
 Raf. J. of Comp. & Math’s., Vol. 15, No. 2, 2021

 DOI:

39

Bresenham's Line and Circle Drawing Algorithm using FPGA

Areej H. Ali
areej.csp75@student.uomosul.edu.iq

Riyadh Z. Mahmood

riyadh.zaghlool@uomosul.edu.iq

Department of Computer Science

College of Computer Science and Mathematics,

University of Mosul, Mosul, IRAQ

Received: 15/11/2020 Accepted: 10/01/2021

ABSTRACT

In Bresenham's line drawing algorithm, the points of an n-dimensional raster that

have to be selected are determined forming a close approximation to a straight line

existed between two points. It is widely used for drawing line primitives in a bitmap

image (for example: on a computer screen), since only integer addition, subtraction and

bit shifting are used. These three operations are cheap concerning standard computer

architectures. In addition, it is an incremental error algorithm. It is among the oldest

algorithms that have been developed in computer graphics. An extension to the original

algorithm may lead to draw circles. This research deals with the Bresenham’s line and

circle drawing algorithm based on FPGA hardware platform. The shapes on the VGA

screen are displayed via internal VGA port that is built in the device.

Keywords: FSM, VHDL, VGA port, LCD.

1. Introduction

 Computer graphics deals with manipulating visual and geometric information

adopting techniques of computation. It concentrates on basics of mathematic and

computation of image generating and processing more than merely aesthetic aspects. It

is sometimes differentiated from the visualization field, although both of them have

many similarities [1].

 Displaying a picture, of any size, on a screen is not an easy task Therefore,

computer graphics is used in order to simplify this operation.

 In fact, computer graphics is a branch of computer science dealing with images

generation using computers. Nowadays, it is a key technology in the field of video

games, digital photography, film, computer displays and many other applications. The

term computer graphics was used in 1960 by Verne Hudson and William Fetter of

Boeing, the researchers of computer graphics. In addition, it is sometimes abbreviated

as (CG), or regarding film as (CGI), Computer Generated Imagery [2].

 The term computer graphics has many topics to deal with including: design of user

interface, sprite graphics, animation, ray tracing, and so on.

 Computer graphics has the responsibility to display effective and meaningful art

and image data to the consumers. In addition, it is used to process image data coming

from the physical world, like photo and video contents [3].

1.1 FPGA

A Field Programmable Gate Array (FPGA) is an integrated circuit designed to be

configured by the customer or designer after manufacturing-hence "field-

programmable". The FPGA configuration is generally specified using a hardware

description language (HDL), similar to that used for an application-specific integrated

mailto:riyadh.zaghlool@uomosul.edu.iq
mailto:riyadh.zaghlool@uomosul.edu.iq
http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/Field-programmable
http://en.wikipedia.org/wiki/Field-programmable
http://en.wikipedia.org/wiki/Hardware_description_language
http://en.wikipedia.org/wiki/Hardware_description_language
http://en.wikipedia.org/wiki/Application-specific_integrated_circuit

 Areej H. Ali & Riyadh Z. Mahmood

40

circuit (ASIC) (circuit diagrams were previously used to specify the configuration, as

they were for ASICs, but this is increasingly rare). FPGAs can be used to implement

any logical function that an ASIC could perform. The ability to update the functionality

after shipping, partial re-configuration of the portion of the design and the low non-

recurring engineering costs relative to an ASIC design (notwithstanding the generally

higher unit cost), offer advantages for many applications [4][5].

1.2 literature Review

In 2009, a new quick line drawing algorithm that differs from that of traditional

Bresenham's algorithm was presented by Niu Lianqiang and Feng HaiWen. They dealt

with a line as an aggregation of many line segments. They also coordinated candidate

pixel points differences in each step of traditional algorithm which is replaced by the

errors length of every segments in the newly algorithm. Each judgment and operation

can create a line segment through keeping the integer arithmetic advantages .Then the

numbers of operation and output are reduced. In addition, the character of skew

symmetric is pointed out in the algorithm and the property of direct draw without

operating of some particular lines is considered as well [6].

 In 2011, Chikit Au and Tony Woo, discovered the reasons for little previous

works. The mid-point concept within a unit interval was generalized to that of the

nearest neighbors that involve a Voronoi diagram. In their work, the extension of the

three-dimensional depends on the basic idea of Bresenham's Algorithm of a minimum

distance between the grid points and the line. The structure of Voronoi diagram is

shown for grid points to which the line might be approximated. They also investigated

the deployment of integer arithmetic and three-dimensional extension symmetry of the

algorithm to enhance the efficiency of computation [7].

In 2011, an algorithm as a three-dimensional development for the existed two

dimensional (DDA),Digital Differential Analyzer, was implemented by using the FPGA

that is configurable for the applications of real time, and it was designed by Fakhrulddin

Hamid Ali . This algorithm is required to be a solution for the problem of hidden

surface in the image space when depth or Z buffer method in 3D field computer

graphics is used. This paper came into a conclusion that the unit of hardware could

produce pixels at, of 120M pixel speed per second that assumes a very short time is

being lost while the increment values is computing[8].

In 2013, a system of 2D graphics using FPGA, which is composed of peripheral

IPcores (Bresenham's, DDR Memory Controller, and VGA) a CPU IP core, and PLB

bus for which CPU and the entire cores of peripheral IP was designed and implemented

by Kahraman Serdar Ay and Atakan Dogan. In addition, some APIs and graphics

drivers were developed so as to complete the total graphics creating process. The

designed work is divided into two major parts as a design of hardware and a design of

software. In the design of hardware, cores of graphics IP, such as Bresenham were

designed. Then, interface logic was developed depending on PLB IPIF in a way that the

cores of graphics IP could be connected with PLB bus and, eventually, they could be

put under control by their particular drivers. Finally, two other peripheral IP cores and a

PowerPC CPU core, Bresenham and other graphics IP cores, and are fetched together

around a PLB bus in order for completing the design of hardware. Through the

connection of a monitor to VGA output, the graphics system was examined. The

examples of monitor images rendered totally in Virtex-II FPGA chip on developing

board. TheBresenham IP core design needs 2415 slice flip-flops, 2482 slices , and 4383

four-input LUTs with instantiating of PLB IPIF entity.

http://en.wikipedia.org/wiki/Application-specific_integrated_circuit
http://en.wikipedia.org/wiki/Circuit_diagram
http://en.wikipedia.org/wiki/Partial_re-configuration

 Bresenham's line and circle drawing algorithm using FPGA

 41

Furthermore, 1095 slice flip-flops ,1042 slices, , and 1850 four-input LUTs are

required. Bresenham IP core could rasterize in 0.1 ms a line of 500 pixels [9].

2. Theoretical Background

2.1 Bresenham's Line Drawing Algorithm

It is used for a line scan conversion. It was also developed by Bresenham and it is

considered an effective method since just only integer addition, subtraction, and

multiplication are involved. These three operations are performed very quickly in order

that lines could be generated rapidly. In this manner, the selected next pixel is that the

one having the least distance from the true line. The following shows the work of this

method:

Bresenham's algorithm is another algorithm of incremental scan-conversion. Its

name comes after Jack Bresenham who worked for 27 years at IBM before his academic

years. He developed the algorithm in early years of 1960s at IBM. Its use of only

integer calculations is one of the most important advantages of this algorithm. At the

time we have a point (xk, yk), then we should determine whether we draw the point

(xk+1, yk) or (xk+1,yk+1).It is to be noted that, at any cases, if we move to xk+1, yet

we should decide moving to yk oryk+1. On the other hand, the increment of the other

variable is decided through examination of the distance, which is known as decision

variable or the error, between the location of the actual line and the nearest pixel [10].

See Figure 1.

The algorithm for Bresenham’s Line:

1. Start

2. Read the line end points (x1,y1) and (x2,y2) such that they are not equal.

3. Calculate dx=x2-x1and dy=y2-y1

4. x=x1 and y=y1 [Initialize starting point]

5. e=2*dy-dx [Initialize value of decision variable]

6. i=1

7. plot(x,y)

8. while(e>=0) {
 y=y+1
 e=e -2*dx
 }
 x=x+1

 e=e + 2*dy

9. i=i+1

10. if(i<=dx)then go to step 7

11. end.

Figure 1: The distance between the location of actual line and nearest pixel

 Areej H. Ali & Riyadh Z. Mahmood

42

2.2 Bresenham's Circle Drawing Algorithm

It is an algorithm of circle drawing which selects the position of nearest pixel for

completing the arc. The special point of the algorithm is that it uses just only integer

arithmetic making it, remarkably, quicker than any other algorithms that use floating

point arithmetic and classical processors [10].

As circle per Eight way symmetry property, a circle could be divided into eight

octants, with each one of 45-degrees. This algorithm calculates the location of pixels of

45 degrees at the first octant and extending it to the rest of other seven octants. The

algorithm draws a pixel in every one of the eight octants for each circle of the pixel (x,

y), as it is clear below:

Assumption: Centre of circle is origin. Figure 2 shows the 8 octants with the

corresponding pixel.

Figure 2: The eight octants with the corresponding pixel

Point (x, y) is on the circle and in the first octant. For calculating the next location of

pixel, it could be either

 N (x+1, y) or

 S (x+1, y-1)

It is determined through the use of the decision parameter d as:

 if d <= 0, then N (x+1, y) is to be selected as being next pixel.

 if d > 0,then S (x+1, y-1) is to be selected as being next pixel.

The Pseudo code for Drawing a circle for a specified radius „r‟ and center (xc, yc) that

starts with (0, r) and moves at first quadrant until x=y (For example 45 degree), first

octant [11].

Initial conditions:

 x = 0

 y = r

 d = 3 - (2 * r)

Steps:

1. Set initial values of (xc, yc) and (x, y)

2. Calculate decision parameter d to d = 3 – (2 * r).

3. call display Bresenhm Circle(int xc, int yc, int x, int y) method to display initial(0,r)

point.

4. Repeat steps 5 to 8 until x < = y

5. Increment value of x.

6. If d < 0, set d = d + (4*x) + 6

7. Else, set d = d + 4 * (x – y) + 10 and decrement y by 1.

8. call display Bresenhm Circle (int xc, int yc, int x, int y) method.

 Bresenham's line and circle drawing algorithm using FPGA

 43

9. Exit.

2.3 Transformations

An object is moved by transformations to another position in the screen where a

point,in 2D, could be translated through adding (tx, ty),the translation coordinate, to that

of X,Y, the original coordinate, in order to obtain X′,Y′, the new coordinate.

In fact, transformations play a vital role in the field of computer graphics for

repositioning the graphics on the screen and, eventually, changing their orientation or

size [12].

2.4 Translation

On the screen, an object is moved, by translation, to a different position. A point

existed in 2D could be translated through adding translation coordinate (tx, ty) to that of

the original coordinate X,Y to obtain the new coordinate X′,Y′.

We could write that:

X’ = X + tx

Y’ = Y + ty

The pair (tx, ty) is known as the shift vector or translation vector. The above-

mentioned equations could be represented by the use of the column vectors [12].

P=[X][Y]

p' = [X′][Y′]T = [tx][ty]

It can be written as:

P’ = P + T

2.5 Rotation

Concerning rotation, the object can be rotated in a specific angle θ theta from its

own origin. Through the following figure, it is apparent that the point PX, Y.

is situated at angle φ out of the horizontal X coordinate with the distance r out of the

origin [13].

Let‟s assume that you wish rotating it at the angle θ. Upon rotating it to a new location,

a newly point P‟ X′,Y′ will be obtained. Figure 3 shows the process of rotation.

Figure 3: The process of rotation

The use of standard trigonometric the original coordinate of point P(X,Y) could be

shown as:

X=rcosϕ......(1)

Y=rsinϕ......(2)

In a similar manner, the point P‟ X′,Y′ can be represented as:

 Areej H. Ali & Riyadh Z. Mahmood

44

x′=rcos(ϕ+θ)=rcosϕcosθ−rsinϕsinθ.......(3)

y′=rsin(ϕ+θ)=rcosϕsinθ+rsinϕcosθ.......(4)

With substitution of equation 1& 2 in 3 & 4, In a respective way, we will obtain:

x′=xcosθ−ysinθ

y′=xsinθ+ycosθ

By representing the above- mentioned equation in the matrix form:

[X′Y′]=[XY][cosθ−sinθsinθcosθ]OR

P’ = P . R

In which R represents the rotation matrix:

R=[cosθ−sinθsinθcosθ]

The rotating angle could be either positive or negative. As for positive rotating

angle, the above rotation matrix can be used. Concerning negative angle rotating, the

matrix will be changed as it is illustrated below:

R=[cos(−θ)−sin(−θ)sin(−θ)cos(−θ)]

=[cosθsinθ−sinθcosθ](∵cos(−θ)=cosθandsin(−θ)=−sinθ)

2.6 Scaling

Scaling transformation is used, for changing the object size. In this process, you

either compress or expand the object dimensions. The process of scaling can be done

through multiplying the original coordinates object with factor of scaling for gaining the

wanted result [14].

Let‟s assume that X,Y are the original coordinates

, the factors of scaling are (SX, SY), and the produced coordinates are X′,Y′

Mathematically,this could be represented as written below:

X' = X . SX and Y' = Y . SY

The object in X and Y direction is scaled by the scaling factor SX, SY in a

respective way. The above-mentioned equations could be also represented in matrix

form as follows:

(X′Y′)=(XY)[Sx00Sy]

OR

P’ = P . S

In which S represents the scaling matrix. The Figure 4 shows the scaling process.

Figure 4: process of scaling

If values are provided less than 1 to the scaling factor S.Then, the object size

could be reduced. If values greater than 1 are provided then the object size can be

increased.

 Bresenham's line and circle drawing algorithm using FPGA

 45

3. Hardware Implementation

3.1 Hardware System Design

Figure 5 presents a set of steps included in the over-all hardware implementation

structure of the suggested system which is the drawing shapes (Line and Circle) are

using Bresenham’s drawing algorithm with scaling, moving, rotation and coloring

depends on the values tuned through the Rotary Encoder. The operations are selected

via 4-slide switches as shown in Table 1 and finally displaying all shapes on the SVGA

screen through VDA ports.

The resolution of the SVGA display obtained is (800*600) pixels to display the

shapes with a high accurate and clear.

Rotary Encoder was used to change Tx and Ty for moving, Sx and Sy for scaling,

angle for rotation and 8-different color for coloring the mansion shapes.

All scaling, moving, rotation, drawing, coloring and displaying processes were

done sequentially at 50MHz frequency successfully. The operations are displayed on the

LCD screen.

Figure 5: A set of steps included in the over-all hardware implementation

Table 1: Four Slide Switches Operation Selector

Selector in Decimal Selector in Binary Operation

0 0000 Circle Scaling

1 0001 Circle Moving L/R

2 0010 Circle Moving U/D

3 0011 Circle Coloring

4 0100 Cube Scaling

5 0101 Cube Moving L/R

6 0110 Cube Moving U/D

7 0111 Cube Coloring

8 1000 Cube Rotation

9 1001 None

10 1010 None

11 1011 None

12 1100 None

13 1101 None

14 1110 None

15 1111 None

 Areej H. Ali & Riyadh Z. Mahmood

46

As we notice in the above table, there is no circle rotation because it does not

affect the circle drawing. Only the operations on the circles are scaling, movement and

coloring. The blank cells on the operation field of the above table can be used to the

future works like doing shadow and bolding all the shapes.

The value of the four slide switches is implemented in VHDL as multiplexer to

select all operations on the system.

3.2 Finite State Machine

The hardware implementation of the system design was carried out by using

Finite State Machine (FSM), where the drawing processes goes through a set of states

liable to change from one to another based on the responses to programmed conditions.

Figures 6a, 6b, 6c present the flowchart of the suggested system for basic drawing

operations. It also shows the different states side by side with the possible transitions as

shown in the flowchart of Figure 7.

The implementation of the Rotary Encoder, slide switches selector, Horizontal

and Vertial timing of the VGA port signals are also used FSM to obtain all system

requirements values to draw the shapes.

Some of states of the FSM was divided into several sub-states to obtain a

maximum frequency of the kit to correspond with the frequency of the horizontal and

verical timing of the VGA port (50 MHz) that is the default frequency of the SPARTAN

3E-XC3S500 starter kit, that is because it was used a (800*600) pixels resolution of the

SVGA screen with 50Hz.

 Bresenham's line and circle drawing algorithm using FPGA

 47

Figure 6a: System Design Flowchart- part 1

 Areej H. Ali & Riyadh Z. Mahmood

48

Figure 6b: System Design Flowchart- part 2

 Bresenham's line and circle drawing algorithm using FPGA

 49

Figure 6c: System Design Flowchart- part 3

3.3 Look Up Table (LUT)

In the rotation process, it needs to calculate SIN and COS. The angle should be

in the range (0 – 359). To obtain SIN and COS functions, it should be implemented by

using Look Up table. Since we have 360 degree, then it should be used a memory size

of 360*17-bit, 1-bit for integer part of and 16-bit for fraction part of the result. The size

of the above memory reduced to 180*17-bit instead of 360*17-bit. It means that the

contents of memory of the functions of SIN and COS of the angles between (0-179).

Then, to calculate SIN or COS of the angle less than 180, the result was directly

obtained from Look Up Table, but if the angle was greater than or equal 180, the result

should multiplied by -1. That’s all.

The total memory size needed to implement the above functions was 360*17-bit

only instead of 720*17-bit.

Table 2 illustrates the overall BRAM memory size for the complete system

design.

Table 2: Overall BRAMs needed to implement all drawing processes

Memory

Data

bus

width

Addres

s bus

width

DI/D

O

ADD

R

No. of

addressabl

e locations

Block RAM

capacity

(Kbit)

No. of

Block

RAM

needed

Frame

Buffer

BRA

M

3-bit 16-bit [2:0] [15:0] 65536 196608 12

SIN

BRA

M

17-bit 8-bit [16:0] [7:0] 180 16384 1

COS

BRA

M

17-bit 8-bit [16:0] [7:0] 180 16384 1

Total No. of Block RAM needed = 14

 Areej H. Ali & Riyadh Z. Mahmood

50

4. Results Discussion

Bresenham’s algorithm for line and circle drawing, moving, scaling and rotation

are implemented using VHDL based on SPARTAN 3E-XC3S500. Furthermore, the

additional VHDL processes are used to implement moving, scaling and rotating

including the uses of 800*600 SVGA timing to draw the whole shapes, four slide

switches for selecting the operation on the chosen shape, Rotary Encoder for controlling

the three operations the scaling, moving and rotation, and 16*2 built in LCD display for

showing the current one of the seven operations.

At the beginning, the size of the frame buffer is (256*256) pixels, each pixel includes 3-

bit to color any shape. Then eight colors are included on each line and circle. Table 3

shows the original points of the cube and circle.

 Table 3: Original points of the Cube and Circle

Figure 7 (a) illustrates the original position of the whole points related to the

cube and circle that are drawn via SPARTAN 3E-XC3S500 FPGA VGA port in the

SVGA screen. White with red color of boundary are selected for frame buffer

background, while blue is selected for display. In the frame buffer, as it is mentioned in

the above table, the Cube and the Circle are drawn in the previous position.

 Original shapes display

As it was mentioned earlier, the selected screen resolution is (800*600) SVGA

before using 50MHz refresh rate for displaying the shapes in a clear way and with as

high as possible resolution.

 (a) (b)
Figure 7: (a) Original position of the Cube and Circle, (b) Circle scaling operation type

 Circle scaling

As Figure 7 (b) shows, when the slide switches are put at (0000) position, LCD

displays the operation type (which is Circle Scaling). Figure 8 illustrates all operations

done by the designed system.

Points 0 1 2 3 4 5 6 7

Cube (50,50) (150,50) (150,150) (150,50) (75,75) (125,75) (125,125) (75,125)

Points Center Radius

Circle (125,122) 63

 Bresenham's line and circle drawing algorithm using FPGA

 51

Scaling circle down

with (-10) point

 Scaling circle up

with (+10) point

Moving circle 10

points to the left

Moving circle 10

points to the right

Moving circle 10

points up

Moving circle 10

points down

 Circle Coloring

with red

 Scaling cube down

with (-10) point

 Scaling cube up

with (+10) point

Moving cube 10

points to the left

Moving cube 10 points

to the right

 Moving cube 10

points up

Moving cube 10

points down

Cube Coloring with

Purple

Cube Rotation (-10)

degree

Cube Rotation (+90)

degree

Figure 8: All operations

5. Conclusion and Future Works

5.1 Conclusions

The main purpose of this work is to design and implement a graphics processor

using FPGA, which is able to handle 2D rendering graphics. Bresenham’s algorithm for

line and drawing is commonly used in various applications such as graphic design,

game design, and so on. The following points summarize the important conclusions that

are got out of this research:

 Implementing of Bresenham’s algorithm for line and drawing based on FPGA that

is used as a GPU processor to increase the speed of drawing any shape and the use

of another algorithm that can be applied on this algorithm such as translation,

rotation and scaling.

 The resolution of the VGA display is 50MHz 800*600 which requires increasing of

the design frequency that is affected by the programming skills.

 Areej H. Ali & Riyadh Z. Mahmood

52

 The used line generation algorithm is the 3D Bresenham’s algorithm using integer

calculations so as to avoid the floating point occupying a large area of an FPGA

and also slows down the speed.

5.2 Future works

There are wide areas for enhancing the processes of drawing and translation that

area applied on any drawn shapes as a future works:

 It could be used as an enhanced FPGA device having a larger Block RAM

increasing the frame buffer size. It can also be used for increasing frequency of a

system to get a resolution, (800*600 SVGA), that is mentioned above.

 Using DDR-SDRAM enables the designed system processing largedata (64 M-Byte

memory size) and with high speed (100 MHz frequency) which led to the

improving of the performance efficiency of the system.

 This work could be enhanced so as to draw 3D shapes as a future work in the case

when the better FPGA platform is existed.

 It can be used as an additional complex algorithm for enhancing the result such as

edge smoothing to get a perfect result.

 Bresenham's line and circle drawing algorithm using FPGA

 53

REFERENCES

[1] vrlab.epfl.ch., 2014, "Graphics/vision publications acceptance rates statistics",

2014, Retrieved 2014-05-01.

[2] Goldwasser, S.M., 1983, “Computer Architecture For Interactive Display Of

Segmented Imagery. Computer Architectures for Spatially Distributed Data”

Springer Science & Business Media. pp. 75-94 (81). ISBN 9783642821509.

[3] Information Processing Society of Japan, 2015, "LINKS-1 Computer Graphics

System-Computer Museum", Retrieved 15 June 2015.

[4] Baumann C., 2010, "Field Programmable Gate Arrays (FPGA)", University of

Innsbruck.

[5] Rose J., Kuon I., Tessier R., 2007, "Fpga architecture: Survey and challenges",

Foundations and Trends in Electronic Design Automation.

[6] Niu Lianqiang and Feng HaiWen , 2009, "A Line Segments Approximation

Algorithm of Grating Lines", Journal of 2009 International Forum on Computer

Science-Technology and Applications, IEEE,Computer Society , Vol. 2 , Pages:

34-37, 2009.

[7] Chikit Au and Tony Woo, 2011, "Three Dimensional Extension of Bresenham’s

Algorithm with Voronoi Diagram", Journal of Computer-Aided Design, Vol. 43,

Issue: 4, Pages: 417-426, 2011.

[8] Fakhrulddin Hamid Ali , “Depth Buffer DDA Based on FPGA“, 2011, Journal

of Al-Rafidain Engineering ,Vol.19 , No.5 , October 2011.

[9] Kahraman Serdar Ay, Atakan Dogan, 2013, "Hardware/Software Co- Design of

A 2D Graphics System on FPGA", Electrical and Electronics Engineering,

Anadolu University, Eskisehir, Turkey, International Journal of Embedded

Systems and Applications (IJESA) Vol.3, No.1, March 2013.

[10] Zingl, Alois, 2012,. "A Rasterizing Algorithm for Drawing Curves" (PDF)., The

Beauty of Bresenham's Algorithms

[11] vrlab.epfl.ch., 2018, "Murphy's Modified Bresenham Line Algorithm",

homepages.enterprise.net. Retrieved 2018-06-09. Blender.org, Open source 3D

creation, https://www.blender.org/ (09.2017)

[12] S.Fawad, 2006, "Adapting Bresenham Algorithm ", Journal of Theoretical and

Applied Information Technology ,Vol. 2 Issue: 2 ,Pages: 27-30, 2006.

[13] Wayne Carlson, 2003, “A Critical History of Computer Graphics and

Animation”, Archived April 5, 2007, at the Wayback Machine. Ohio State

University

[14] Jon Peddie, 2013, “The History of Visual Magic in Computers: How Beautiful

Images are Made in CAD, 3D, VR and AR” , Springer, 2013, p. 101, ISBN 978-

1447149316

http://vrlab.epfl.ch/~ulicny/statistics/
https://books.google.com/books?id=8MuoCAAAQBAJ&pg=PA81
https://books.google.com/books?id=8MuoCAAAQBAJ&pg=PA81
https://en.wikipedia.org/wiki/Springer_Science_%26_Business_Media
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/9783642821509
http://museum.ipsj.or.jp/en/computer/other/0013.html
http://museum.ipsj.or.jp/en/computer/other/0013.html
http://members.chello.at/~easyfilter/Bresenham.pdf
http://homepages.enterprise.net/murphy/thickline/index.html
http://accad.osu.edu/~waynec/history/lessons.html
http://accad.osu.edu/~waynec/history/lessons.html
https://web.archive.org/web/20070405172134/http:/accad.osu.edu/~waynec/history/lessons.html
https://en.wikipedia.org/wiki/Wayback_Machine
https://en.wikipedia.org/wiki/Ohio_State_University
https://en.wikipedia.org/wiki/Ohio_State_University
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-1447149316
https://en.wikipedia.org/wiki/Special:BookSources/978-1447149316

