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ABSTRACT 

In this paper, we determine sufficient conditions, distortion properties and radii of 

starlikeness and convexity for functions The hypergeometric meromorphic functions 

have certain formula in the punctured unit disk which contains in new subclass
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1. Introduction:  

Let denote the class of ( )f   , where ( )f    is the meromorphic function 

normalized 

by    0 0 1 0f f      and defined by:   

                                 
1

1
 f a 




 






   ,                                       (1.1) 

 where (1.1) is analytic in    * : and0 \ 0 ,1     U U
 
 and    be the set 

of complex numbers, (
*U is called punctured unit disk),[1]. 

Two of the most important subclasses of meromorphic functions, namely the starlike 

and convex functions, but both have very useful analytic characterizations. 

Definition 1.1: A function f  is said to be convex in 
*U  if the image of 

*U under f  is a 

convex  region, i.e."any line segment joining any two points of *( )f U  lies entirely in
*( )f U ",  

 [2]. 

Definition 1.2: Let *U be the punctured unit disk, if the image of 
*U under f is starlike 

region containing 0w , then the function f  is called starlike,  i.e. "any line 

segment joining any points of *( )f U  from 0w  lies in 
*U " , [2].  

 We denote the subclasses starlike and  convex of order , ( 0)    in
*U by * ( )S  and 

( ) of  consisting of all meromorphic functions respectively, the starlike of order 
   satisfy the following condition:  

( )

( )

f

f
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the necessary and sufficient condition for a function f  to be convex of order   can be 

written as follows [3]:  

( )
1 .

( )

f

f

 




 
    

 
 

The functions ( ) mf   for all 1, 2m   are defined                                                    

     ,

1

1
( ) , ( 1, 2). m mf a m




 






    

The convolution of 1 ) (f   and 2 ) (f   defined by :

    

1 2 ,1 ,2

1

1
( * )( )f f a a 

 


 






  , 

where the convolution is called the Hadamard product. 

Consider the function :   

                         

1

0

0 1

( )1
( , ; ) , ( / ; ) ,

( )
Ø 

 


     

 




 

                          (1.2)     

where   
 

( 1)...( 1) ( ; ),( )
( ) :

1 ( 0; \ 0 ),( )

n


      


 

      
  

  
 

and  0 0  , ( )  is called Pochhammer symbol and  is Gamma function,  

  [4, 7 and 9]. 

 
We note that 

where     

   

 
2 1

0

( , , ; ) .
!

b
F b


 

 

 
  

 







 

is the well-known Gaussin hypergeometric function, [5]. 
  For f  given by (1.1), we reintroduce   tc f   which is studied by many authors 

(see for example [6]. 

              
1

1
(1 ) ( ) (1  ( 1) ) )    , ( 0tc t t t a tf f f 





     






         .   (1.3)

 
Now, using the convolution between (1.2) and (1.3), we will introduce a new function 

,

tM  defined on  by                                                              

      1

,

1 1

*( )1
(1 ( 1) ) , ( ).  ( , ; ) * ( )

( )

ttM Ø tf af c 
  

 


   

 
   




 

     U

(1.4) 

There are many studies about the generalized of meromorphic functions and  

hypergeometric functions, see [7-11].                                                
   For all * U  and 1 1D S    , the function f  is said to be a member of the 

subclass 
,

, ( , )S D t    if it satisfies , see[12]. 

                   
 

, ,

, ,

( ( )) ( )
1.

(

 

( )) ( )

 

   

t t

t t

f f

D f f

M M

M S M

   

   

  

  

 



                           

(1.5) 

Remark .1.1.  It follows from (1.4) that  

, 1, ,( ( ) ) ( ) ( 1) ( )t t tM f M f M f          
    . 

2 1

1
( , ; ) (1, , ; ) ,Ø F     
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2. Distortion Theorems and Coefficient Estimates                                    
 Theorem 2.1:Let f be the function defined by (1.4) and satisfies (1.5), then, we have 

  
     

 1

1 1

( )
(1 ( 1) ) ( 1) ( )

( )
t D S a S D



 


  






 

        ,                   (2.1)  

where  1 1.D S     

Proof: Suppose that (1.5) holds true, then  
    

11 1

2
1 11 1

11 1

2
1 11 1

( ) ( )1 1
(1 ( 1) ) (1 ( 1) )

( ) ( )
1

( ) ( )1 1
(1 ( 1) ) (1 ( 1) )

( ) ( )

t a t a

D t a S t a
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S D
t D S a




 




 


  




  

 




 




 

  

 


   




 

1 1

1 11 1

( ) ( )
(1 ( 1) ) ( 1) (1 ( 1) ) ( ) 0

( ) ( )

S D
t a t D S a  

 

  

 
     

  

 
 

  


            

1 11 1

1 11 1

( ) ( )
(1 ( 1) ) ( 1) (1 ( 1) ) ( ) 0

( ) ( )
t a S D t D S a  

 

  

 
     

 

 
  

  

             

1 11 1

1 11 1

( ) ( )
(1 ( 1) ) ( 1) (1 ( 1) ) ( ) 0

( ) ( )
t a S D t D S a  

 

  

 
     

 

 
  

  

           

 

when 1r    

         

 1

1 1

( )
(1 ( 1) ) ( 1) ( )

( )
t D S a S D



 


  






 

        .                                              

#                              

Corollary2.1:Let the function f be defined by (1.4). 
,

, ( , )S DIf f t   , then 

               
 

1

1

( ) ( )
, ( 1).

( ) (1 ( 1) ) ( 1) ( )

S D
a

t D S









   





 

    
                (2.2) 

                                                                                                                   

# 

The sharp for functions ( )f   at the term   has the form: 

     1

1

( ) ( )1
( ) , ( 1).

( ) (1 ( 1) [ ( 1) ( )]

k S D
f

t D S








  

    






  

    
                (2.3)  

 

Corollary2.2: If  0, 1 1t S and D   in Theorem 2.1, then f   satisfying the 

following  
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condition 

                                                        

1

1 1

( )
1

( )
a


 









 

   

and it is starlike in 
*U .                                                                                   # 

Corollary 2.3: 1 and 1For S D    in Theorem 2.1, we have                                    

                                             

1

1 1

( )
(1 ( 1) ) 1

( )
t a



 


 






 

  
 

  and therefore the function  , ( )tM f    is starlike in 
*U . 

Corollary 2.4: If  0, 1 1t S and D   in Theorem 2.1, then f   satisfying the 

following  

condition 

21

1 1

( )
1

( )
a


 









 


 

and it is convex in 
*U .                                                                                             # 

Corollary 2.5: 1and 1For S D    in Theorem 2.1, we have                                    
21

1 1

( )
(1 ( 1) ) 1

( )
t a



 


 






 

  
 

and therefore the function  , ( )tM f    is convex in 
*U . 

The following Theorem is given the distortion property of function in the subclass 
,

, ( , )S D t   . 

Theorem2.2:The function f defined by (1.4) in the subclass
,

, ( , )S D t   , then for all 

0 1,r   we have 

                         
( ) ( )1 1

| ( ) |
( 2 ( )) ( 2 ( ))

S D S D
r f r

r S D r S D


 
   

   
                          (2.4)

  
and 

                             
2 2

( ) ( )1 1
| ( ) |

( 2 ( )) ( 2 ( ))

S D S D
f

S D S Dr r


 
   

   
                           (2.5) 

with equality for  

( )1
( ) .

( 2 ( ))

S D
f

S D
 




 

 
 

Proof: Let 
,

, ( , )S Df t   . Then, Theorem 2.1 readily yields the inequality  

                                 1

1 1

( )
(1 ( 1) )

( ) [ ( 1) ( ) ]

S D
t a

D S




 




  




 


  

  
                    (2.6) 

For 0 | | ,    1r    and making use of (2.6), we have  

1 1

1 11 1

( ) ( )1 1
| | (1 ( 1) ) | |  (( 1 ( 1)

( )
 

( )
)   f at a r t

r

 
 

  

 


 
 

 

 
 

  

          

          

      

( )1 1

[ ( 1) ( ) ] ( 2 ( ))

S D S D
r r

r D S r S D 

 
   

    
                                    (2.7)
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and the other side of the inequality in (2.4) can be obtained using similar procedure. 

 For (2.5), again from Theorem 2.1, it follows that   

                           1

1 1

( ) ( )
(1 ( 1) ) .

( ) [ ( 1) ( ) ]

S D
t a

D S




 

 
 

  




 


  

  
                   (2.8)  

Hence  

1
2

11

2

1

( ) ( )1 1
| | (1 ( 1) ) | |

( ) [ ( 1) ( )]
  ( )   

 | | 

S D
t a

Dr
f

S




 

  


 


  




 


     

  
  

                                                   
2

( )1
.

( 2 ( ))

S D

S Dr


 

 
         (2.9) 

By similarity, the other side of the inequality follows and the proof is complete.                     

# 
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3. Convexity and Radii of Starlikeness  

Theorem3.1:If the function f  in the subclass 
,

, ( , )S D t   , then f  is meromorphically 

starlike of order 1(0 1) in | | ,    r      

                    

1

1

1 1
1

(1 )[( 1) ( )]
( , , ) inf

( 2 ) ( )

D S
r r S D

S D





  


 





    
   

   
                        (3.1) 

  The sharp of the function f  given by (2.3). 

Proof:It suffices to prove that  

                                            

,

,

( ( ))
1 1 ,

( )

t

t

M f

M f

 

 

 





                                               (3.2) 

for 1,r   we have 

1

, 1 1

1,

1 1

( )1
(1 ( 1) )

( ( )) ( )
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(1 ( 1) )

( )
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M f
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(1 ( 1) ) ( 1)

( )
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(1 ( 1) )

( )
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1 1
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1 1

( )
(1 ( 1) ) ( 1)

( )
.

( )
1 (1 ( 1) )

( )

t a

t a




 




 


  




 






 




 

  



  




                              (3.3) 

Hence, (3.3) holds true if  

1 11 1

1 11 1

( ) ( )
(1 ( 1) ) ( 1) (1 ) 1 (1 ( 1) )

( ) ( )
t a t a

  
 

  

 
     

 

 
  

  

 
        

 
 

(3.4) 

or 

11

1 1

( ) ( 2 )
(1 ( 1) ) 1

( ) (1 )
t a




 

  
 

 




 

 
  


  

11

1

( ) ( 2 )
(1 ( 1) ) 1

( ) (1 )
t a






  
 

 





 
  


, for 1                   (3.5) 

with the aid of (2.2) and (3.5) is true if, for all 1  , 
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1

11 1

1

( )
(1 ( 1) ) [( 1) ( )]

( ) ( )( 2 )
(1 ( 1) ) .

( ) (1 )

t D S

t
S D



 




  

  
 

 



 



    
 

  
    

 (3.6) 

Solving (3.6) for  , we obtain 

                

1

1(1 )[( 1) ( )]
, 1.

( 2 ) ( )

D S

S D

  
 

 

    
   

   
                              (3.7)   

                  #                                                                                                                

Theorem3.2:The function f  which defined by (1.4) in the subclass 
,

, ( , )S D t   ,  then f  

is meromorphically convex of order  2 (0 1  ) | | ,in r     where  

                    

1

1

2 2
1

(1 )[( 1) ( )]
( , , ) inf

( 2 ) ( )k

D S
r r S D

S D

  


  





    
   

   
                       (3.8) 

The sharp of the function at  , i.e. f  is given by (2.3). 

Proof:From proof of Theorem 3.1, we can show that  

                                       ,

,

( ( ))
2 (1 ) ,

( ( ))

t

t

M f

M f

 

 

 





  


                                         (3.9) 

for 2 ,r   with the aid of Theorem  2.1. Thus, we have the assertion of Theorem 3.2.               

4. Convex Linear Combinations 

The next results involves a linear combination of several functions of the type (2.3).                                

Theorem 4.1.  Let 

                                      0

1
( )f 


                                                        (4.1) 

and 

      

1

1

( ) ( )1
( ) ( 1).

( ) (1 ( 1) [( 1) ( )]

S D
f

t D S







  

    





  

    
       (4.2)       

Then 
,

, ( , )S Df t    if and only if it can be expressed in the form 

                              
0

( ) ( )f f 



  




                                                       (4.3) 

where 
0

0 1.and 



 




   

Proof. From (4.1), (4.2) and (4.3), it is easily seen that 

     1

0 1 1

( ) ( )1
( ) ( )

( ) (1 ( 1) [( 1) ( )]

S D
f f

t D S

 
 

  

 
   

    

 


  


  

    
            (4.4) 

since 

 

1 1

1 1 1

( ) (1 ( 1) [( 1) ( )] ( ) ( )
.

( ) ( ) ( ) (1 ( 1) [( 1) ( )]

t D S S D

S D t D S
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0

1

1 1,



 




      

it follows from Theorem 2.1 that the function 
,

, ( , )S Df t   . 

Conversely, let us suppose that
,

, ( , )S Df t   . Since  

1

1

( ) ( )
, ( 1).

( ) (1 ( 1) ) [( 1) ( )]

S D
a

t D S









   





 

    
  

Setting  

1

1

( ) (1 ( 1) ) [( 1) ( )]
, ( 1)

( ) ( )

t D S

S D







   
 







    
 


 

and 

0

1

1 ,



 




   

it follows that 
0

( ) ( )f f 



  




 .  

   #   

Theorem 4.2. The subclass 
,

, ( , )S D t    is closed under convex linear combinations. 

Proof.Suppose that the functions 1 ( )f   and 2 ( )f   defined by  

        ,

1

*1
( ) , ( 1, 2; )v vf a v





  






    U                           (4.5) 

are in the subclass 
,

, ( , )S D t   . 

Setting  

                          1 2( ) ( ) (1 ) ( ), (0 1)f f f          .           (4.6) 

We find from (4.5) that 

  1

,1 ,2

1 1

*( )1
( ) (1 ( 1) ) )(1 ) (0 1;

( )
f t a a 

 

 


      

 




 

         U .      (4.7) 

In view of Theorem 2.1, we have  

1

,1 ,2

1 1

( )
(1 ( 1) ) [( 1) ( ) ]( (1 ) )

( )
t D S a a

 

 


    






 

        

1

,1

1 1

( )
(1 ( 1) )[( 1) ( ) ]

( )
t D S a



 


   






 

       

1

,2

1 1

( )
(1 ) (1 ( 1) )[( 1) ( ) ]

( )
t D S a



 


   






 

        

( ) (1 ) ( ) ( )S D S D S D        . 

Which shows that
,

, ( , )S Df t   .                                                                                     # 
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