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Abstract: 

Alzheimer’s disease (AD) diagnosis at an early stage plays a significant role in reducing its 

symptoms and decelerating cognitive deterioration. Hence the use of computer-aided systems for early 

and accurate AD diagnosis is critical. The proposed diagnostic tool depends on classifying features 

extracted from brain Magnetic Resonance Imaging (MRI). These Features must accurately capture 

main AD-related variations of the anatomical brain structures, such as hippocampi region atrophy, 

lateral ventricle enlargement, cortical thickness, brain volume, etc. In this work, T1-weighted structural 

MRIs were employed for extracting these AD-related features. The images resulting from MRI scans 

are interpreted to high-intensity visible features, making preprocessing and segmentation less complex. 

This work has proposed a software pipeline consisting of several preprocessing steps, a segmentation 

method for segmenting brain tissues, and Convolutional Neural Networks (CNN) for Regions of 

Interest (ROIs) Parcellation that is AD-related. Features extracted from these segmented tissues and 

ROIs are utilized for the final AD classification using a Support Vector Machine (SVM) classifier. 

The results show that the proposed approach has reached 89.1% accuracy in the binary classification 

of AD vs. CN (Cognitively Normal), Demonstrating promising classification performance. 

Keywords: Alzheimer’s disease, Neuroimaging, Structural Brain MRI, Deep Learning, 3D CNN, U-

Net, SVM.

1. Introduction: 
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In healthy aging, a brain shrinks to some degree, whilst in AD the shrinkage is more noticeable, 

it destroys memory and cogitation skills, and, lastly, the person's capability to do out simple daily task. 

AD is the most common cause of dementia, accounting for upwards of 80% of reported cases of all 

dementia cases [1]. 

AD is caused by beta amyloids and tau tangles abnormal protein deposits in the brain that 

damage brain cells in the memory and mental functions areas in the brain. When more neurons die, 

entire brain areas shrink, which leads to cognitive function problems that are the main AD symptoms. 

In the more developed stage, damages become diffused and the brain undergoes a huge amount of 

atrophy. Because beta-amyloid grows gradually over time, it will take over 10 years before a patient 

starts to see any obvious signs of the disease [1] Figure 1 explain protein deposits in AD patient 

neurons. 

According to scientists, the causes seem to be related to a combination of environmental and 

genetic factors. The most common factors associated with the risk of developing AD are age and some 

environmental risk factors including smoking, strokes, heart disease, depression, arthritis, and diabetes. 

In 2018, more than 122,000 people died from AD, an increase of 146% from the year 2000. An 

estimated 5.8 million adults over 65 years are living with AD, with the number expected to more than 

double by the year 2050 to approximately 14 million individuals [2]. 

AD is an irreversible and progressive disease, meaning that no known cure is currently 

available for stopping or reversing the disease, therefore the medications are focused on relieving the 

patients from the disease symptoms. Nevertheless, few precautionary steps can be taken to reduce the 



risk factors and decelerate the retrogressive growth. It has been shown that early detection and 

intervention of AD are effective in maintaining patients’ quality of life. 

 

Figure 1 Normal brain vs AD brain 

 

One main center of creating new memories in the brain is the Hippocampi located in the 

temporal lobe at both brain sides. Hippocampus atrophy is a significant biomarker that occurs in an 

early stage of the disease; therefore, it is considered an effective region to efficiently diagnose this type 

of dementia [3]. 

Developments in neuroimaging techniques, such as the MRI and Positron Emission 

Tomography (PET) scan techniques, coupled with advanced computational methods, have led to 

accurate prediction of the presence of the disease. MRI is a technique that creates a detailed 3D image 

of the brain employing magnetic fields and radio waves [4]. In this study, T1-weighted structural MRI 

(sMRI) was used for the classification of AD. Figure 2 shows the 3 MRI planes (taken from the ADNI* 

datasets). 



 

Figure 2 T1 weighted MRI from ADNI dataset. a) Sagittal view. b) Axial view. c) Coronal view.

This paper proposes an AD diagnosis framework that depends on machine learning models. 

First, several segmentation techniques were used for segmenting the brain tissues, White Matter (WM), 

Gray Matter (GM), and Cerebrospinal Fluid (CSF). GM volume is one of AD essential biomarkers. A 

convolutional neural network is utilized for the parcellation of ROIs that is affected by Alzheimer's 

disease, such as the hippocampus and lateral ventricles ROIs. Even though, the proposed network 

learns from a small dataset, it demonstrates superior performance regarding to the affected regions 

parcellation. Afterwards, features from both tissue segmentation and ROIs parcellation are extracted, 

such as volume, thickness, and shape description. Finally, the classification is performed based on 

extracted features using an SVM classifier. Figure 3 shows the process flowchart of the proposed 

framework. 



 

Figure 3 Flowchart of the proposed software pipeline 

This article is organized as follows. Section 2 offers a brief review of different classification 

methods that have been reported in the literature for this problem. The data used in this paper is 

described in Section 3 and the proposed approach is introduced in Section 4. In Section 5, the 

experimental results are presented, and in section 6 the results are discussed. Finally, in section 7 the 

conclusion and future work are presented. 

2. Related Works 

Machine Learning has been used extensively in medical image analysis. Several models have 

been proposed to perform multiple operations on MRI images such as segmentation, registration, and 

classification. 

The classifiers were built by using brain imaging data and clinical information for AD 

diagnosis. Several studies have acknowledged the importance of structural variation in the regions 

such as the hippocampi, cerebral cortex, and the lateral ventricles in discriminating CN brains from 

AD brains. In recent years, many studies focused only on extracting a single feature from sMRI images 

for the classification of AD and CN subjects. The accuracy achieved in their classification is relatively 



low. However, the latest studies have shown that combining several features from different sMRI 

analysis techniques improves the accuracy of the classification [4][6]. 

 Baglat et al. [7] applied different machine learning techniques such as Logistic Regression, 

Random Forest, Decision Tree, AdaBoost, and SVM for the earlier diagnosis and Classification of 

Alzheimer’s disease using Open Access Series of Imaging Studies (OASIS) dataset, in which a 

significant performance was achieved using Random Forest classifier. 

Vemuri et al. [8] down-sampled GM density maps from an isotropic voxel size of (1mm3) to 

(8mm3) by simple averaging. This step reduced the GM maps by (8) times, lowering its voxel count. 

Vemuri et al. performed an additional feature selection step by ensuring a condition of large margins 

when using a linear SVM classifier. This study was performed on (190) AD patients and (190) CN 

subjects. It concluded that the use of SVM with feature reduction and selection can generalize well to 

new data. 

Ben Ahmed et al. [9] used two biomarkers: the visual feature that were extracted from the most 

Common region affected by AD (hippocampal area) and the surrounding CSF amount. They proposed 

a late fusion scheme for the classification of both biomarkers. First, the authors evaluated the approach 

on the baseline MR images from the (ADNI) dataset and then tested it on a 3T weighted contrast MRI 

obtained from Bordeaux dataset, which is a subsample of a large French epidemiological study. The 

experimental results Show that classification of subjects with AD vs. CN subjects achieves 87% and 

85% accuracies for ADNI subset and Bordeaux dataset respectively. 

Shen et al. [10] investigated the hippocampal shape variation using several Statistical Shape 

Models (SSM). SSMs' dimensionality was reduced using PCA, and their discriminative ability was 

tested using SVM classifiers. They concluded that while volume alone provides significant 

discrimination ability, the shape of the hippocampus can provide valuable information for the 

diagnosis of AD. 

Toshkhujaev et al. [11] used multi-atlas label propagation with expectation–maximization-

based refinement segmentation method to segment the brain images into 138 anatomical morphometry 

regions (in which 40 features belonged to subcortical volumes and the residual 98 features belonged 

to cortical thickness). The entire dataset was split into a 70:30 ratio (training stage and testing stage) 

before classifying the data. Principal component analysis was used for dimensionality reduction. 

Finally, an SVM classifier with a radial basis function was used for the classification of the two groups, 

AD vs. CN on the ADNI dataset.  

Khedher et al. [12] extracted the density maps of GM, WM, and CSF using SPM8. Then, they 

exploited two feature reduction methods: Principal Component Analysis (PCA) and Partial Least 



Squares (PLS), to reduce the dimensionality of the density maps. Khedher et al. tested the two feature 

reduction methods with two SVM classifiers: linear and Radial Basis Function (RBF). The PLS 

method reached a peak accuracy rate and outperformed the PCA method. 

Daliri et al. [13] , used the SIFT descriptors to extract features from the whole brain of the 

subject for the classification of brains with and without AD. Chupin et al., Colliot et al., Liua et al. and 

Shen et al. segmented the hippocampus automatically and use their volume for the classification, In 

addition to volumetric methods, several surface-based shape description approaches have been 

proposed to comprehend the development of AD [14][17] . 

In several studies, the CNN is used as a feature extractor, and the classification is performed 

using a SVM with linear or polynomial kernels and logistic regression Çitak-ER et al. [18] , random 

forest Chaddad et al. [19] , extreme ML Lin et al. [20] , SVM with different kernels Liua et al. [16], or 

logistic regression and XGBoost (decision trees) Shen et al. [21] . Only [21] compared the CNN 

classification results with those obtained with other classifiers based on CNN features extraction, and 

concluded that the last is more efficient. 

 In the above cited studies various brain regions were used: the whole brain, various cortical 

and subcortical regions such as hippocampus, GM, CSF etc. In our work we focus on the more 

significant regions, lateral ventricles and the hippocampus plus features extracted from different tissue 

types. 

3. Materials 

The MRIs and clinical data used in this paper were taken from Alzheimer Disease 

Neuroimaging Initiative (ADNI) dataset. ADNI dataset is open access and freely available to 

researchers. The dataset goal is to track and diagnose Alzheimer's disease in its early stages. ADNI 

has been running since 2004 and is currently funded until 2021. ADNI is the result of the efforts of 

many co-investigators from a broad range of academic institutions and private corporations. In the 

ADNI1 dataset, there are three diagnostic groups: AD, CN, and MCI. AD group refers to the patients 

with Alzheimer's diagnosis, CN group refers to normal cognitive status subjects that show no sign of 

AD. MCI group references patients that can take care of their daily activities with mild damage in 

other cognitive areas. The images used in this paper are 3-dimensional T1-weighted structural MRI 

taken from baseline and screening ADNI1 group. The number of subjects participating is 835 divided 

into three groups: 

• 228 CN subjects. 

• 407 Mild Cognitive Impairment (MCI) subjects. 



• 200 AD subjects.  

In this work, 200 subjects are chosen randomly from each group to provide the MR images and 

sustain the balance between classes classification bias aiming to classify AD vs. CN. 

4. Methodology 

In this section, the proposed classification pipeline will be described in detail. As shown in 

figure 3, the procedure used for the MRI classification, includes four main steps pre-processing, post-

processing, feature extraction, and classification. All work was implemented using MATLAB version; 

2021a, on a single PC with the following specifications:  

• Intel 10th Gen Core i7 with 8C/16T Processor. 

• Nvidia RTX 2070 with 8 Gigabyte of VRAM. 

• 32 Gigabyte of system RAM. 

4.1 Pre-Processing Stage 

The image data downloaded from ADNI has already undergone several pre-processing steps. 

This was done to limit the MRI disparities from different scanners, for better comparability across 

subjects. The pre-processing steps from ADNI include distortion correction, B1 non-uniformity bias 

field correction. Further pre-processing steps in this paper are performed using MATLAB which 

Consists of:  

• Brain extraction (skull-stripping). 

• Intensity normalization. 

• Registration 

4.1.1 Brain Extraction 

Brain extraction is an essential step in medical image analysis to remove non-brain tissues like 

the skull, air, facial tissues, fat, dura matter, etc. An accurate brain extraction method should exclude 

non-brain tissues without removing any part of the brain. ADNI Provides a brain tissue mask named 

(MIDAS) that is created with a semi-automatic segmentation method. These masks accurately define 

the main brain tissues: WM and GM but they exclude all interior and exterior CSF. Therefore, we used 

voxel-based morphological operations (dilation followed by erosion) to include the CSF. Figure 4 

shows the adopted mask used for extracting brain tissues and the surrounding CSF. 



 
Figure 4 the difference between a) MIDAS mask and b) Adopted mask 

4.1.2 Intensity Normalization 

Different MRI scanners and parameters result in large intensity variation between MRIs, this 

would greatly undermine the quality and performance of the following processes, especially in the 

post-processing stage, lowering the final classification accuracies. The simple Intensity scaling 

technique is chosen based on three intensity regions: 

• CSF intensity (low intensity region). 

• GM intensity (medium intensity region). 

• WM intensity (high-intensity region). 

The three intensity regions are segmented using K-means clustering algorithm, the computed 

means is shifted to match the Montreal Neurological Institute (MNI) ICBM152 template. 

4.1.3 Registration 

Another issue of using different scanners with different parameters is the spatial variation 

between MRIs. This means that a subject’s head is not located at the same coordinates, or has the same 

scale and angle concerning another subject’s head. 

To find correspondence between subjects, image registration is a necessity, in which a brain 

region in one subject MRI is correspondent to the same region in all other subjects MRIs. This helps 

to reduce the complexity of the following post-processing stage and increase ROIs parcellation 

accuracy and robustness. 

Affine registration is adopted for the brain alignment task. Affine registration is a rigid-body 

linear registration that tends to preserve parallelism, i.e., does not deform brain structures, but rather 

manipulate linear parameters: 

• Translation (head location). 

(a) (b) 



• Rotation (head angle). 

• Scaling (voxel size). 

• Shearing (planar direction). 

 All subjects are registered to the ICBM152 2009a template, which is a nonlinear symmetric 

T1 weighted brain MRI with voxel size of 1×1×1 mm3. 

 

 

 

Figure 5 2D representation of Image Registration Parameters: Rotation, Translation, Scaling 

and Shearing. 



 

Figure 6 Pre-processed MR images and ICBM152 template 



4.2 Post-Processing Stage 

The pre-processed MRI images will be further processed to segment brain tissues and extract 

the AD-related ROIs. 

4.2.1 Brain Tissue Segmentation 

Image segmentation is the process of labeling every pixel in an image with the purpose that the 

pixels with the same label share certain characteristics. This process aims to reduce the complexity of 

the image, and thus analyzing the image becomes Simpler. In image processing there are various 

techniques available for the segmentation process, in this study, segmentation methods used in 

previous works are utilized and evaluated against each other to find the best segmentation method. 

References [22][26] explored the statistical approaches which segment an image based on its voxels' 

intensity such as K-means, Otsu, and Fuzzy C-means. The Genetic Algorithm (GA) and Particle 

Swarm Optimization (PSO) methods are compared against Hidden Markov Random Field (HMRF) 

statistical model for segmentation refinement. HMRF is a probabilistic model that can improve the 

segmentation by using other image characteristics such as voxel neighborhood [27] . Evaluation of 

these methods is performed upon two factors; time of execution and quality of segmentation. 

Brain segmentation aims to extract the GM and CSF as a biomarker for AD diagnosis. Table1 

shows the average evaluation accuracies for seven different segmentation algorithms applied to brain 

MRI images. 

 

Table 1 Evaluation of Segmentation methods useg for segmenting brain tissues 

Method Accuracy Sensitivity Specificity Dice 

K-means 92.585% 89.639% 94.388% 89.148% 

OTSU 90.174% 86.410% 92.644% 85.597% 

FC-means 90.686% 87.012% 92.973% 86.351% 

K-means + HMRF-EM 96.522% 94.943% 97.317% 94.920% 

OTSU + HMRF-EM 95.587% 93.793% 96.661% 93.527% 

K-means + PSO 92.588% 89.639% 94.388% 89.148% 

Genetic Algorithm 92.590% 89.647% 94.392% 89.155% 

 

As shown in Table 1, the K-means clustering technique followed by Hidden Markov Random 

Fields (HMRF) technique gives the best accuracy amongst other segmentation methods. This is 

because the segmentation method depends on two features instead of one, the first segmentation feature 



is the voxel intensity, and the second feature is the voxel neighborhood. K-means alone is weak against 

noise since it does not take voxel spatial information into consideration. K-means provides the initial 

segmentation for the HMRF algorithm depending only on voxel intensity, whilst HMRF will further 

optimize the segmentation depending on both voxel intensity and neighborhood  

 

4.2.2 ROIs parcelation 

Hippocampus is a complex brain structure located in the depth of the temporal lobe and it has 

a major role in forming new memories in human brains. References [28], [29] showed that the loss in 

hippocampal volume helped to distinguish very mild AD from healthy Aging.  

The ventricles in the other hand, are two interconnected cavities distributed throughout the 

brain. Lateral ventricular enlargement is an important and key abnormality biomarker used in early 

detection of AD. Not only volume dilation but also the average change in ventricular volume has been 

studied as a potential surrogate marker to predict the improvement and progression of this type of 

dementia [6]. Figure 7 shows the Hippocampus atrophy and Lateral ventricles enlargement in AD 

patient compared to NC subject both downloaded from ADNI dataset. 

 

Figure 7 The difference in the hippocampus (colored in red) and lateral ventricles (colored in 

blue) between CN brain (left image) and AD brain (right image). The images are taken from 

the coronal view. 

Since both the hippocampus and the lateral ventricles have common patterns across all human 

brain, both can be parceled by the use of pattern recognition, in which a CNN dominates. CNN is one 

of many deep learning classes best used for analyzing visual imagery, which suits the ROI parcellation 

task by means of voxel classification [30] . 

Usually, CNN includes one or several convolution layers, one or several optionally pooling 

layers, non-linearity layers, and input and output layers. Each image passes through all CNN layers. 

b) 

a) b) 



A set of 3D filters are found in each convolutional layer, these 3D filters play an essential role 

in CNNs architecture, when images are inputted to a CNN, A series of learnable filters are applied 

upon the image to detect specific patterns and features, this application of filters is a convolution 

operation, hence the layer name. Each filter slides over the input image to compute the feature maps. 

Rectified linear units (ReLU) is a type of activation function, which introduces non-linearity to the 

CNN by removing all the negative values and keeping the positive values, this concept helps the CNN 

to converge faster to the optimal solution. The pooling layer performs down-sizing (down-sampling) 

and reduces the feature maps spatial dimensionality. Therefore, reduce network computational 

complexity. Deconvolution layers, on the other hand, is a mathematical operation that works the 

opposite way of a convolutional layer and max-pooling layer. Each voxel of the input feature map 

slides over the filter, as a result, the input feature map is up-sampled. The classification layer is the 

network's last layer, this layer outputs probability maps (heat maps) for voxel classification. In the 

forward learning stage, this layer calculates the output loss (misclassification rate). 

The architecture used in the parcellation process is the U-net [31] . It is composed of two stages, 

encoder, decoder, and a bridge between them. Each stage includes four blocks, and each block has 

seven layers. Each block in the encoder stage consists of two convolutional layers, two normalization 

layers, two activation layers and max-pooling at the beginning. 

 In the decoder stage, there are seven layers in each block, however there is only one 

deconvolution layer at the end of each block and no max-pooling layer at the beginning. The Bridge 

that separates the two stages consists of a max polling layer, a deconvolution layer in addition to the 

main six layers. Figure 8 shows the architecture adopted in this experiment. 

The U-net input is a 3D MRI brain image and the output is the labeled image. The network can 

learn the patterns to classify voxel if provided with the desired output; in this case, a ground-truth 

image. In the forward learning, the final layer; the classification layer, computes the dice [32] 

coefficient which represents the output loss. In the backpropagation, the network computes the 

gradients of all the learnable parameters to the output loss. These gradients can be used to update all 

learnable parameters in the right direction and by the right amount. 

Input images are cropped to contain regions of the lateral ventricles only and discard other 

unneeded brain regions. The cropped images can reduce U-net complexity and speed up the training 

phase since they have smaller dimensions than whole-brain MR images. 

Ground-truth images for the hippocampus were provided by ADNI, while ground-truth images 

for the lateral ventricles were created using ITK-SNAP software. ITK-SNAP is a software application 

used to segment structures in 3D medical images, and it has various segmentation tools for this task. 



Figure 9 shows all resulting images from the necessary processes on the subject downloaded 

from ADNI datasets 

 

 

Figure 8 U-net architecture used in ROI parcellation 

 



 

Figure 9 Axial, sagittal, and coronal view respectively left to right in a head scan from a single-

subject MRI session along with all resulting images from the necessary processes.

 

4.3 Feature Extraction: 

After brain tissue segmentation and parcellation of ROIs that are most affected by Alzheimer’s 

dementia, the next step is feature extraction from both segmentation and parcellation label images. 

These features represent information about brain structures such as GM thickness and volume, CSF 

amount, brain volume, hippocampus volume, lateral ventricles volume, etc. 

Since all MRI brain images are spatially normalized and affine registered to the MNI template, 

the number of voxels assigned to a label represents the normalized volume of that label. This means 



that all subjects have roughly the same mask volume. To compute the brain volume, only WM, and 

GM voxels are calculated.GM thickness is computed using distance transform across voxels with GM 

label resulted in the segmentation process. Distance transform calculates the lowest distance between 

a GM label voxel and a non-GM label voxel. This procedure has additional benefit of reducing the 

segmentation noise that is not removed in the HMRF part of the segmentation result, i.e., a voxel with 

no neighbors that has a distance value of zero. 

Age is an important risk factor of AD. Subjects with age beyond 65 years old are more 

susceptible to AD while younger adults are highly unlikely to have AD. Hence, all features mentioned 

above should be corrected for the subject’s age by adding the age as another feature [33].  

4.4 Features Classification: 

In machine learning the classification is the process of recognizing, understanding, and grouping 

objects into preset categories. The classifier is an algorithm that sorts unlabeled data into labeled 

classes or categories of information. Many classification algorithms exist, supervised and 

unsupervised. It is not possible to conclude which one is superior to the others since it depends on the 

application and the nature of the available data set. In this work, several machine learning models had 

been implemented such as logistic regression, decision tree, Fisher’s linear discriminant, SVM, naïve 

Bayes classifier, and Nearest neighbor classifiers. Table 2 shows the accuracy of each mode to compare 

between classifiers. The best result was achieved using an SVM classifier for binary classification of 

AD vs CN. 

Table 2 shows the comparison between classical machine learning techniques in classifying the 

extracted features. 

Methods Accuracy 

SVM 93.3% 

Logistic Regression 91.7% 

Naïve Bayes Classifier 89.0% 

Fisher’s Linear Discriminant 92.7% 

Decision Trees 90.7% 

Neural Networks 92.3% 

K-Nearest Neighbors 87.1% 

 

 



5. Experimental Results: 

This section provides all results for the parcellation and classification processes. 

5.1 U-net Training Results: 

In this paper, images used to train the U-net architecture are 3D T1-weighted structural brain 

MRI downloaded from the ADNI1 dataset. Table 3 shows the number of ground-truths for both the 

hippocampus and the lateral ventricles. 

 

Table 3 Number of ground-truths used in the ROIs parcellation network training. The number 

of validation sets are 30% of the training sets and the test sets 

 Hippocampus GTs Lateral Ventricles GTs 

All 487 180 

Training 300 110 

Validation 100 35 

Test 87 35 

 

 

Prior to the training, ground-truths are separated randomly into 3 sets. The validation set is 

used to observe network generalization with respect to the whole dataset patterns. Network training 

was optimized using the Stochastic Gradient Descent with Momentum (SGDM). The network was 

trained several times to fine-tune the hyperparameters of the optimization algorithm. This prevents the 

network from overfitting or underfitting and converges to a global optimum. 

The training of lateral ventricles parcellation network converged to the global optimum with 

no over or underfitting since the patterns were simple to recognize and the intensity differences of the 

boundaries separating the ventricles from its surrounding GM was clear. Whilst in the hippocampus 

parcellation network, an overfit of 7% was produced due to MRI resolution being relatively low. 

Hippocampus size is very small and its boundaries were indistinct. This problem can be solved using 

a higher resolution MRI. The overfitting was too small to produce high parcellation error and the 

network did generalize well enough to the whole dataset. Figure 8 shows the chart of parcellation dice 

coefficients. Figure 9 shows the MATLAB training plot for ROIs parcellation U-net training. 

 



 

Figure 10 Dice coefficients for training, validation and test sets ROIs parcellation U-net. 

5.2 SVM Classification Results: 

After segmentation and parcellation, hippocampus volume, lateral ventricles volume, GM 

thickness, and CSF amount will be computed to be used in subjects classification. Two other features 

will be added to the classifier to improve upon classification accuracy, brain atrophy (whole brain 

volume) and the subject’s age. Brain atrophy is computed by counting voxels with GM and WM 

labels from the segmented images, i.e., CSF voxels excluded. 

Two classes are used to train the SVM classifier in a binary classification way, AD vs CN. 

The response data used for the SVM training is the diagnosis for each MRI session downloaded from 

the ADNI website.
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Figure 11 Training plots for the U-nets used for ROIs parcellation. a) Hippocampus 

Parcellation U-net, b) Lateral Ventricles Parcellation U-net. 

(a) 

(b) 



 

Figure 12 SVM minimum classification error optimization plot to fine tune hyperparameters 

and choose the best kernel function

 The data used to train SVM consists of 200 AD MRI brain images and 228 CN MRI brain 

images. Data is divided into 180 training and validation sets for each class with a 5-fold cross-

validation training. The rest is used as test sets. 

SVM training is optimized to choose the best hyperparameters; specifically the kernel which 

determines the shape of the hyperplane that separates data into classes. This optimization depends on 

the validation set classification error to define the best hyperparameters. 

The best results were achieved using the Gaussian kernel function. Figure 10 shows the SVM 

optimization plot from the MATLAB classification learner toolbox. Figure 11 shows the final 

validation and test accuracies for the binary classification of AD vs. CN. 

 

 

Figure 13:  The final classification accuracy of AD vs. CN using SVM. 
 

5.3 Final pridection model 

Figure 12 shows the final prediction model for AD vs CN. The red line represents CN subjects’ 

classification and the blue lines represent AD subjects’ classification. The black line in Figure 12a 
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shows an example of a correct prediction of a subject affected by AD, volumes of his brain and that 

both (right and left) hippocampi are lower than normal stating atrophy. While volumes of both (left 

and right) lateral ventricles are higher than normal stating enlargement. The GM thickness score is 

also lower than normal stating GM atrophy. The black line in Figure 12b shows a correct prediction 

for a healthy subject. This line is opposite in direction to the black line plotted in Figure 12a, meaning 

that the subject has no atrophy relative to the red lines in the brain and both hippocampus volume, has 

no enlargement in the ventricles and the GM thickness is relatively high.



Figure 14 The SVM prediction model for AD vs. CN with features on the x-axis. a) Black line 

shows a correct classified AD patient, b) black line shows a healthy subject.

(a) 

(b) 



6. Discussion  

In this study, we proposed a classification software pipeline that combines CNN and classical 

machine learning techniques to be applied to the most commonly acquired anatomical MRI of the 

brain. The work aimed to accomplish two goals: classification of AD vs. CN, and identification of 

the complex brain structural variations related to AD. 

Table 4 shows the comparison with some of the previous method reported in the literature, 

Reference [7] Achieved 86.84% in AD discriminant problem by using random forest classifier. The 

implementation of this work is not explicit, no description of the methodology is provided on how the 

data is fed in to the classifiers. 

References [8], and [12] used the density maps resulted from segmenting the brain tissues. 

Their feature selection methods were voxel-wise that cannot represent fully detailed patterns. Their 

methods also suffered from: 

1. They require intensive processing steps before manual feature extraction and selection. 

2. Highly prone to the processing errors such as registration, normalization, segmentation, 

etc. 

Reference  [9] used combination of two types of features e.g., Visual feature obtained from the 

hippocampus and accumulated surrounding CSF; then adding supplementary voxels from the lateral 

ventricles to enhanced the performance. The final result achieved are 87% and 85% accuracies for 

ADNI subset and Bordeaux dataset respectively, which is lower than results obtained in the present 

work. 

Reference [11] achieved an accuracy of 91.57% on ADNI dataset. The author used MALPEM 

tool for the segmentation of the 138 ROIs. The time period for segmenting one subject by this tool is 

between 8 and 10 hours. The author also supplemented these features by age, gender and education. 

These feature selection methods were voxel-wise that could not represent fully detailed 

patterns. Except [8] who did average down-sampling to GM density maps, the rest suffered from the 

same issue of being prone to registration error. 

  



Table Error! No text of specified style in document. Comparison of proposed ML method with 

state-of-art methods. 

Method AD vs. CN 

Baglat et al. [7] 86.8% 

Ahmed et al. [9] 87.00% 

Shen et al. [10] 88.00% 

Khedher et al. [12] 88.49% 

Vemuri et al [8].  89.30% 

Toshkhujaev et al. [11] 91.57% 

Proposed ML method 89.10% 

 

In this work, to discriminate AD from CN, brain volume, hippocampi volumes, lateral 

ventricles volumes, GM thickness score, and age are adopted. Features extraction was automated using 

two segmentation methods; HMRF for tissue segmentation and U-net architecture for ROIs 

parcellation. Age is another important factor to enhance the accuracy of AD classification. The ML 

model Training required less than 5 seconds to train the model and less than 2 minutes to optimize it 

since only 7 features (7-dimensions) are employed to train the model. The ML model achieved an 

accuracy of 93.3% in validation and 89.1% in testing. Table 4 illustrates that the proposed method 

achieved a classification result in line with the state-of-art methods. 

 

7. Conclusion: 

Early and efficient diagnosis of AD helps maintain patient quality of life and to adopt a different 

lifestyle to slow down the disease progression. This was a challenging task which many authors are 

focusing on; they had developed many computer-aided diagnosis (CAD) systems to perform the 

diagnosis of AD. This paper explains an automatic AD diagnosis system that is based on deep learning 

on a 3D brain MRI. 

The main contribution of this paper is the utilization of the U-net architecture and the HMRF 

probabilistic model for the segmentation of brain tissues and AD-related ROIs. Both methods achieved 

accurate image segmentation compared to other methods while being highly efficient.   

The HMRF is used as a method for three tissue segmentation: WM, GM, and CSF which 

achieved the highest accuracy than another segmentation method. For hippocampus and ventricles 

parcellation, a main advantage of CNNs compared to other classic parcellation methods is that patterns 

can be automatically recognized from raw data without any expert supervision. 



This paper utilized U-net architecture which was invented for medical image analysis, to 

parcellate both ROIs. The U-net achieved 97.94% and 87.73% test parcellation dice coefficient for 

hippocampus and lateral ventricles respectively. 

Features extracted from the segmentation and parcellation are supplemented with age scores to 

improve the classification. In the binary features’ classification step of AD vs CN, the SVM classifier 

achieved the highest accuracy than other classification methods which reached 93.3 %, 89.1% 

validation, and testing accuracies respectively. 

The rate of classification error is due to the ground truths for the hippocampus were not accurate 

enough in addition to the noise in the MRI images that have low resolution. The experimental results 

on the ADNI dataset demonstrated that the proposed model gives an accurate prediction of the binary 

classification. Lastly, it can be shown that for the AD classification task, our proposed model achieves 

results within the same rate as state-of-the-art models. 

In the future, efforts can be made to improve these results by combining multi-modality clinical 

data different features can be obtained from different brain neuroimaging techniques which can be 

integrated to enhance the capability to recognize the images patterns. 

 

8. Refrences : 

[1] J. Weller and A. Budson, “Current understanding of Alzheimer’s disease diagnosis and 

treatment,” F1000Research, vol. 7, p. F1000 Faculty Rev-1161, Jul. 2018, doi: 

10.12688/f1000research.14506.1. 

[2] “Dementia,” World Health Organization, Sep. 02, 2021. https://www.who.int/en/news-

room/fact-sheets/detail/dementia 

[3] D. Amaral and P. Lavenex, “Hippocampal neuroanatomy.” in The hippocampus book. New 

York,  NY,  US: Oxford University Press, 2007, pp. 37–114. 

[4] P. Vemuri and C. R. Jack Jr, “Role of structural MRI in Alzheimer’s disease,” Alzheimer’s 

research & therapy, vol. 2, no. 4, p. 23, Aug. 2010, doi: 10.1186/alzrt47. 

[5] G. B. Frisoni, N. C. Fox, C. R. Jack Jr, P. Scheltens, and P. M. Thompson, “The clinical use of 

structural MRI in Alzheimer disease,” Nature reviews. Neurology, vol. 6, no. 2, pp. 67–77, 

Feb. 2010, doi: 10.1038/nrneurol.2009.215. 

[6] S. M. Nestor et al., “Ventricular enlargement as a possible measure of Alzheimer’s disease 

progression validated using the Alzheimer’s disease neuroimaging initiative database,” Brain : 

a journal of neurology, vol. 131, no. Pt 9, pp. 2443–2454, Sep. 2008, doi: 

10.1093/brain/awn146. 



[7] P. Baglat, A. W. Salehi, A. Gupta, and G. Gupta, “Multiple Machine Learning Models for 

Detection of Alzheimer’s Disease Using OASIS Dataset,” 2020, doi: 10.1007/978-3-030-

64849-7_54. 

[8] P. Vemuri et al., “Alzheimer’s disease diagnosis in individual subjects using structural MR 

images: Validation studies,” NeuroImage, vol. 39, no. 3, Feb. 2008, doi: 

10.1016/j.neuroimage.2007.09.073. 

[9] O. ben Ahmed, J. Benois-Pineau, M. Allard, C. ben Amar, and G. Catheline, “Classification of 

Alzheimer’s disease subjects from MRI using hippocampal visual features,” Multimedia Tools 

and Applications, vol. 74, no. 4, Feb. 2015, doi: 10.1007/s11042-014-2123-y. 

[10] K. Shen, J. Fripp, F. Mériaudeau, G. Chételat, O. Salvado, and P. Bourgeat, “Detecting global 

and local hippocampal shape changes in Alzheimer’s disease using statistical shape models,” 

NeuroImage, vol. 59, no. 3, Feb. 2012, doi: 10.1016/j.neuroimage.2011.10.014. 

[11] S. Toshkhujaev et al., “Classification of Alzheimer’s Disease and Mild Cognitive Impairment 

Based on Cortical and Subcortical Features from MRI T1 Brain Images Utilizing Four 

Different Types of Datasets,” Journal of Healthcare Engineering, vol. 2020, p. 3743171, 

2020, doi: 10.1155/2020/3743171. 

[12] L. Khedher, J. Ramírez, J. M. Górriz, A. Brahim, and F. Segovia, “Early diagnosis of 

Alzheimer׳s disease based on partial least squares, principal component analysis and support 

vector machine using segmented MRI images,” Neurocomputing, vol. 151, Mar. 2015, doi: 

10.1016/j.neucom.2014.09.072. 

[13] M. R. Daliri, “Automated Diagnosis of Alzheimer Disease using the Scale-Invariant Feature 

Transforms in Magnetic Resonance Images,” Journal of Medical Systems, vol. 36, no. 2, pp. 

995–1000, 2012, doi: 10.1007/s10916-011-9738-6. 

[14] M. Chupin et al., “Fully automatic hippocampus segmentation and classification in 

Alzheimer’s disease and mild cognitive impairment applied on data from ADNI,” 

Hippocampus, vol. 19, no. 6, pp. 579–587, Jun. 2009, doi: 10.1002/hipo.20626. 

[15] O. Colliot et al., “Discrimination between Alzheimer Disease, Mild Cognitive Impairment, 

and Normal Aging by Using Automated Segmentation of the Hippocampus,” Radiology, vol. 

248, no. 1, Jul. 2008, doi: 10.1148/radiol.2481070876. 

[16] Y. Liu et al., “Combination analysis of neuropsychological tests and structural MRI measures 

in differentiating AD, MCI and control groups—The AddNeuroMed study,” Neurobiology of 

Aging, vol. 32, no. 7, Jul. 2011, doi: 10.1016/j.neurobiolaging.2009.07.008. 



[17] Kai-kai SHEN, “Automatic segmentation and shape analysis of human hippocampus in 

Alzheimer’s disease,” Sep. 2011. 

[18] F. Citak-Er, D. Goularas, B. Ormeci, and T. Initiative, “A novel convolutional neural network 

model based on voxel-based morphometry of imaging data in predicting the prognosis of 

patients with mild cognitive impairment,” Journal of Neurological Sciences, vol. 34, pp. 52–

69, Jan. 2017. 

[19] A. Chaddad, C. Desrosiers, and T. Niazi, “Deep Radiomic Analysis of MRI Related to 

Alzheimer’s Disease,” IEEE Access, vol. 6, 2018, doi: 10.1109/ACCESS.2018.2871977. 

[20] W. Lin et al., “Convolutional Neural Networks-Based MRI Image Analysis for the 

Alzheimer’s Disease Prediction From Mild Cognitive Impairment,” Frontiers in 

Neuroscience, vol. 12, Nov. 2018, doi: 10.3389/fnins.2018.00777. 

[21] T. Shen, J. Jiang, Y. Li, P. Wu, C. Zuo, and Z. Yan, “Decision Supporting Model for One-year 

Conversion Probability from MCI to AD using CNN and SVM,” Jul. 2018. doi: 

10.1109/EMBC.2018.8512398. 

[22] E. Ambar Pambudi, P. Nurtantio Andono, and R. Anggi Pramunendar, “IMAGE 

SEGMENTATION ANALYSIS BASED ON K-MEANS PSO BY USING THREE 

DISTANCE MEASURES,” ICTACT Journal on Image and Video Processing, vol. 9, no. 1, 

Aug. 2018, doi: 10.21917/ijivp.2018.0256. 

[23] A. Sheta, M. S. Braik, and S. Aljahdali, “Genetic Algorithms: A tool for image segmentation,” 

May 2012. doi: 10.1109/ICMCS.2012.6320144. 

[24] U. Maulik and S. Bandyopadhyay, “Genetic algorithm-based clustering technique,” Pattern 

Recognition, vol. 33, no. 9, Sep. 2000, doi: 10.1016/S0031-3203(99)00137-5. 

[25] Y. K. Dubey and M. M. Mushrif, “FCM Clustering Algorithms for Segmentation of Brain MR 

Images,” Advances in Fuzzy Systems, vol. 2016, 2016, doi: 10.1155/2016/3406406. 

[26] P. Kalavathi, “Brain tissue segmentation in MR brain images using multiple Otsu’s 

thresholding technique,” in 2013 8th International Conference on Computer Science & 

Education, 2013, pp. 639–642. doi: 10.1109/ICCSE.2013.6553987. 

[27] Y. Zhang, M. Brady, and S. Smith, “Segmentation of brain MR images through a hidden 

Markov random field model and the expectation-maximization algorithm,” IEEE Transactions 

on Medical Imaging, vol. 20, no. 1, 2001, doi: 10.1109/42.906424. 



[28] A. I. Scher et al., “Hippocampal shape analysis in Alzheimer’s disease: A population-based 

study,” NeuroImage, vol. 36, no. 1, pp. 8–18, 2007, doi: 

https://doi.org/10.1016/j.neuroimage.2006.12.036. 

[29] B. Gutman, Y. Wang, J. Morra, A. W. Toga, and P. M. Thompson, Disease classification with 

hippocampal shape invariants, vol. 19. 2009. doi: 10.1002/hipo.20627. 

[30] X. Liu, L. Song, S. Liu, and Y. Zhang, “A Review of Deep-Learning-Based Medical Image 

Segmentation Methods,” Sustainability, vol. 13, no. 3, Jan. 2021, doi: 10.3390/su13031224. 

[31] M. Shao et al., “Brain ventricle parcellation using a deep neural network: Application to 

patients with ventriculomegaly,” NeuroImage: Clinical, vol. 23, 2019, doi: 

10.1016/j.nicl.2019.101871. 

[32] K. H. Zou et al., “Statistical validation of image segmentation quality based on a spatial 

overlap index,” Academic radiology, vol. 11, no. 2, pp. 178–189, Feb. 2004, doi: 

10.1016/s1076-6332(03)00671-8. 

[33] F. Falahati et al., “The Effect of Age Correction on Multivariate Classification in Alzheimer’s 

Disease, with a Focus on the Characteristics of Incorrectly and Correctly Classified Subjects,” 

Brain topography, vol. 29, no. 2, pp. 296–307, Mar. 2016, doi: 10.1007/s10548-015-0455-1. 

  

 

 للدماغ  (T1) المغناطیسی  الرنین صور من المستخرجة الصفات من  عدد  على  بالإعتماد  الزهایمر مرض تصنیف

 

تشخیص مرض الزهایمر فی مراحله الأولى یشغل حیزا مهماً فی الحد من أعراض المرض التقلیل من التدهور الإدراکی الذی یسببه المرض,   الخلاصة:

حاسمةً فی التشخیص الدقیق والمبکر للمرض. إنّ النظام المقترح فی هذه   (Computer-Aided-Systems) ولذلک أصبحت أنضمة الحاسوب المساعدة

رات التشریحة الدراسة یعتمد على فرز الصفات المستخرجة من صور الرنین المغناطیسی للدماغ, وهذه الصفات یجب أن تکون دقیقة ومتقّنة فی تصویر التغیی

وتوسع التجاویف وسمک القشرة المخیة وحجم انسجة  (Hippocampus) لمصاب بمرض الزهایمر, کتآکل منطقة الحصینالحاصلة فی هیکلیة الدماغ ا 

والمتضمنة على هیکلیة الدماغ, ویعتبر هذا النوع من  (T1) الدماغ وغیرها من الصفات. وفی هذه الدراسة, تم إستخدام صور الرنین المغناطیسی ذو وزن

عالیة الدقة مما یجعل خطوات معالجتها وفرزها أقل تعقیداً. النظام المقترح فی هذهِ الدراسة یتکون من عدة خطوات تبدأ بالمعالجة   الصور ذی صفاتٍ مرئیةٍ 

الم والمتضمنة على صفات  المهمة  المناطق  الى  الدماغ  تقطیع  ثُمّ  الصور ومن  هذه  الدماغ فی  أنسجة  لتقسیم  تتبعها طریقةً  للصور,  الصفاالأولیة  ت رض. 

صطناعی المستخرجة من انسجة الدماغ ومناطقهِ یتم إستغلالها فی تشخیص المرض من خلال فرز وتصنیف هذه الصفات بإستخدام أحد أکثر طرق الذکاء الإ 

ت (Support Vector Machine) التقلیدیة شیوعاً  النتائج على أداءٍ عالٍ ودقةٍ واعدة فی  شخیص المرض  کآخر مرحلة فی هذا النظام المقترح. وتؤکد 

( النتیجة  کانت  إذ  الدراسة,  هذه  فی  المقترحة  المنهجیة  السلیم 89.1بإستخدام  الإدراک  ذوی  عن  بالزهایمر  المصابین  الأشخاص  بین  الفرز  فی   )% 

(Alzheimer’s Demented vs. Cognitively Normal). 


