352  

DOI: https://doi.org/10.33103/uot.ijccce.21.3.2 

 

[44] Y. Dhieb, M. Yaich, A. Guermazi, and M. Ghariani, “PID controller tuning using ant colony optimization for 

induction motor,” J. Electr. Syst., vol. 15, no. 1, pp. 133–141, 2019.  

[45] M. H. Jasim, “Tuning of a PID Controller by Bacterial Foraging Algorithm for Position Control of DC Servo Motor,” 

Eng. Technol. J., vol. 36, no. 3, pp. 287–294, 2018. 

[46] L. M. Huyett, E. Dassau, H. C. Zisser, and F. J. Doyle, “Design and Evaluation of a Robust PID Controller for a 

Fully Implantable Artificial Pancreas,” Ind. Eng. Chem. Res., vol. 54, no. 42, pp. 10311–10321, 2015. 

[47] E. Sereno, M. A. Caicedo, and P. S. Rivadeneira, “Artificial pancreas: Glycemic control strategies for avoiding 

hypoglycemia,” DYNA, vol. 85, no. 207, pp. 198–207, 2018. 

[48] Y. Batmani and S. Khodakaramzadeh, “Blood glucose concentration control for type 1 diabetic patients: A multiple-

model strategy,” IET Syst. Biol., vol. 14, no. 1, pp. 24–30, 2020. 

[49] A. Beneyto, A. Bertachi, J. Bondia, and J. Vehi, “A New Blood Glucose Control Scheme for Unannounced Exercise 

in Type 1 Diabetic Subjects,” IEEE Trans. Control Syst. Technol., vol. 28, no. 2, pp. 593–600, 2020. 


