Some new types connectedness in topological space

¹Rana Bahjat yaseen , ²Elaf Sabah Abdulwahid

^{1,2} Dep. of mathematics- College of education for girls University of Tikrit.

ABSTRACT

ARTICLE INFO

Received: 26 / 4 /2018 Accepted: 15 / 5 /2019 Available online: 19/7/2022 DOI: 10.37652/juaps.2022.171870 **Keywords:** S^*g -separated . $(S^*g - \alpha)$ separated . S^*g -connected $S^*g - \alpha$) Connected. S^*g -home. $(S^*g - \alpha)$ home .

Introduction :

Levine, N. [5] introduced and investigated generalized sets, generalized α –open sets, Khan, M. and et.al [4] in 2008 introduce and provide the notion of S^*g –open sets in (X, \mathcal{T}). Mahmood I.Sabiha and Tareq, S. Jumana [6] introduce new class of sets, namely $S^*g - \alpha$ – open sets and show that the family of all $S^*g - \alpha$ –open subset of topological space (X, \mathcal{T}) and study new function namely $S^*g - \alpha$ –continuous function in topological spaces.

Introduced connected spaces defined as a topological space X is said to be disconnected space if X can be expressed as the union of two disjoint non – empty open subsets of X. Otherwise, X is connected space. Bourbaki, N. [2], several properties of connected space in [7, 3, 1].

In this work ,we introduce a new definition S^*g -separation, $(S^*g - \alpha)$ -separation, S^*g -cconnected ,($S^*g - \alpha$)connected spaces using definitions $(S^*g - (S^*g - \alpha) - \alpha)$ open sets and study the relations among them. At last we show that $(S^*g - (S^*g - \alpha) - \alpha)$ connected is not-hereditary property but topological property.

The main purpose of this paper is to introduce new definitions of separation, connectedness in topological spaces namely (S^*g -separation, $(S^*g - \alpha)$ separation, S^*g -connected, $(S^*g - \alpha)$ connected) by using the definitions $S^*g - (S^*g - \alpha) - open sets$ and study the relations among them. Also we study hereditary, topological property and show that $S^*g - (S^*g - \alpha)$ connectedness is not - hereditary property but topological property.

Through this paper the topological spaces (X, \mathcal{T}_X) and (Y, \mathcal{T}_y) (or simply X and Y) when A is a subset of X, *int*(A), *cl*(A) which denote the interior and closure of a set A respectively [2].

1- Preliminaries:

We recall the following definitions.

Definition (1): A subset *A of a space X* is said to be:

1- An S*g -closed set [4] if cl(A) ⊆ u where A ⊆ u and u ⊆ cl(int(u)), the collection of all S*g -closed subsets in X is denoted by S*GC(X).
The complement of an S*g -closed is called

The complement of an S^*g -closed is called S^*g – open set, the collection of all S^*g –open subsets in X is denoted by $S^*GO(X)$.

- 2- The S^*g -closure of A denoted by $S^*g cl(A)$ is the intersection of all S^*g closed subset of X which contains A [4].
- 3- An S*g α open set [6] if A ⊆ int (S*g cl(int(A)), the complement of an S*g α open set is defined to be S*g α closed, the family of all S*g α open subsets of X is denoted by τ^{S*g-α}. The intersection of all S*g α closed sets containing A is denoted by cl_{S*g-α}(A).

Definition (2): A function $f: X \to Y$ is called $S^*g - (S^*g - \alpha)$ continuous iff the inverse image

^{*} Corresponding author at: Dep. of mathematics-College of education for girls University of Tikrit.E-mail address:

of each open set of Y is a $S^*g - (S^*g - \alpha)$ open subset of X [6, 4].

2- On connectedness in a topological spaces.

We introduce the concept of $S^*g - (S^*g - \alpha)$ connected space and study some of their properties .Also we study that $S^*g - (S^*g - \alpha) -$ connected is not hereditary property but topological property.

Definition 2-1: A topological space X is a S^*g –separation space if and only if there exist two disjoint S^*g –open subsets E and F of X, provided that

 $E \cap S^*g - cl(F) = \varphi$ and $F \cap S^*g - cl(E) = \varphi$.

For example: we take $F = \{a, b\}, E = \{c\}$ are S^*g -open subset of $X = \{a, b, c\}$ be defined indiscrete topological spaces, then X is a S^*g -separation space.

Definition 2-2: A topological space X is a $S^*g - \alpha$ -separation space if and only if there exists two disjoint $S^*g - \alpha$ -open subsets F and E of X, whenever $E \cap cl_{S^*g-\alpha}(F) = \varphi$ and $F \cap cl_{S^*g-\alpha}(E) = \varphi$.

For example: we take $E = \{a, b\}, F = \{c, d\}$ are $S^*g - \alpha$ -open subset of $X = \{a, b, c, d\}$ be on $\mathcal{T} = \{\varphi, X, \{a, b, c\}, \{a, b, d\}, \{a, b\}\}$, Then X is a $S^*g - \alpha$ -separation space.

Remark 2-3 : in 2014 [6] proved that :

- 1- Every open set is an $S^*g (S^*g \alpha)$ -open set but the converse is not true.
- Also a separation space is $S^*g(S^*g \alpha)$ separation space .
- But the converse is not true as in the two examples above .
- 2- S^*g -open sets and $S^*g \alpha$ -open sets are ingeneral independent, so we'll get that : each S^*g -separation and $(S^*g - \alpha)$ separation space are ingeneral independent.

Example 2-4:

1- Every two disjoint a $S^*g - (S^*g - \alpha)$ -open subsets of any space, then they are $S^*g - (S^*g - \alpha)$ seperation.

2- Every two disjoint a $S^*g - (S^*g - \alpha)$ -closed subsets of any space, then they are $S^*g - (S^*g - \alpha)$ seperation.

Because (let E and F are disjoint $S^*g - (S^*g - \alpha)$)-closed subset of X, we have $E \cap cl_{S^*g}(F) = E \cap F = \varphi$ and $F \cap cl_{S^*g}(E) = F \cap E = \varphi$ (A = cl(A) iff A is closed)

By definition we get that E and F are $S^*g - (S^*g - \alpha)$ separation.

Definition 2-5: A topological space X is said to be S^*g –connected if X can not be expressed as a disjoint union of two non-empty S^*g –open sets,

(i.e. there exists two S^*g -open subsets E and F of X provided that $F \cap E = \varphi$,

 $F \cup E \neq X$).

"A topological space X is S^*g –disconnected space if it dose not achieve S^*g –connected space ".

Definition 2-6: A topological space X is said to be $S^*g - \alpha$ -connected if X can not be expressed as a disjoint union of two non-empty $S^*g - \alpha$ -open sets,

(i.e. there exists two $S^*g - \alpha$ -open subsets *E* and *F* of *X* provided that

 $F \cap E = \varphi$ and $F \cup E \neq X$). So

"A topological space X is $S^*g - \alpha$ –disconnected space if it dose not achieve

 $S^*g - \alpha$ –connected space ".

Remark 2-7 :

- 1- [6] presented In 2014 that : "Every $S^*g \alpha$ -open set is α -open set"
- So every $S^*g \alpha$ connected space is α connected space.
- 2- For each S^*g -connected and S^*g α -connected space are in general independent.

As in the example (2-8).

3- A connected space is $S^*g - (S^*g - \alpha)$ connectedness space.

4- A subset A of X is said to be S*g - (S*g - α) disconnected set if and only if it is the union of two non empty S*g - (S*g - α) separated sets. So A is said to be S*g - (S*g - α) connected if and only if it is not S*g - (S*g - α) disconnected.

Example 2-8:

- 1- Let $X = \{a, b, c, d\}$ on $\mathcal{T} = \{X, \varphi, \{a, b, c\}, \{a, b\}\}$. Then X is S^*g -connected space (because there exists two S^*g -open subsets F and E of X such that $F = \{a\}$ and $E = \{b\}$, whenever $\{a\} \cap \{b\} = \varphi$ and $\{a\} \cup \{b\} \neq X$, but not $S^*g - \alpha$ -connected.
- 2- let $X = \{1,2,3,4\}$ on $\mathcal{T} = \{\varphi, X, \{1\}\}$. Hence X is $S^*g \alpha$ -connected and X is α -connected space, but not S^*g -connected space.

Theorem 2-9:

A subset *E* of *X* is $S^*g - (S^*g - \alpha)$ disconnected if and only if it is expressed as a union of two nonempty $S^*g - (S^*g - \alpha)$ separated subsets of *X*.

Proof : \Rightarrow suppose that *E* is S^*g - disconnected, then $E = A \cup B$ where *A* and *B* are two S^*g -disjoint non empty closed sets,

Assume that *A* and *B* are S^*g –separated subsets of *X*.

$$A \cap S^*g - cl(B) = (A \cap E) \cap S^*g - cl(B)$$

 $=A\cap S^*g-cl_{{\mathcal T}^*_E}(B)=A\cap B=\varphi\quad,\quad \text{So}\quad B\cap\\ S^*g-cl_{{\mathcal T}_E}(A)=B\cap A=\varphi$

 \Leftarrow suppose that $E = A \cup B$ where A and B are S^*g –open sets disjoint non-empty S^*g –separated subsets of X.

We have $A \cap S^*g - cl(B) = (A \cap E) \cap S^*g - cl(B) = \varphi$ and so that

 $B \cap S^*g - cl_{\mathcal{T}_E}(A) = (B \cap E) \cap S^*g - cl(A) = \varphi$, we get that E is the union of non-empty S^*g -separated subsets of E, Thus E is S^*g -disconnected.

In the same way we demonstrate for $S^*g - \alpha$ – open set .

Corollary 2-10 : If a space X is $S^*g(S^*g - \alpha)$ separation space, then X is the union of two disjoint non-empty $S^*g(S^*g - \alpha)$ -closed subsets of X.

Proof : let $X = E \cup F$ where as *E* and *F* are S^*g –separated sets,

then
$$S^*g - cl(E) = S^*g - cl(E) \cap (E \cup F)$$

= $S^*g - cl(E) \cap E) \cup S^*g - cl(E) \cap F)$

 $= S^*g - cl(E) \cap E = E$ (by def. 1-2) .So *E* is S^*g -closed set.

Similarly F is S^*g -closed set.

We demonstrate the same style for the $S^*g - \alpha - open$ set .

As above noted hence that α – connected is topological property.

Corollary 2-11 :" A space *X* is a union of two disjoint non-empty"

 $S^*g - (S^*g - \alpha)$ -open subsets of X, then X is $S^*g - (S^*g - \alpha)$ disconnected.

Proof : suppose that $X = E \cup F$ where as *E* and *F* are disjoint non-empty

 S^*g -open sets, then $E = F^c$ is S^*g -closed .So X is S^*g -disconnected.

If P is any property in X, then we call P hereditary if it appears in a relative topological space if we say P is not-hereditary.

Remark 2-12 : The $S^*g - (S^*g - \alpha)$ connectedness is not – hereditary property.

As in the example:

Example 2-13:

(1) let
$$X = \{a, b, c, d\}$$
 and
 $\mathcal{T} = \{\varphi, X, \{a\}, \{b, c, d\}, \{a, c, d\}, \{c, d\}\}$

Then X is S^*g -connected space (because $\exists \{a, d\}, \{c\}$ are S^*g -open sets such that $\{a, d\} \cap \{c\} = \varphi$ and $\{a, c\} \cup \{a\} = \{a, c, d\} \neq X$).

If $A = \{a, b\} \subseteq X$ and $\mathcal{T}_A = \{\varphi, A, \{a\}, \{b\}\}$,

Then (A, \mathcal{T}_A) is not S^*g – connected ($\exists \{a\}, \{b\}$ are S^*g –open sets when ever

$$\{a\} \cap \{b\} = \varphi \text{ and } \{a\} \cup \{b\} = X\}.$$
(2) let $X = \{a, b, c, e\}$ on
 $\mathcal{T} =$
 $\{\varphi, X, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{c, e\}, \{a, b, c\}, \{b, c, e\}\},$
Then X is $(S^*g - \alpha)$ connected space, but if $A =$
 $\{b, c\} \subseteq X$ and $\mathcal{T}_A = \{\varphi, A, \{b\}, \{c\}\}.$ So A is not

 $S^*g - \alpha$ -connected space (because $\exists \{b\}, \{c\}$ are $S^*g - \alpha$ -open sets,

$$\{b\} \cap \{c\} = \varphi$$
, $\{b\} \cup \{c\} = \{b, c\}$).

Definition 2-14:

A map $f: (X, \mathcal{T}_x) \to (Y, \mathcal{T}_y)$ is said to be $S^*g - (S^*g - \alpha)h$ omeomorphism

 $(S^*g - (S^*g - \alpha)$ home. For short) if

- (1) f is bijective map.
- (2) f and f^{-1} are $S^*g (S^*g \alpha)$ continuous.

Let *P* be any property in (X, \mathcal{T}_X) if *P* is carried by $(S^*g - (S^*g - \alpha))$ home. to another

space (Y, \mathcal{T}_{v}) we say P is topological property.

Now, we introduce the main result about a topological property the a $S^*g - (S^*g - \alpha)$ connected.

Theorem 2-15 : A S^*g -connected space is a topological property.

Proof: A $f:(X, \mathcal{T}_x) \to (Y, \mathcal{T}_y)$ be S^*g -home. and space X is S^*g -connected space.

So we have to prove that (Y, \mathcal{T}_y) be S^*g -connected space.

If (Y, \mathcal{T}_y) be S^*g -disconnected space, then there exists two disjoint non- empty S^*g -open subsets of Y, E and F are subsets of Y such that $E \cap S^*g - cl(F) = \varphi = F \cap S^*g - cl(E)$ and $E \neq \varphi$, $F \neq \varphi$; as f is S^*g -continuous,

We have $f^{-1}(E) = E_1$ and $f^{-1}(F) = F_1$ where E_1 and F_1 are S^*g – open in X.

$$E_1 \cap S^*g - cl(F_1) = \varphi$$
 , $F_1 \cap S^*g - cl(E_1) = \varphi$

Hence X is S^*g –disconnected but that is contradiction

Since
$$F_1 \cup E_1 = f^{-1}(F_1) \cup f^{-1}(E_1) = f^{-1}(F_1 \cup E_1)$$

Hence X is S^*g –disconnected, $f^{-1}(Y) = X$, We get the assume is not true.

Then (Y, \mathcal{T}_v) is S^*g -connected space.

Theorem 2-16: A $S^*g - \alpha$ -connected space is a topological property.

Proof : A $f: (X, \mathcal{T}_x) \to (Y, \mathcal{T}_y)$ be $S^*g - \alpha$ -home. and space X is

 $(S^*g - \alpha)$ connected space. So we have to prove that (Y, \mathcal{T}_y) be $(S^*g - \alpha)$ connected space. If (Y, \mathcal{T}_y) be $(S^*g - \alpha)$ disconnected space, then there exists two disjoint non- empty $(S^*g - \alpha)$ -open subsets of Y, E and F are subsets of Y such that $E \cap$ $cl_{S^*g-\alpha}(F) = \varphi = F \cap cl_{S^*g-\alpha}(E)$ and $E \neq \varphi$, $F \neq \varphi$, as F is $S^*g - \alpha$ -continuous

We have $f^{-1}(E) = E_1$ and $f^{-1}(F) = F_1$ where E_1 and F_1 are $S^*g - \alpha$ -open in X.

 $E_1 \cap cl_{S^*g-\alpha}(F_1) = \varphi$, $F_1 \cap cl_{S^*g-\alpha}(E_1) = \varphi$

Hence X is $(S^*g - \alpha)$ disconnected but conditions

Since $F_1 \cup E_1 = f^{-1}(F_1) \cup f^{-1}(E_1) = f^{-1}(F_1 \cup E_1)$

Hence X is $(S^*g - \alpha)$ disconnected, $f^{-1}(Y) = X$, we get that the assumption is not true. Then (Y, \mathcal{T}_y) is $(S^*g - \alpha)$ connected space.

References:

- AL- Malaki , N.J. "Some kinds of Weakly Connected and Pairwise Connected Space", M.Sc. Thesis University of Baghdad , college of Education . Ibn Al- Haitham (2005).
- [2] Bourbaki, N., " General Topology part 1, Addison Wesley, redding, Mass. (1966).
- [3] Burbaki, N. "Elements of Mathematics; General Topology "Springer verlag, Berlin, Hedelberg, New York ,London, Paris ,Tokyo, 2nd Edition .(1989).

P-ISSN 1991-8941 E-ISSN 2706-6703 2019,13 (1):36-40

.

- [4] Khan, M., Nori, T. and Hussain, M. " On S^*g closed sets and S^* normal space ". Codeiv Jnsmac, vol (48), no (1).pp: 31- 41 (2008).
- [5] Levine,N "Generalized closed sets in topology" ,Rend.Circ.Math.Palermo, 19 (2), pp: 89-96 .(1970).
- [6] Mahmood, I. Sabiha and Tareq, S. Jumana, "On S*g α open sets in topological spaces ". Ibn AL-Haitham Journal for pure and appL. sci . vol(27) (3) 2. pp: 542-555. (2014).
- [7] Sharma L. J. "Topology "Krishna Prakashan Media Ltd., India ,Twenty Fifth Edition, (2000)

بعض الأنواع الجديدة للإتصال في الفضاءات التبولوجية

(1) رنا بهجت ياسين
(2) إيلاف صباح عبد الواحد
(1) قسم الرياضيات – كلية التربية للبنات – جامعة تكريت

الخلاصة:

أن الغرض الرئيسي من هذا البحث هو تقديم تعاريف جديدة للاتصال والتفريق التي اسميناها , separation, ($S^*g - \alpha$) separation , ($S^*g - \alpha$) connected المواثية و التبولوجية وبرهنا أن الاتصال هو ليس صفة وراثية ولكنه صفة تبولوجية .