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 In this paper, Artificial Neural Network was adopted to predict the effect 

of current, the concentration of aluminum oxide (Al2O3) and graphite 

Nanopowders in dielectric fluid for the machining of Carbon steel 304 

using Electrical Discharge Machining (EDM). The process variables were 

utilized to find their effect on Material Removal Rate (MRR), Surface 

Roughness (SR), and Tool Wear Rate (TWR). It was revealed from the 

experimental work that the addition of aluminum oxide and graphite 

Nanopowders into dielectric fluid maximizing MRR, minimized the SR and 

TWR at various variables. Minitab software was used in the design of 

experiments. Analysis of the process outputs of EDM indicates that 

graphite powder concentration greatly influencing SR also the discharge 

current whereas the current and Nanopowders concentration has more 

percentage of influence on the TWR and MRR. 
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1. Introduction 

The EDM is one of the non-traditional machining operations that used to machine electrically 

conductive and extra hard metals for producing molds, dies, automotive, aerospace, and surgical 

parts. A series of electric sparks between an electrode (tool) and the machined material in this 

operation controlled the removal process by erosion. The thermal energy of the sparks generates 

extreme heat power on the machined, causing the melting and vaporizing of machined material. 

EDM technique is low machining efficiency and poor surface quality sometimes. Therefore, powder 

mixed EDM (PMEDM) or the existence of powders added to the dielectric fluid is used. The 

electrically conductive powder minimizes the strength of the insulation of the dielectric and 

maximizing the spark gap between the electrode and machined surface, which gave better machining 

and maximized metal removal rate (MRR) and surface quality [1]. Due to the rapid tempering 

melting and cooling process, subsurface defects such as cracks, residual stress, spalling, metallurgical 
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properties, heat-affected zones, and porosity are commonly observed on the structure of the part. The 

technique of introducing Nanopowder into EDM fluid called the powder or Nanopowder mixed 

EDM (PMEDM) is introduced to keep the machining specifications and overcome the part 

drawbacks. Despite of the wide improvements gained by PMEDM, the importance of the effect of 

introducing powder in fluid in PMEDM processes on surface quality, part precise and machining 

time still needing improvement and investigation. Introducing of powders in the fluid in PMEDM 

together with high ratios of powder in the dielectric fluid was noticed as an excellent way to 

maximize surface finish and minimize machining time. The powder electrical conductivity leads to 

maximizing the overall fluid conductivity, then minimizing the strength of the dielectric of the fluid 

and enlarging the gap distance between the tool and the machined surface. Maximizing the gap 

together with the high concentricity of particles in the dielectric improves the discharging process to 

be more accurate and minimizes the need to back off the tool because of arcing and short-circuiting, 

which gives minimum machining time [2]. In addition, researches revealed that the addition of 

graphite powders in kerosene for using as the dielectric medium results from improvement in Tool 

wear rate and metal removal rate [3]. 

Rana et al. makes a review of the trends of the EDM technique by using powder mixed dielectric and 

water as dielectric fluid. EDM has been adopted to enhance surface properties utilizing many 

electrodes and by introducing many powders to the fluid. The majority of the works focused on Al, 

Si, and graphite powders and some with other types of powder-like Cr, Ni, Mo, the presence of 

particles of metal in the fluid converts its properties, which minimizing the insulation of the fluid and 

maximizing the spark between the tool and machined surface.  Most of the published studies on 

mixed dielectric have investigated the role of such technologies on MRR, surface finish, and TWR 

[4]. 

Tseng et al. chooses copper, silver, and titanium as the targets to reveal the relation between 

Nanofluids properties and (electrical discharge machining EDM) technique. UV-visible spectroscopy 

(UV-Vis) was adopted to find the concentricity distribution of Nanofluids; zeta-size analysis is 

utilized for finding Zeta-Potential, Nano metal particles, and the size distribution of nanoparticles in 

the fluid. Depending on the outputs, the control of pulse duration in addition to the concentricity of 

liquid and heat in the process influencing the size of the metal particles after the process. Finally, 

many tools like the scanning electron microscope were utilized to reveal the size, shape, and metal 

structure composition after processing [5]. 

Abdul Razak et al. a comparison of (Electrical Discharge Machining EDM) on Reaction Bonded 

Silicon Carbide (RB-SiC) adopting several kinds of additives and surfactants has been done. The 

minimum Smell (LS) EDM oil used practically was mixed with many surfactants, namely Span 20, 

Span 80, Span 83, and Span 85. The powders that used to manipulates the work were Carbon 

Nanofiber, Carbon Powder, and Carbon NanoPowder. These additives are unlike in terms of shape 

and size. The output indicates that the surfactant and powders added dielectric fluid not only 

influencing the spark gap and MR, but also minimize the EWR. Therefore, the discharge frequency 

maximized, resulting in a higher MRR and spark gap [6].  

Boopathi, et al.  electrical discharge machining characteristics of Inconel 718 alloy using titanium 

carbide (TiC) nanoparticles mixed dielectric fluid was studied. Experiments have been performed 

according to face-centered central composite design. The effect of input parameters such as pulse-on-

time, pulse-off-time, and current on the output responses like MRR, TWR, and Ra are evaluated. The 

result shows that MRR and Ra get improved, TWR get reduced [7]. 

 

2. Artificial Neural Network 

The mathematical model in the present work is determined to utilize ANN for each output separately. 

It was needed to adopt a mathematical model to control the response in terms of cutting variables. 

ANN is a multilayered diagram made up of one or more layers placed between input and output 

layers. Layers consist of many processing parts called neurons. They are connected with variable 

weights to be estimated. In the network, each part or neuron gains total information from all of the 

others in the previous layer as [8]: 
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𝑛𝑒𝑡𝑗  = ∑ 𝑤𝑖𝑗
𝑁
𝑖=0 𝑥𝑖                                                                                                                                      

(1) 

Where N is the number of inputs, xi is the ith input to the jth neuron in the hidden layer, wij is the 

weight of ith input and netj is the total or net input. A neuron in the net gives its results (outj) by 

processing the input of the net through an activating function f, hyperbolic function adopted in this 

study as below: 

𝑜𝑢𝑡𝑗 = 𝑓(𝑛𝑒𝑡𝑗) =
1−𝑒

−𝑛𝑒𝑡𝑗

1+𝑒
−𝑛𝑒𝑡𝑗

                                                                                                                       

(2) 

 

In reducing a combination of errors and determining the suitable build to produce a well-total 

network, the Bayesian regularization back-propagation based on Levenberg –Marquardt algorithm 

was adopted for training of the net using MATLAB Neural Network Toolbox. The set of 

experimental data contains 27 experiments where the training subset includes 21 experiments of the 

data, while the testing group includes 6 experiments. The step-by-step mode of training was adopted 

for the network. The most suitable model with a 3-5-1 layout was found to be good for this work. 

Back Propagation learning algorithm updates the weights and trains the NN until the mean square 

error (MSE) converges to a minimum value between the network and desired output [9]: 

 

𝑀𝑆𝐸 =
1

𝑘𝑚
∑ ∑ (𝐷𝐸𝑆𝑚𝑘 − 𝑂𝑈𝑇𝑚𝑘)2𝐾

𝑘=1
𝑀
𝑚=1                                                                                        (3)    

      

Where DESmk and OUTmk are the desired output and the network output, K is the number of output 

neurons; M is the overall number of data set. In estimations of weights variables, often called as 

network training, the weights are given quasi-random, intelligently chosen initial values. They are 

then iteratively updated until convergence to certain values using the gradient descent method. This 

method updates weights to reduce the MSE between training data and network prediction as below 

[8]: 

 

𝑤𝑖𝑗
𝑛𝑒𝑤 = 𝑤𝑖𝑗

𝑜𝑙𝑑 + ∆𝑤𝑖𝑗                                                                                                                                  

(4)  

∆𝑤𝑖𝑗 = −
𝜕𝐸

𝜕𝑤𝑖𝑗
𝑜𝑢𝑡𝑗                                                                                                                                             

(5)   

                    

Where E is the MSE and outj is the jth neuron output. 𝜂 is the parameter of the learning rate 

controlling the stability and rate of convergence of the network. The learning rate 𝜂, which is a 

constant between 0 and 1, is chosen to be 0.001. In order to measure the accuracy of the prediction 

model, percentage error ϕ_i and average percentage error ¯ϕ were used and defined as [9]: 

 

ϕ𝑖 =
│𝑅𝑎𝑖𝑒−𝑅𝑎𝑖𝑝│

𝑅𝑎𝑖𝑒
 × 100%                                                                                                                   (6)                                                                     

Where:  

φi= Each experiment percentage error. 

Raie=Experimental Ra, MRR or TWR. 

Raip= Predicted Ra, MRR or TWR. 

𝜙 =
∑ ϕ𝑖   

𝑚
𝑖=1

𝑚
                                                                                                                                                   

(7)                                   

𝜙 = average percentage error 

m= No. of experiments. 
 

3. Experimental Work  
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I. Selection of tool and work materials 

In this work, Carbon steel 304 has been chosen as the workpiece. Twenty-seven specimens with 

dimensions around (40 mm x 40mm x4mm), as shown in Figure 1, have been used, which is 

inspected in [the state company for inspection and engineering rehabilitation] / (Lab. and engineering 

inspection Dept.). The chemical composition and material properties of Carbon steel 304 are shown 

in Tables 1 and 2. The selected electrode was Copper with a 10 mm diameter and 80 mm length due 

to its high conductive electrical and thermal properties. 

 

Figure 1: work piece material with dimensions 

 

Table 1: Chemical composition of workpiece 

Material Used  SS 304 
C % 0.08 
Mg % 2.00 
P % 0.045 
S % 0.03 
Si % 0.75 
Cr %  18 - 20 
Ni % 8 - 10.5 
N % 0.10 
Fe % balance 

 
Table 2: Mechanical properties of work piece material 

Grade Used  SS 304 
Tensile strength (MPa) Min 515 
Hardness Brinell (HB ) Max 201 
Density (Kg/m3) 8000 
Elastic Modulus (GPa) 193 
Thermal conductivity (W/m.K) At 100 0C   

                                                   At 500 0C 

16.2 

21.5 
Electrical Resistivity (nΩm) 027 

 

II. Preparation of Nanopowders 

Figure 2, shows the micrographs of Nano Al2O3 composites   with (10 - 20) nm, produced by semi-solid 

casting and graphite Nanopowder with (20 - 40) nm. The test has been done on FE-SEM Hitachi S-4160 

with a scale bar 300 nm. 

 

III. Selection of parameters 

There are many input variables to be included in the EDM process for calculating the optimum process 

response. Based on the researches, it was revealed that the variables such as graphite powder, current, and 

AL2O3 concentricity have a direct effect on the EDM response. Before manipulating the main EDM tests, 

many empirical experiments have been done in order to find a suitable range for the input variables. It was 

revealed that MRR was maximized when a current of more than 15 Amp adopted, which make the 

selection of about this value necessary. Also, introducing the graphite powder with about (3 to 9 g/lit) into 

the fluid to reveal the influence on MRR and SR. AL2O3 concentration changed between (4 g/lit and 12 

g/lit), while the other factors kept constant. The range of other process parameters is illustrated in Table 3. 
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IV. Design of experiments 

The number of experiments significantly needed to be influenced by the design of experimentation. For 

this reason, experiments must be carefully distributed. In this work, many machining tests (27 

experiments) depend on a full factorial with three-level design (33) was utilized to reveal surface quality, 

tool wear ratio and MRR. The selected OA, and cutting parameters levels are illustrated in Table 4. 

 

 

Figure 2: (a) Nano Al2O3 with (10 - 20) nm and (b) Nano graphite powder with (20 - 40) nm 
 

Table 3: Selected parameters and their levels 

Code Parameter Levels 

1 2 3 

A Current (A) 1

0 

1

5 

2

0 

B Al2O3 concentricity (g/L) 4 8 1

2 

C Graphite concentricity (g/L) 3 6 9 

 
Table 4: Coded cutting parameters and real values 

E. Coded Values Real Values 

A B C Current Al2O3 Con. Graphite Con. 

1 1 1 1 10 4 3 

2 1 1 2 10 4 6 

3 1 1 3 10 4 9 

4 1 2 2 10 8 6 

5 1 2 3 10 8 9 

6 1 2 1 10 8 3 

7 1 3 3 10 12 9 

8 1 3 1 10 12 3 

9 1 3 2 10 12 6 

10 2 1 2 15 4 6 

11 2 1 3 15 4 9 

12 2 1 1 15 4 3 

13 2 2 3 15 8 9 

14 2 2 1 15 8 3 

15 2 2 2 15 8 6 

16 2 3 1 15 12 3 

17 2 3 2 15 12 6 

18 2 3 3 15 12 9 

19 3 1 3 20 4 9 

20 3 1 1 20 4 3 

21 3 1 2 20 4 6 

22 3 2 1 20 8 3 

23 3 2 2 20 8 6 

24 3 2 3 20 8 9 
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25 3 3 2 20 12 6 

26 3 3 3 20 12 9 

27 3 3 1 20 12 3 

 

4. Results and Discussion 

Table 5 explains the experimental readings of machining Carbon steel 304 depending on L27 (33) 

mixed orthogonal array. The process outputs, Ra in µm, tool wear rate (mm3/min), and metal 

removal rate (mm3/min) has been measured and evaluated. 
 

Table 5: Experimental readings of machining Carbon steel 304 depending 

E.    Current Al2O3 Con. E.  Current Al2O3 Con. 

1 10 4 1 10 4 

2 10 4 2 10 4 

3 10 4 3 10 4 

4 10 8 4 10 8 

5 10 8 5 10 8 

6 10 8 6 10 8 

7 10 12 7 10 12 

8 10 12 8 10 12 

9 10 12 9 10 12 

10 15 4 10 15 4 

11 15 4 11 15 4 

12 15 4 12 15 4 

13 15 8 13 15 8 

14 15 8 14 15 8 

15 15 8 15 15 8 

16 15 12 16 15 12 

17 15 12 17 15 12 

18 15 12 18 15 12 

19 20 4 19 20 4 

20 20 4 20 20 4 

21 20 4 21 20 4 

22 20 8 22 20 8 

23 20 8 23 20 8 

24 20 8 24 20 8 

25 20 12 25 20 12 

26 20 12 26 20 12 

27 27 12 27 27 12 

 

I. Results for MRR 

Figures 3 and 4 show the output of 27 value of MRR in the experiments. Twenty-one reading was 

adopted to train the net; the rest of the data (six readings) were adopted to test the trained net. The 

relation between the 21values gained from experiments and the predicted reading plotted in Figure 3. 

It can be revealed from this figure that the practical values have come ahead to the predicted. Figure 

4 indicates that good correspond can be noticed between the test and measured values. Table 6 

indicates the results predicted from training the net compared with experimental results for MRR. 

The maximum value of MRR was (5.93 mm3/min) in Table 6 at current (20 A), AL2O3 concentricity 

(12 g/l), and graphite concentricity (9 g/l). MRR increases with increasing current. When graphite 

particles are supplied to the fluid, the particles of powder get energized and move in a zigzag motion 

when applied to the voltage. They produce a chain in the machining gap. This chain is bridging the 

gap between the machined surface and the tool. As the current maximized, the energy also increased. 

Hence, the high energy leads to elevated melting ranges; it causes high precipitant force and high 
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evaporation acting on the machined region related to maximum MRR. The frequency of sparking is 

maximized with better flushing of wrack effectively away from the gap. This produced an effective 

discharge transmissivity under the sparking area due to maximum heat conductivity. Hence, MRR 

maximized in powder mixed dielectric fluid. The data set is consisting of six MRR values selected 

randomly from 27 MRR experiments, which were not used for the training of ANN. Table 7 

illustrates the data tested for MRR. It can be revealed that the predicted error for the data set is found 

to be 4.61%, i.e., while accuracy is 95.39%, and the MSE is 0.0378. It can be seen from Figure 5, the 

regression coefficient for the training set is equal to 1, which shows that there is an exact linear 

relationship between the targets and the output. 

 

 

 

Figure 3: Measured values compared with predicted MRR values for training set 

 

 

Figure 4: The measured values compared with the predicted of MRR for testing set 

 

Table 6: Results predicted from training the net 

E. Current Al2O3 Con. MRR (mm3/min) 

Graphite Con. Measured Predicted 

1 10 4 6 2.84 2.87 

2 10 4 9 3.19 3.18 

3 10 8 6 2.93 2.95 

4 10 8 3 2.93 2.94 

5 10 12 9 3.56 3.58 

6 10 12 3 2.78 2.78 

7 10 12 6 3.49 3.51 

8 15 4 6 3.88 3.91 

9 15 4 9 3.96 3.96 

10 15 8 9 4.38 4.39 

11 15 8 3 3.91 3.90 

12 15 8 6 4.18 4.06 

13 15 12 6 4.16 4.37 

14 15 12 9 4.68 4.48 

15 20 4 9 5.27 5.29 

16 20 4 3 4.93 5.07 

17 20 4 6 5.35 5.35 

18 20 8 3 4.98 4.88 

19 20 8 9 5.74 5.74 

20 20 12 6 5.89 5.72 

21 20 12 9 5.93 5.93 
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Table 7: Results predicted from testing the net 

E. A B C MRR ( mm3/min ) Err 

% 

ANN results 

Meas. Pred. 𝝓   % MSE Acc. % 

1 10 4 3 24.2 2420 44.. .42 747004 3.40 

2 10 8 9 04.0 04.7 7    

3 15 4 3 0420 0443 .432    

4 15 12 3 0440 0423 .40.    

5 20 8 6 .422 .4.2 3.56    

6 27 32 0 5.14 .443 4.86    

 

 

Figure 5: Regression graphs for MRR 
 

II. Results for TWR 

Figures 6 and 7 illustrates the results of 27 reading for TWR with the number of experiments. 

Twenty-one reading of TWR was used to train the net, while the rest of the data (six reading) used 

for testing the trained net. The relation between the 21 reading gained from tests and those predicted 

from the net illustrated in Figure 6. It can be concluded that the measured TWR values were too near 

to the predictions. From Figure 7, the relation between the six measured and predicted values of 

TWR indicates a good agreement between these values. Table 8 presents the predicted results from 

training the net compared with practical values. The data set is consisting of 21 TWR values selected 

from 27 tests. The minimum value was (0.8 mm3/min) in Table 8 at current (10A), AL2O3 

concentricity (4g/l), and graphite concentration (6g/l). It can be observed that TWR minimized by 

maximizing the concentration of graphite powder. Because of adding graphite particles, uniform 

distribution of energy and good conductivity of discharge gained in nominal TWR. Table 9 shows the 

results gained from the testing of the trained net compared with practical results. The data set is 

consisting of six values selected randomly from 27 TWR tests, which were not utilized for training of 

net. It can be noticed that the predicted error for the data set is found to be 5.03%, i.e., the accuracy is 

94.97%, and the MSE is 747085. It can be seen from Figure 8; the regression coefficient for the 

training set is to be approximately 1; this indicates that there is an exact linear relationship between 

outputs and targets. 
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Figure 6: Measured values compared with predicted TWR values for training set 
 

 

Figure 7: The measured values compared with the predicted TWR values for testing set 
Table 8: Results predicted from training the net 

E. Current Al2O3 Con. Graphite Con. TWR ( mm3/min) 

Measured Predicted 

1 10 4 6 0.86 7442 

2 10 4 9 1.19 3423 

3 10 8 6 0.97 7439 

4 10 8 3 0.95 3479 

5 10 12 9 1.48 34.2 

6 10 12 3 1.39 3439 

7 10 12 6 1.14 3435 

8 15 4 6 1.49 34.3 

9 15 4 9 1.67 34.7 

10 15 8 9 1.75 3407 

11 15 8 3 1.48 3408 

12 15 8 6 1.74 3423 

13 15 12 6 1.88 3433 

14 15 12 9 1.97 2473 

15 20 4 9 2.16 2430 

16 20 4 3 2.07 2470 

17 20 4 6 2.12 2470 

18 20 8 3 2.17 243. 

19 20 8 9 2.31 24.3 

20 20 12 6 2.44 24.2 

21 20 12 9 2.67 242. 

 
Table 9: Results predicted from testing the net 

E. A B C /min )3TWR ( mm Err % ANN results 

Meas. Pred. 𝜙 % MSE Acc. % 

1 10 4 3 0.91 0.95 4.39 .470 74774 3.430 

2 10 8 9 3422 1.32 .402    

3 15 4 3 3402 3403 0424    

4 15 12 3 34.2 34.0 4400    

5 20 8 6 2423 2420 2403    

6 27 32 0 2.37 2.22 2400    
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Figure 8: Regression graphs for TWR 

 

 

III. Results for Ra 

The results of 27 reading for Ra from the number of experiments illustrated in Figures 9 and 10. 

Twenty-one reading was used for the net training, while the rest of the data (six reading) were used 

for testing the trained net. The relation between the 21reading gained from tests and those predicted 

from the model is illustrated in Figure 9. It can be observed from this figure that the measured Ra 

values were closed to the predicted values. From Figure 10, the relation between the six measured 

and predicted values of Ra indicates a good agreement between these values. Table 8 presents the 

predicted results from training the net compared with the experimental results of Ra. The minimum 

value of Ra was (1.36 µm) in Table 10 at current (10 A), AL2O3 concentricity (12 g/l), and graphite 

concentration (9 g/l). The surface quality is related to the current, which affects evaporation, melting, 

and exhaust removal of material. Minimum current leads to low energies. Minimum energies are 

responsible for minimum impulse forces, on the discharge zone, and for the formation of small 

craters on the machined surface producing high surface quality. Graphite powder suspended into 

fluid easily collapses the insulation, which minimize the electrical resistivity of the fluid and 

maximizing the discharge gap, which leads to minimizing the impulse force of the discharge channel. 

This effect on the machining gap minimizes the plasma channel (high heat transfer) from the 

workpiece to the tool, which maximizes the material removal rate. The machined surface indicates 

uneven sizes of craters, which caused low surface finish. AL2O3 powder addition works as polishing 

to the surface, which gives a better surface finish. Table 11 indicates the outputs of the testing of the 

trained net model compared with practical readings. The data is consisting of six Ra values selected 

from 27 Ra measurements, which were not used for training of ANN. Table 11 presents the test data 

for Ra. It can be noticed that the predicted error for the data set is found to be 4.98%, i.e., the 

accuracy is 95.2%, and the MSE is 747164. It can be seen from Figure 11, the regression coefficient 

for the training set is to be approximately 1; this indicates that there is an exact linear relationship 

between outputs and targets. 
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Figure 9: The measured values compared with predicted Ra for training set 

 

 

Figure 10: The measured values compared with predicted Ra for testing set 

Table 10: Results predicted from training the net 

E. Current Al2O3 Con. Graphite Con. Ra (µm) 

Measured Predicted 

1 10 4 6 2.59 2.58 

2 10 4 9 2.68 2.65 

3 10 8 6 2.94 2.94 

4 10 8 3 2.37 2.37 

5 10 12 9 1.35 1.36 

6 10 12 3 1.92 1.94 

7 10 12 6 1.74 1.71 

8 15 4 6 1.84 2.01 

9 15 4 9 2.58 2.58 

10 15 8 9 2.48 2.24 

11 15 8 3 2.13 1.89 

12 15 8 6 2.29 2.29 

13 15 12 6 2.29 2.31 

14 15 12 9 2.56 2.56 

15 20 4 9 2.93 2.93 

16 20 4 3 2.87 2.87 

17 20 4 6 2.91 2.92 

18 20 8 3 2.64 2.64 

19 20 8 9 3.12 3.12 

20 20 12 6 2.79 2.79 

21 20 12 9 2.57 2.57 
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Table 11: Results predicted from testing the net 

E. A B C Ra (µm) Err % ANN results 

Meas. Pred. 
𝜙 

% 
MSE Acc. % 

1 10 4 3 2.46 2.59 5.28 .434 74732 3.472 

2 10 8 9 2.69 2.59 0402    

3 15 4 3 2.39 24.3 4400    

4 15 12 3 243. 2420 .423    

5 20 8 6 24.3 2403 .472    

6 27 32 0 2.43 2.93 .420    

 

 

Figure 11: Regression graphs for Ra 

 

 

5. Conclusions 

1. The experimental advantage of this work is the use of obtained optimal variables to improve the 

material removal rate, reduces surface roughness, and less tool wear ratio of Carbon steel 304. 

2. Metal removal rate or MRR at optimal inputs (i.e., A3B3C3) is maximized with maximizing 

current, AL2O3 and concentricity of graphite powder.  

3. It was revealed that the surface roughness is proportional directly to discharge current, and 

inversely to the graphite powders concentricity, and AL2O3.  

4. It was revealed that TWR is proportional inversely proportional to the AL2O3 and graphite 

powders concentricity and directly to discharge current. 

 

References 

[1] S. Padhef, N. Nayak, S. K. Pandn, P. R. Dhal and S. S. Mahapatra, “Multi-objective parametric 

optimization of powder mixed electro-discharge machining using response surface methodology and non-

dominated sorting genetic algorithm,”  Indian Academy of Sciences,  Vol. 37, Part 2, pp. 223–240, April, 2012. 

[2] N. A. J. Hosni and M. A. Lajis   “The influence of span-20 surfactant and micro-/nano- chromium (Cr) 

powder mixed electrical discharge machining (PMEDM) on the surface characteristics of AISI D2 hardened 

steel,” IOP Conf. Series: Materials Science and Engineering 342, 2018. 

[3] K. Karunakaran and M. Chandrasekaran, “Experimental Investigation Nano Particles Influence in 

NPMEDM to Machine Inconel 800 with Electrolyte Copper Electrode,” IOP Conf. Series: Materials Science 

and Engineering 197, 012068, 2017. 

[4] D. Rana, A. Kr. Pal and P. Tiwari, “Study of powder mixed dielectric in EDM-A review,” International 

Journal of Engineering Science and advanced Research , Vol. 1, Issue 2, pp. 69-74, June, 2015. 



Engineering and Technology Journal                      Vol. 38, Part A, (2020), No. 03, Pages 295-307 

 

307 
 
 

 

[5] K. H. Tseng, J. L. Chiu, H. L. Lee, C.  Y. Liao, H. S. Lin, and Y. S. Kao1,”Preparation of Ag/Cu/Ti 

nanofluids by spark discharge system and its control parameters study,” Advances in Materials Science and 

Engineering, Article ID 694672, 2015. 

[6] M. R. Abdul Razak, P. J. Liew, N. I. S. Hussein, Q. Ahsan and J. Yan, “Effect of surfactant and additives 

on electrical discharge machining of reaction bonded silicon carbide,” ARPN Journal of Engineering and 

Applied Sciences, Vol. 12, No. 14, July, 2017.  

[7] R Boopathi, R Thanigaivelan and M Prabu, “Effects of process parameters on MRR, EWR and Ra in 

nanoparticles mixed EDM,” Research & Development in Material Science, 2018. 

[8] H. Oktem, T. Erzurumlu and F. Erzincanli, “Prediction of minimum surface roughness in end milling mold 

parts using neural network and genetic algorithm,” Materials and Design, vol. 27, pp.735–744, 2006. 

[9] B. Ozcelik, H. Oktem and H. Kurtaran,” Optimum surface roughness in end milling inconel 718 by 

coupling neural network model and genetic algorithm,” Int J Adv Manuf  Technol, vol. 27, pp. 234–241, 2005. 

 


