
16 

 

Received 8/12/2020; Accepted 29/4/2021 

 

     Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 21, No. 2, June 2021             

DOI: https://doi.org/10.33103/uot.ijccce.21.2.2 

 

 

FPGA-Based Multi-Core MIPS Processor Design 
Sarah M. Al-sudany

1
, Ahmed S. Al-Araji

2
, Bassam M. Saeed

3
  

1,2,3
Computer Engineering Dept, University of Technology, Baghdad, Iraq 

1
Saramahdi2018@gmail.com, 

2
60166@uotechnology.edu.iq, 

3
bassamacm@gmail.com 

 

Abstract— This research presents a study for multicore Reduced Instruction Set 

Computer (RISC) processor implemented on the Field Programmable Gate 

Array(FPGA).The Microprocessor without- Interlocked Pipeline Stages (MIPS) 

processor is designed for the implementation of educational purposes, as well as it is 

expected that this prototype of processor will be used for multimedia or big data 

applications. 32- bit MIPS processor was designed by using Very High speed Hardware 

Description Language (VHDL). Pipelined MIPS processor contains three parts that are : 

data path 32-bit MIPS pipeline, control unit, and hazard unit. The single cycle MIPS 

system was subdivided into five pipeline stages to achieve the pipeline MIPS processor. 

The five parts include: instruction fetch (IF), Instruction Decode (ID), execution (EXE), 

memory (MEM) and Write Back (WB). Three types of hazard: data hazard , control 

hazard and strctural hazard are resolved. Certain components in the pipelined stage for 

the design processor were iterated for four core SIMD pipelined processors. The MIPS is 

developed using Xilinx ISE 14.7 design suite. The designed processor was implemented 

successfully on Xilinx Virtex-6 XC6VLX240T-1FFG1156 FPGA. The total power 

analysis of multi-core MIPS processor is obtanined 3.422 watt and the clock period was 

7.329 ns (frequency: 136.444MHz). 

          Index Terms— FPGA, MIPS, RISC, VHDL. 

I.INTRODUCTION 

    Modern parallel computers use commodity processors, often multi-core, which allow 

parallel systems to have immediate access to rapid improvements in processing speed and 

energy efficiency [1]. Reduced Instruction Set Computer (RISC) is a kind of architecture 

for microprocessors using a highly optimized set of instructions. RISC processors use huge 

numbers of registers. The RISC computer load storage method is based on the load and 

store instruction set, and these instructions only use memory access. Microprocessor 

without Interlocked Pipeline Stage (MIPS) is a RISC set of guidelines created by MIPS 

technologies. Many reviews from MIPS instruction set are present, such as MIPS-32, 

MIPS- 64 and others [2]. The current revision of MIPS-32 is implemented for 32 bit. 

Pipelining is one of the features of RISC, which reduces the cycles per instruction at the 

expense of the number of instructions per program [3]. 

    Today, Field Programmable Gate Arrays (FPGAs) are commonly used to implement 

multi-purpose logic. FPGAs are built from a complex set of basic logical functions. There 

are a number of FPGAs available in the market from many vendors. Additional 

developments in packaging allow for high performance. A Hardware Description Language 

(HDL) is commonly used to configure FPGAs. A very High Integrated Circuit (IC)  

Hardware Description Language (VHDL) is one of the hardware description languages of 

very high speed integrated circuits [4].  

    The design MIPS processor specifications have five stages: Instruction Fetch (IF), 

Instruction Decode (ID), Execution (EXE), Memory (MEM) and Write Back (WB), 32 bit 

data bus, memory 32 bit X 1024 and 32 bit internal addressable register. 

https://doi.org/10.33103/uot.ijccce.21.2.2
mailto:Saramahdi2018@gmail.com
mailto:bassamacm@gmail.com


17 

 

Received 8/12/2020; Accepted 29/4/2021 

 

     Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 21, No. 2, June 2021             

DOI: https://doi.org/10.33103/uot.ijccce.21.2.2 

 

 
     The nature of data in such applications, including (image, audio and video) provides 

the opportunity for high level of parallelism in processing. 

   The researchers in [5] focused on the microarchitecture of MIPS Instruction Set 

Architecture (ISA) implemented with FPGA, since it closely follows the theory of RISC. 

This is desirable since it simplifies implementation and is easy for students to understand, 

so upgraded with 6 MIPS required instruction. It is developed using the common Hardware 

Description Language (HDL), Verilog. [6] presented the design and simulation of a high-

performance 32-bit (MIPS) 5-stage pipelined, processor-based on RISC architecture. MIPS 

processor aims to execute a minuscule set of instructions, to increase the processor speed. 

This RISC processor was designed in five stages of a pipeline. The designing of this RISC 

processor is developed using the (HDL) hardware description language Verilog code in the 

modelsim simulator and uses the Register Transfer Level (RTL) logic Xilinx tool. While in 

[7] they proposed the design and implementation of a RISC 16-bit Processor by using 

VHDL. This processor can execute 16 instructions from different classes like arithmetic, 

logical, conditional and unconditional jumps and for the memory interface instructions. The 

authors have compared between 8-bit and 16-bit in regards to power- efficiency and 

programmability requirements. The authors have investigation in their research the 

methodology of soft-core processor development. The package uses (Xilinx ISE 14.5). The 

target device chosen was Spartan 6 FPGA. The simulation was executed in ISE Simulator 

ISIM. In [8] described the design and implementation of a dual and the quad-core pipelined 

RISC processor using Verilog code and implemented their processor on vertex 6 FPGA. 

Dual-core and quad-core processor consumes less power with high performance. Harvard 

memory architecture have been deployed by the authors to get separate access logically and 

physically to the data and instruction memories. The pipelined approach adopted by the 

authors has increased the execution speed for the 23 instruction set of their RISC processor. 

Moreover, [9] describes the a soft core five stages pipeline processor with a basic 

instructions set that can be changed on-demand due to the configurable nature of FPGA. 

This processor improves the efficiency by using pipeline concept, because of the increase in 

development of the processor and System On Chips (SOCs). This system uses Xilinx ISE 

design 14.1 and Verilog language and was implemented on FPGA Xilinx Spartan 6 

XC6SLX9-3CSG324. In [10] presented proposed 32-bit pipelined MIPS processor. The 

proposed MIPS pipelined processor has a five-stage pipeline, 32- bit register file, and 32-bit 

arithmetic logic unit. The results show that the MIPS pipelined processor works on three 

times less power than MIPS non-pipelined. It uses Xilinx ISE software, Verilog VHDL 

code and implementation on Spartan 3E device XC3S500E. 

    The motivations for this work are: minimizing execution time, reducing the area 

utilized by the processor, low power consumption, and increasing the size of the processed 

data; therefore, the compatible multi-core processor circuit is designed, tested and 

synthesized by using VHDL in this work. 

     This paper is organized as follows; section II gives an overview of pipeline 

multicore MIPS processor architecture.  Section III introduces and defines instruction set 

architecture. In section IV, the pipelined MIPS processor design gets explained. Section V, 

describes the pipeline instruction set. Section VI explains SIMD instructions for multicore 

processor. The results are discussed in section VII; finally, conclusions are lighted in 

section VIII, followed by references. 

 

 

https://doi.org/10.33103/uot.ijccce.21.2.2


18 

 

Received 8/12/2020; Accepted 29/4/2021 

 

     Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 21, No. 2, June 2021             

DOI: https://doi.org/10.33103/uot.ijccce.21.2.2 

 

 
II. OVERVIEW OF PIPLENE AND MULTICORE MIPS PROCESSOR  

      A Microprocessor without Interlocked Pipelined Stages (MIPS) is a type of RISC architecture 

developed by computer systems. RISC is a basic architecture that has become a commonplace in 

recent years [11].  MIPS has attained a big name in the history of computers for several reasons. First, 

it is a groundbreaking processor, one of the first of its kind. Secondly, it was developed in an 

educational institute rather than in a big industrial organization such as Intel or Motorola. Third, it has 

had a huge impact on teaching or understanding of computer architecture [12]. The principles of the 

MIPS system were used to explain the pipeline and avoid any interlocking conditions. In general, the 

pipeline deploys the task of operating instructions into several steps, and beginning work on the "first 

step" of instructions before previous instructions are completed. The architecture of the MIPS 

processor omitted a range of valuable instructions to complete certain moves [13]. The MIPS basic 

pipeline is shown in Fig.1. [14].  

 

 

FIG.1.THE MIPS PROCESSOR BASIC PIPELINE [14]. 

 

   The design of the microprocessor was typically driven by higher requirements. Several methods of 

the design were used to eliminate various types of parallel applications. In recent years, computer 

engineering has achieved technological advances that have had a great mutual effect, especially in the 

dissemination of Single Instruction Multi-Data (SIMD) for individual education [15]. To improve 

performance and decreased power consumption, they were attached in a single chip by duplicate four 

components of pipelined core processors that are iterated to create the SIMD architecture. It can 

increase the overall speed of the programs by processing multiple data at the same time [16].  

     Multicore is an Integrated Circuit (IC), typically a single processor that includes two or more 

independent processing units called cores on a chip. Multicore chips widely enter in the industrial and 

consumer markets, began in special-purpose, niche markets like high-performance graphics and the 

network devices. Multicore chips have also recently been launched into the general-purpose 

market[17]. A general multi-core block diagram for this work is shown in Fig.2. 

https://doi.org/10.33103/uot.ijccce.21.2.2


19 

 

Received 8/12/2020; Accepted 29/4/2021 

 

     Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 21, No. 2, June 2021             

DOI: https://doi.org/10.33103/uot.ijccce.21.2.2 

 

 

 

FIG.2. GENERAL BLOCK DIGRAM OF MULTICORE [18] 

 

Fig.2 illustrates two phases; SISD and SIMD Instructions. SISD consists of five stages: 

instruction fetch (IF), Instruction Decode (ID), execution (EXE), memory (MEM) and write back 

(WB) for single core. The SIMD instructions consist of the pipeline stage of the proposed processor 

and iterate each processing element when it needs to be duplicated, this produces a core multi-core 

pipelined processor.   

Advantages of multi-core systems include reduction of execution time, scalability of the data size 

and processor performance, cost saving, and concurrency. Nowadays, most desktop and high-

performance computer processors are adopting the multicore architecture in their designs. Therefore, 

multi-core processors are getting an increased popularity in different fields [18]. 

 

III. INSTRUCTION SET ARCHITECTURE (ISA) 

    A programming language must be spoken to control the computer. Control words in machine 

language are called instructions, and their vocabulary is called a set of instructions. In RISC 

processor, for design simplicity, all instructions should keep the same length and should have a single 

instruction format. MIPS uses 32-bit instructions and set three formats of instructions, which are [19]: 

a. Register type instructions (R-type): the most popular instruction style is Register-type. As 

operands, they use three registers: two as sources registers, and one as destination register [20]. 

The format of R-type is shown in Fig.3. 

b. Immediate type instruction (I-type): immediate-type uses two operand registers and one immediate 

16-bit operand [20]. The format of I-type is shown in Fig.4.  

c. Jump instructions type( J-type): jump-type is only used with the jump instructions and uses a 26-bit 

single address operand [20]. The format of J-type is shown in Fig.5. 

 

 
FIG.3. REGISTER-TYPE INSTRUCTIONS FORMAT [20] 

 

https://doi.org/10.33103/uot.ijccce.21.2.2


20 

 

Received 8/12/2020; Accepted 29/4/2021 

 

     Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 21, No. 2, June 2021             

DOI: https://doi.org/10.33103/uot.ijccce.21.2.2 

 

 

 
FIG.4. IMMEDIATE –TYPE INSTRUCTIONS FORMT [20]  

 

 
FIG.5. JUMP-TYPE INSTRUCTIONS FORMAT [20] 

 

 Where, op: basic instruction operation which is traditionally called an opcode.  

rs: the first source register operand. 

rt: the second source register operand.  

rd: destination register operand, it gets operation result.  

shamt: shift amount is used to hold a shift amount in shift instructions.  

funct: function, it selects the part variant of the operation in the opcode field.  

Immediate: 16-bit address is used in the instructions for the data transfer.  

Target: 26-bit address is used in instructions for jumping.   

IV. PIPELINE MIPS PROCESSOR DESIGN  

 In the MIPS processor with a pipeline architecture of five stages, the instructions are executed in 

five phases, where each stage takes a fixed time period. The specified period normally is a clock cycle 

of the processor [21]. All instructions follow up the same pipe stage sequence, even though the 

instruction does nothing in some stages. Stages in the developed MIPS processor are as follows: 

Instruction Fetch (IF), Instruction Decode (ID), Instruction Execution (IE), Memory Stage, Write 

Back (WB) Stage [22]. MIPS pipeline processor contains three parts: 32-bit data path on pipeline, 

control unit, and hazard detection unit. 

A. Data Path 32-Bit MIPS Pipeline 

      The data path is the combination of different functional units such as arithmetic logic unit, 

multiplier, registers, and busses that perform processing operations including the control unit. The 

MIPS data path is divided into five stages for the ease of development and implementation [23]. Fig. 

6 displays the phases used in the proposed processor. Each stage in the proposed MIPS processor has 

a particular function, these functions will be illustrated in the upcoming subsections: 

https://doi.org/10.33103/uot.ijccce.21.2.2


21 

 

Received 8/12/2020; Accepted 29/4/2021 

 

     Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 21, No. 2, June 2021             

DOI: https://doi.org/10.33103/uot.ijccce.21.2.2 

 

 

 

FIG.6. STAGES OF PROPOSED PROCESSOR [10]     

 

• Instruction Fetch (IF):is the first stage in the pipeline MIPS processor. It consists of the following: 

 Program counter register (pc), 

 Multiplexers (Mux), 

 Adder to increase PC register by 4, 

 OR gate, 

 32-bit word-addressable instruction memory read only memory (ROM). 

    The interior buses connect those different units. The program instructions are fetched and 

forwarded to the next stage for decoding. The instruction memory obtains the location address for 

each instruction from the program counter which always enables it to provide the proper address as 

long as the processor is operated. The multiplexers are used to select the address and be supplied and 

then transmitted to the instruction memory and PC register simultaneously. The instruction memory is 

a single port type v 7.3 Xilinx IP core. The instruction memory is set up as a ROM, which reads in a 

coefficient (.coe ) file that holds the instructions, with a width of (32) and depth of (1024). 

  

• Instruction Decode (ID): is the second stage in the proposed MIPS processor. This part is where the 

program instructions are analyzed to generate the control signals needed to execute each instruction. 

It consists of the following components: 

 Register bank (register file), 

 Next Program Counter (NPC) logic, 

 Branch logic unit, 

 Control unit, 

 Hazard detection unit. 

    The register bank consists of 32-General Purpose Registers (GPR). The branch logic is the unit that 

determines the presence of any instruction that can cause a change in the sequential execution of the 

program instructions, such instruction could be anyone of the group branch on equal (beq), branch not 

equal (bne), branch greater or equal zero (bgez) and branch less than zero (bltz). The inputs to this 

unit are supplied from the forwarding multiplexers (MUX), The module of NPC uses the ISBJ 

(branch or jump) signal, which produced by the control unit and forwarded to the NPC module for 

https://doi.org/10.33103/uot.ijccce.21.2.2


22 

 

Received 8/12/2020; Accepted 29/4/2021 

 

     Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 21, No. 2, June 2021             

DOI: https://doi.org/10.33103/uot.ijccce.21.2.2 

 

 
calculating the next address point at which program control must be transferred and the control unit is 

the module responsible for instructions decoding and setting the signals necessary to pave the way for 

appropriate execution. 

• Instruction Execution (EXE): is the third stage MIPS pipeline. It executes the instruction. All the 

ALU operations are done in this stage, that are composed from the following units: 

 Shifter, 

 Comparator, 

 Arithmetic Logic Unit (ALU) 

 ALU controller, 

 Multiplier. 

 

    The shifter module is responsible for executing the shift instructions considered in this work. These 

instructions include; Shift word Left Logical (SLL), Shift word Right Arithmetic (SRA) and Shift 

word Right Logical (SRL). The comparator module is responsible for executing the instructions: Set 

Less Than (SLT), Set Less Than Unsigned (SLTU), Set Less Than Immediate (SLTI), set less than 

immediate unsigned. The ALU controller module has two inputs; the arthmatic logic unit opration 

(ALUOP) which is a 5-bit width input is provided from the previous decode stage specifically from 

the controller module at that stage, and the input is function part from the instruction which a 6-bit 

width as previously known. A multiplier unit v11.2 is Xilinx IP core. The multiplier module is 

developed to execute the multiplication instruction. It multiplies the 16 least significant bits and 

produces a 32- bit result. The ALU module performs all the arithmetic and logic operations. 

• The stage memory (MEM) of the fourth stage of the proposed MIPS pipelined processor is the data 

memory which is used as the name suggests to store the data needed in the performed processing. 

The data memory is brought from the Xilinx IP core which is a single port block v7.3. The memory 

is configured for reading and writing operations and can be set up with a coefficient (COE) file 

containing data required to perform the planned operations. 

 • Write Back Stage (WB): In the processor's final stage, the role of this stage is to forward either the 

result of the multiplier, a result value or a data memory to the register bank to write the correct 

register.    

 

B. Control Unit (CU) 

    The data path of the pipelined sends the (opcode) and (func) fields from instruction to the control 

unit in the (ID) stage. The control unit receives opcode and function, it produces the control signals 

necessary for executing the instruction with the corresponding opcode. To stay synchronized with 

instruction, these control signals are pipelined along with the data across the inter stags register. The 

control unit consists of the following: 

 Main Control Unit: uses opcode (instructions bit 31 down to 26) field and (funct) 

(instructions bit 5 down to 0) field as inputs in the decode stage and produces the control 

signals that are shown in Table 1. 

 

 

 

 

 

https://doi.org/10.33103/uot.ijccce.21.2.2


23 

 

Received 8/12/2020; Accepted 29/4/2021 

 

     Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 21, No. 2, June 2021             

DOI: https://doi.org/10.33103/uot.ijccce.21.2.2 

 

 
 

TABLE 1. THE EFFECT OF CONTROL UNIT SIGNAL  

Description Signal Name 

goes to the register bank and check when to allow 

register writes. 
REGWRITEH 

goes to the IF stage and to the inter-stage registers in 

the processor to disable them from going to the next 

instruction. 

BREAKPOINT 

Connect to the MUX write register to determine if 

memory data is stored. This should be written into 

the register bank or a calculation should be written 

and it function as the activation signal to the read 

memory enable. 

MEMTOREG 

used as activation signal to the memory write input. MEMWRITEH 

Goes to the NPC module to determine with other 

signal the next address in cases of branch and jump. 
ISBJ (is branch or jump) 

It used as an input to the hazard controller 

(detection) to handle the jal instruction. 
ISJAL 

is input to the ALU control unit. ALUOP 

passes to MUX B, which calculate to pass value 

either from forward M MUX or the output of the 

ALU B source extender. 

ALUSRC 

Is used to identify register bank to write back to. REGDST 

Connects to the extension logic to decide whether 

there is sign extend or zero. 
EXTCTRL 

 

 ALU Control Unit: receives ALU op from the main control unit in the (ID) stage and (funct) 

(instructions 5 down to 0) from instruction in order to produce the signals as shown in the 

Table 2. 

TABLE 2. THE EFFECT OF ALU CONTROL SIGNALS  

Description Signal Name 

Goes  to the shifter unit, and calculate a shift 

between zero and sign. 
SHEXTMODE 

Calculates the shift direction and determines 

what direction to shift. 
SHDIR 

Pass to the comparator unit and select whether 

to compare signed or unsigned. 
SIGNEDCOMP 

Calculate which operation will be performed 

inside the ALU. 
FSEL 

Select between the outputs of the shifter unit, 

comparator unit output, and ALU output using 

the MUX computation. 

MSEL 

 

C. Hazard Detection Unit 

  If the instructions prevented at any stage from being executed, it means that there is a problem 

with the pipeline, called hazard. It is identified by the hazard detection. Three types of hazards 

generally exist: 

  Structural Hazard: this is caused when resource scarcity. If instructions and data require 

same resource at the same time, the structural hazard occurs. To resolve this problem the 

subsequent instruction must be stall to from entering the pipeline or another solution can be 

https://doi.org/10.33103/uot.ijccce.21.2.2


24 

 

Received 8/12/2020; Accepted 29/4/2021 

 

     Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 21, No. 2, June 2021             

DOI: https://doi.org/10.33103/uot.ijccce.21.2.2 

 

 
made for the problem by adding one memory for instructions and another one for data. In this 

work it uses a second method by adding two memories to resolve this problem. 

 Data Hazard: data hazard would occur if an instruction in specific stage e.g., EXE stage 

requires a data item supposed to be produced by a preceding instruction currently in further 

stage e.g., ID stage but this data is not available yet. There are two functions in the framework 

for hazard analysis the first approach is to forward data from the stage where the preceding 

instruction has produced the data required by the subsequent instruction for being used as one 

operand in the intended operation. The second is to stall the pipeline when the correct value 

for this clock cycle is not available. The hazard unit stops data transfer in cases Write After 

Write (WAW) and Write After Read (WAR) hazards. Write After Write (WAW) cannot 

happen in the proposed design in this work because, all instructions required five stages, and 

write operation always happens in the fifth stage 5. Also, Write After Read (WAR) hazards 

cannot happen in the proposed design since the operand read operation take place in the ID 

stage, and write operations performed in the WB stage. The question of data forwarding arises 

when an instruction writes to a register and then the next instruction uses the register as one of 

its operands. Taking the directions explained in the Fig.7 below. 

 

       
FIG.7. FORWARDING HAZARD SEQUENCE 

 

If the SUBU instruction enters the execution stage, the AND instruction enters the decode stage. 

The update value for register $2 is required for the AND instruction and the value must be transmitted 

from the execution stage. For the OR instruction, the same approach applies. When the OR instruction 

enters the decode stage, SUBU instruction enters the WB stage. Register $2 value is not updated yet, 

therefore, the correct value must be forwarded to the ID stage from the WB stage for this case. The 

result of SUBU is added to the $2 in the register bank when the ADD instruction enter the decode 

stage. 

The second problem for hazard detection unit is the need to stall the pipeline with a latency that 

the forwarding multiplexer will handle take care of with the instruction load. However, if the 

instructions for the loaded register are in the decode stage. AND instruction is require $2 value but 

result is not visible until the WB stage like the load word instruction. The hazard unit sends a stall 

signal to stop the IF and ID stages as the other stages are continue. The next stage is the WB load 

instruction and the value is at the memory output and is returned to the EXE stage for the instructions 

needed. This stall process is shown in the Fig.8.  

 

                                                            
FIG.8 : STALL HAZARD SEQUENCE 

 

 Control Hazard: while performing the main program, the need for a branch arises and hence 

the execution path changes from the main to the sub-program. There is a need to stall 

https://doi.org/10.33103/uot.ijccce.21.2.2


25 

 

Received 8/12/2020; Accepted 29/4/2021 

 

     Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 21, No. 2, June 2021             

DOI: https://doi.org/10.33103/uot.ijccce.21.2.2 

 

 
instructions that were already fetched. The design of this processor allows delay slot after the 

branch instruction; the branch or jump instructions will continue their execution. The branch 

logic unit to let the pipeline to keep the instruction directly follows the branch instruction and 

create no operation (NOP) in place of the killed instruction in the pipeline path. The branch 

logic module could be resolved in the execution stage but there are two instructions in the 

pipeline path to be killed. Therefore, the instructions in this work will be executed in the 

decoding stage, wherein the instructions should only be killed at the fetch stage. 

The inter-stage links connect the data path for all the processor stages, control unit and hazard 

detection unit to composed the complete processor. 

V. PIPELINE INSTRUCTION SETS 

MIPS pipelined processor instruction sets have the following functions: 

 All the MIPS instructions are of the same length, this makes it easier to fetching of 

instructions in the first stage and the decoding of instructions in the second stage.  

 MIPS processor only has a few formats of instruction, in the register format, source fields are 

placed in the same location for each instruction. This symmetry means that the decode stage 

of the pipeline will start reading the register file in the same time as the hardware decides the 

type of instruction that was received.  

 Memory operand only appears with load and store instructions. This restriction means that the 

execution phase will calculate the memory address and the data memory will be accessed in 

the next phase [26].  

A group of twenty eight represents the most commonly used SISD instructions that were 

investigated, this instruction set appears in Table 3, whereas a group of eleven SIMD instructions 

appears in Table 4. Both groups have been considered for investigation and execution by the proposed 

MIPS pipelined processor. 

TABEL 3. INSTRUCTION SET FOR SISD  

Description Instruction Name 

Unsigned register addition and immediate value. ADDIU 

Logical and, of two register. AND 

Logical or of two registers. OR 

Logical xor of two registers. XOR 

The shift left logically. SLL 

The shift right arithmetic. SRA 

Set on less than immediately. SLTI 

Instant upper load. LU 

Branch on less than zero. BLTZ 

Store the word. SW 

Shift the right logic. SRL 

Unsigned subtraction of two registers. SUBU 

The unsigned addition of two registers. ADDU 

Logical and the register and the immediate value. ANDI 

Logical or between a register and immediate 

value. 

ORI 

The xor logical of register and immediate value. XORI 

Set less than the unsigned immediate. SLTIU 

The Branch on equal. BEQ 

Branch greater than or equal to zero. BGEZ 

Set on less than unsigned. SLTU 

Branch on inequality. BNE 

The word load. LW 

A signed multiplication of two registers. MUL 

Set on less than that. SLT 

Breakpoint exception. BREAKPOINT 

https://doi.org/10.33103/uot.ijccce.21.2.2


26 

 

Received 8/12/2020; Accepted 29/4/2021 

 

     Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 21, No. 2, June 2021             

DOI: https://doi.org/10.33103/uot.ijccce.21.2.2 

 

 

Description Instruction Name 

Jump. J 

Jump and link. JAL 

Jump register. JR 

 

TABEL 4. INSTRUCTION SET FOR SIMD  

Description Instruction Name 

addition of two unsigned registers to n- paires. MADDIU 

addition unsigned of register and immediate value to 

n-pairs. 
MADDU 

multiplication of two registers to n-pairs. MMUL 

n store of words. MSW 

logical and of two registers to n-pairs. MAND 

logical and of register and immediate value to n-

pairs. 
MANDI 

logical or of two registers to n-pairs. MOR 

logical or of register and immediate value to n-pairs. MORI 

logical xor of two registers to n-pairs. MXOR 

logical xor pairs of register and immediate value to n-

paries. 
MXORI 

n load of word. MLW 

 

The addition, subtraction, and multiplication operations cover the arithmetic process; Whereas 

the logical operation are carried out through the following instruction set: or, ori or, ori, xor, xori, and, 

andi, sll, srl and sra cover changing needs; the configuration of less than and instructions requires 

comparisons; jump instructions. The load and store instructions are memory-related instructions, 

where their executions require data memory access. 

VI. SIMD INSTRUCTIONS FOR MULTICORE PROCESSOR 

To achieve a multi-core processor, it employs the SIMD architecture and SIMD instructions. It is 

needed to add and connect several basic units within the architecture proposed for the multi core 

processor. The block diagram of this architecture is shown in Fig. 9. 

 
 FIG.9.MULTI CORE FOR PROPOSED PROCESSOR  

  

https://doi.org/10.33103/uot.ijccce.21.2.2


27 

 

Received 8/12/2020; Accepted 29/4/2021 

 

     Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 21, No. 2, June 2021             

DOI: https://doi.org/10.33103/uot.ijccce.21.2.2 

 

 
The modules in the processor stages include parameters SISD; the instructions fetch stage 

consisting of the PC reg, multiplexer, and instruction memory. The decode stage includes control unit, 

register file, nextpc module, and branch unit. Execute stage consists of ALU control, shifter unit, 

compartor unit, ALU unit and multiplyer unit. Memory stage contain data memory. Write back stage 

include register write back. The replication of units can be adjusted i.e. incremented or decremented 

according to the design targets and processor needs. Four units are instantiated according to the 

default value (N=4). Each unit includes a register bank, multiplier, ALU, data memory, inter-stage 

registers and forwarding multiplexers.  

Adding SIMD instructions to the program does not change the program instructions flow, 

therefore all the modifications supposed to be made in the ID stage were limited to the controller 

module, three control signals were added to manipulate the vector register write (MREGWRITE), 

vector memory reads (MMEMTOREG) and vector writes (MMEMWRITE) for SIMD instructions 

such that to prevent any conflict between the datapath for each the SISD and SIMD. These signals 

will control the N-instantiated SIMD units, where the same function will be performed by each 

instantiated unit. The development of the SIMD processor has adopted distributed memory 

organization so that every memory unit will receive the same address, this approach can simplify the 

addressing mode utilized by the SIMD processor. 

The number of SIMD units can be increased or even decreased by adjusting the parameter used 

for this purpose in the VHDL program section related to the description of main inputs and outputs 

i.e. the entity part of the processor in the most top-level VHDL description as shown in Fig.10. 

  

 
FIG.10  SIMD PROCESSOR ENTITY  

The size parameter in the figure represents the number of SIMD units that are going to be 

instantiated whereas the datasize parameter stands for (the number of SIMD units x 32 -1). The data 

signals in the design of the SIMD processor use the form of array which is a user-defined type in 

VHDL, this enumerated data type is used to connect SIMD ALU modules, the multiplexers and 

registers. The whole length of the data-array type must conform with the datasize parameter.  

VII. RESULTS ISE OF SIMULATE  

     The processor was implemented with 2 phases, at first the SISD processor was developed as a 

five stages pipeline processor, thereafter, the original design was upgraded to yield four cores 

pipelined SIMD processor through adding all the architectural requirements at the different stages 

form the pipeline. Each stage has been tested using the tests for program instruction that are shown in 

the next section. The programs were verified by simulating all the processor stages using Xilinx ISE 

14.7 Project navigator. 

 

 

https://doi.org/10.33103/uot.ijccce.21.2.2


28 

 

Received 8/12/2020; Accepted 29/4/2021 

 

     Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 21, No. 2, June 2021             

DOI: https://doi.org/10.33103/uot.ijccce.21.2.2 

 

 
A. Simulation Results 

This section will present the simulation results for arithmetic / logical instructions, memory 

instructions and branches instructions for SISD pipeline processor and all SIMD instructions for 

multi-core processor. 

Fig.11 shows a code snippet and waveform resulted from testing the arithmetic SISD 

instructions, which include the instructions ADDIU, ADDU, SUBU and MUL. The processor goes 

into reset state when the rset signal becomes active (active-low), then the first instruction can be seen 

in the waveform, the result is written to register $1, also other ADDIU result is written in the $2 

register. Instruction SUBU $7,$1,$2 is performed, first register $1 value and register $2 value is read 

then the subtraction result is stored into the destination register $7, when instruction ADDU is 

performed $8, $1,$2, first register $1 value and register $2 value are read and then the addition of 

these two registers is stored into the destination register $8. 

 

 
FIG.11. TEST CODE AND WAVEFORM FOR ARITHMETIC SISD INSTRUCTIONS  

 

Fig.12 lists the arithmetic SIMD instructions and the waveform for the complete execution of the 

instructions, MADDIU, MMUL and MADDU. The processor will reset when rset signal goes low 

then the first instruction MADDIU goes to fetch stage. The result is written in the $1 register, also the 

other MADDIU result is written in the $2 register, when instruction MMUL $3, $1,$2 is performed, 

first register $1 value, and register $2 value are read and then the multiplication of these two registers 

is stored into the destination register $3. Moreover, instruction MADDU $9, $1,$2 is performed, first 

register $1 value, and register $2 value are read and then the addition of these two registers is stored 

into the destination register $9.  

https://doi.org/10.33103/uot.ijccce.21.2.2


29 

 

Received 8/12/2020; Accepted 29/4/2021 

 

     Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 21, No. 2, June 2021             

DOI: https://doi.org/10.33103/uot.ijccce.21.2.2 

 

 

 

FIG.12. TEST CODE AND SIMULATION RESULT FOR ARITHMETIC SIMD INSTRUCTIONS  

Fig.13  lists the test code and the waveform for the complete execution for the instructions, ORI, 

AND, XORI and ANDI. In instruction ORI $23, $0,2 is performed. Immediate data is read and stored 

into the destination register $23. 

 
FIG.13. TEST CODE AND SIMULATION RESULTS FOR LOGIC SISD INSTRUCTIONS 

 

    Fig.14 lists the code logic SIMD instructions and waveform for the complete execution of the 

instructions, MANDI, MORI and MXORI, when the MORI instruction is performed, the immediate 

data undergoes to MORI operation with content of register $0, whereas the result is stored in register 

$6. 

 

https://doi.org/10.33103/uot.ijccce.21.2.2


30 

 

Received 8/12/2020; Accepted 29/4/2021 

 

     Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 21, No. 2, June 2021             

DOI: https://doi.org/10.33103/uot.ijccce.21.2.2 

 

 

 
FIG.14. TEST CODE AND WAVEFORM RESULTS FOR LOGIC SIMD INSTRUCTIONS  

 
   Fig.15 shows a list of the test code for memory instructions and waveform for test code to 

complete execution of the LW and SW instructions. The instruction LW $4, 0($0) will read value of 

location zero and store in register $4 while instruction SW $1, 4($0) will write the value of register $1 

in location 4 after adding with contents of register $0. 

 
FIG.15. LIST CODE AND WAVEFORM FOR MEMORY SISD INSTRUCTIONS  

 

   Fig.16  shows the contents of data memory after executing test code for memory instruction. 

The first location in data memory is used to store the results in this test code. 

  

https://doi.org/10.33103/uot.ijccce.21.2.2


31 

 

Received 8/12/2020; Accepted 29/4/2021 

 

     Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 21, No. 2, June 2021             

DOI: https://doi.org/10.33103/uot.ijccce.21.2.2 

 

 

 
FIG.16. DATA MEMORY CONTENTS AFTER EXECUTING  LW AND SW INSTRUCTIONS  

 

   Fig.17 lists the code for memory SIMD instructions and shows the simulation for the complete 

execution of the MLW and MSW instructions. In instruction MLW $1, 4($0) is a load value for 

location four to the register $1 and MSW $3, 0($0) is a store value register$3 in the location zero. 

 
FIG.17. LIST CODE AND WAVEFORM FOR MEMORY SIMD INSTRUCTIONS  

   

  Fig.18 shows the contents of data memory after executing test code for memory instruction. The 

first location in data memory is used to store the results in this test code. 

 

https://doi.org/10.33103/uot.ijccce.21.2.2


32 

 

Received 8/12/2020; Accepted 29/4/2021 

 

     Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 21, No. 2, June 2021             

DOI: https://doi.org/10.33103/uot.ijccce.21.2.2 

 

 

 
FIG.18. DATA MEMORY CONTENTES AFTER EXECUTING MEMORY SIMD INSTRUCTIONS 

 

The total time to execute the SISD instructions is the same as the total time to execute the SIMD 

instructions, but the difference is the SIMD instructions which four core execute with one clock, while 

the SISD instructions are executed one core execute with one clock, thus increasing the size of data 

processed by SIMD instructions128 bit data bus while 32 bit data bus in SISD instructions. 

B. Synthesis Result 

B.1 RTL Schematic 

The schematics Register Transfer Level (RTL) of the processor can be shown after the synthesis 

is shown in the Fig. 19. 

 

FIG.19. RTL SCHEMATIC FOR PROPOSED MIPS PROCESSOR 

  

https://doi.org/10.33103/uot.ijccce.21.2.2


33 

 

Received 8/12/2020; Accepted 29/4/2021 

 

     Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 21, No. 2, June 2021             

DOI: https://doi.org/10.33103/uot.ijccce.21.2.2 

 

 
B.2 Device Utilization Summary 

In this research, the proposed MIPS processor is developed by using VHDL language and 

implemented on Virtex-6 XC6VLX240T-1FFG1156 FPGA. From the proposed model that has 

pipelined and multi core MIPS processor, the utilization summary as shown in Fig. 20 for the 

proposed processor has (6183 number of slice register), (6790 number of slice LUTs), (1162 number 

of fully used LUT-FF pairs), (67 number of bounded IOBs), (6 number of block RAM/FIFO). The 

total power analysis of multicore MIPS processor is equal to 3.422 watt and the clock period: 7.329 ns 

(frequency: 136.444MHz) is obtainned. The summary of power analysis of proposed processor is 

shown in Fig. 21.  

 

FIG.20. DEVICE UTILIZATION SUMMARY FOR THE PROPOSED PROCESSOR  

 

FIG.21. POWER ANALYSIS TABLE FOR PROPOSED PROCESSOR 

VIII.    CONCLUTION 

A multi core MIPS processor, A 32-bit Multi core MIPS  processor,  was designed and 

implemented on Xilinx Virtex-6 FPGA using VHDL. The Xilinx ISE Design Suite 14.7 platform was 

used to simulate and test a proposed processor with 39 instructions. The multi-core architecture was 

designed with distributed memory to give the same address to every memory unit and used Harvard 

memory approach with two separate memories which were designed and implemented (instruction 

memory and data memory) to improve the performance processor by decreasing the area utilization of 

processor. The utilization summary of the proposed processor has (6183 number of slice register), 

https://doi.org/10.33103/uot.ijccce.21.2.2


34 

 

Received 8/12/2020; Accepted 29/4/2021 

 

     Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 21, No. 2, June 2021             

DOI: https://doi.org/10.33103/uot.ijccce.21.2.2 

 

 
(6790 number of slice LUTs), (1162 number of fully used LUT-FF pairs), (67 number of bounded 

IOBs), (6 number of block RAM/FIFO). The total power analysis 3.422 watt of multi-core MIPS 

processor is obtainned and the clock period is equal to 7.329 ns (frequency: 136.444MHz) for the 

proposed processor. The big constraint of RISC processor design is the limitation of device utilization 

summary (number of slice register, number of slice LUTs, number of fully used LUT-FF pairs, 

number of bounded IOBs, and number of block RAM/FIFO... ), when using Spartan-3E. 

 

REFRENCES 

[1] L. Wang, J. Tao, G. V. Laszewski, and H. Marten, "Multicores in Cloud Computing: Research Challenges for 

Applications," Journal of computers, Vol. 5, No. 6, pp. 958-964, 2010. 

[2] A. Ashok, and V. Ravi, "ASIC Design of MIPS Based RISC Processor for High Performance", Conference Paper, 

pp.263-269, 2017. 

[3] S. B. Ritpurkar, M. N. Thakare, and G. D. Korde, "Synthesis and Simulation of a 32Bit MIPS RISC Processor using 

VHDL", IEEE International Conference on Advances in Engineering & Technology Research, 2014. 

[4] Al-sudany S. M, Al-Araji A.S., and Saeed B.M.," FPGA based MIPS Pipeline Processor with SIMD Architecture", 

International Journal of Science and Research (IJSR), Vol.9, No.6.pp 44-450, 2020.  

[5] E. Jonathan, "Design and implementation of a Multimedia Extension for a RISC Processor Eduardo", Master Thesis 

Facultat d’Informàtica de Barcelona (FIB) Universitat Politècnica de Catalunya - BarcelonaTech , 2 July 2015. 

[6] P. Bhardwaj, and S. Murugesan," DESIGN & SIMULATION OF A 32-BIT RISC BASED MIPS PROCESSOR USING 

VERILOG" IJRET: International Journal of Research in Engineering and Technology, Vol. 05, No. 11, pp. 166- 172, 

2016. 

[7] K. B. Thakor, and M. Shirodkar, "Design of a 16-bit RISC Processor Using VHDL". International Journal of 

Engineering and Technical Research, Vol.6, No.4, pp.238-244, 2017. 

[8] M. R. Rakesh, "Design and Implementation of Dual Core and Quad Core Processor in Vertex 6 FPGA Using Pipelined 

RISC Architecture". International Journal of Innovative Research in Electrical, Electronics, Instrumentation and Control 

Engineering, Vol. 6, No.11, pp.22-28, 2018. 

[9] V. Raj, R. Patil, V. Vishwakarma, and PreetiHemnani, "32-BIT PROCESSOR DESIGN on FPGA". JASC: Journal of 

Applied Science and Computations, Vol. VI, No. IV, pp. 3485- 3490, 2019. 

[10] S. Kumar, and B. Bhushan, "Qualitative Analysis of 32-Bit MIPS Pipelined Processor", International Journal of 

Engineering Research and, Vol. 9, No. 05, PP. 558- 561, 2020. 

[11] V. Prasanth, V. Sailaja, P. Sunitha, & B. Vasantha, "Design and implementation of low power 5 stage pipelined 32 

bits MIPS processor using 28nm technology". International Journal of Innovative Technology and Exploring 

Engineering, Vol. 8, No. (4S2), pp. 503-507, 2019. 

[12] D. Ruckmani, N. Srinivas, S. Shashi, D. Ruckmani & H. Byrareddy, "Implementation and verification of RISC 

processor on FPGA using chipscope pro tool". International Journal of Current Engineering and Scientific 

Research, Vol. 6, No. 6, pp. 59-65, 2019. 

[13] P.S. Kelgaonkar and S. Kodgire, "Design of 32 Bit MIPS RISC Processor Based on Soc", International Journal of 

Latest Trends in Engineering and Technology, Vol.6, No. 3, pp.446-450, 2016. 

[14] A.S. Radhamani, and E. Baburaj," Network Traffic Monitoring and Control for Multi core processors in cloud 

computing applications", International Journal of Computer Information Systems and Industrial Management 

Applications, Vol., 5 pp. 557-563, 2013. 

[15] Al-sudany S. M, Al-Araji A.S., and Saeed B.M., "Architecture and Advantages of SIMD in Multimedia 

Applications", Journal of Xi'an University of Architecture & Technology, Vol. XII, No.VI, PP. 1452- 1459, 2020. 

[16] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards , C. Ramey , M. Mattina , C. Miao, J.F Brown. and A. 

Agarwal, "On-Chip Interconnection Architecture of the Tile Processor", Micro, IEEE, Vol. 27, pp.15-31, 2007. 

[17] B. Valli, A. U. Kumar , and B. V. Bhaskar , "FPGA Implementation and Functional Verification of a Pipelined 

MIPS Processor," International Journal Of Computational Engineering Research, vol. 2, no. 5, pp. 1159-1161, 2012. 

[18] N. N. Sirhan1 and S. I. Serhan2"MULTI-CORE PROCESSORS: CONCEPTS AND IMPLEMENTATIONS", 

International Journal of Computer Science & Information Technology (IJCSIT) Vol 10, No 1, pp.1-10, February 2018. 

https://doi.org/10.33103/uot.ijccce.21.2.2


35 

 

Received 8/12/2020; Accepted 29/4/2021 

 

     Iraqi Journal of Computers, Communications, Control & Systems Engineering (IJCCCE), Vol. 21, No. 2, June 2021             

DOI: https://doi.org/10.33103/uot.ijccce.21.2.2 

 

 
[19] A. M. John, and S. Varshney, "FPGA Implementation of 32-bit MIPS Processor with CISC Multiplication 

Operation", International Journal of Engineering Research and Technology (IJERT), Vol.4, No.11, pp. 675-678, 2015. 

[20] S. S. Omran, and A. J. Ibada, "FPGA Implementation of MIPS RISC Processor for Educational Purposes". Journal 

of Babylon University/Pure and Applied Sciences, Vol.24, No.7, PP. 5471 - 5415 2016. 

[21] M. T. Kabir, M. T. Bari, and A. L. Haque, "ViSiMIPS: Visual Simulator of MIPS32 Pipelined Processor," in IEEE 

6th International Conference on Computer Science & Education (ICCSE), pp. 788-793, 2011. 

[22] M. R. Rakesh," Design and Simulation of Four Stage Pipelining Architecture Using the Verilog", International 

Journal of Science and Research (IJSR), Vol.3, No.3, pp 108-112, 2014. 

[23] R. K Akshatha, and H. J. Basavaraj, " NOVEL DESIGN OF DUAL CORE RISC ARCHITECTURE 

IMPLEMENTATION", International Journal of Advances in Electronics and Computer Science, Vol.2, No.5, pp.31-34, 

2015. 

[24] K. P. Singh and D. Kumar, "Design of High Performance MIPS Cryptography Processor", Conference: 9th 

International Conference Heterogeneous Networking for Quality, Reliability, Security and Robustness (Springer 

LNICST), Vol.115, 2013. 

[25]  K. Singh," Performance Improvement in MIPS Pipeline Processor based on FPGA". Conference: 3rd International 

Conference on Emerging Trends of Engineering Science Management and its Applications At: IIC, New Delhi, 

India,Vol. 4, No. 1, pp. 57-64, 2016. 

[26]  S. P. Ritpurkar , M. N. Thakare, G. D. Korde, "Review on 32-bit MIPS RISC Processor using VHDL", 

International Conference on Advances in Engineering & Technology, pp.46-50, 2014. 

https://doi.org/10.33103/uot.ijccce.21.2.2

