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Abstract 

Introduction: Today, SARS-COV-2 infection represents a global threat. Dealing 

with this viral infection necessitates a comprehensive understanding of 

pathophysiology of the disease to reach to the suitable treatment. Treatment of this 

disease should not be restricted to the usual antiviral treatments, which suffered 

from several limitations including low effectiveness, development of virus-

resistant mutations and the unwanted side effects.  

Knowing that SARS-CoV-2 attack the machinery unit of production of surfactant 

in the lung, the alveolar type II cells, manifested the importance of this review 

article on the role of pulmonary surfactant in this disease and the possible role of 

pulmonary surfactant that can play in treating of COVID-19 patients.  

Objective: This work tried to clarify the important role of pulmonary surfactant in 

lung physiology and possible immune-modulatory effect. In addition, the 

constituents of pulmonary surfactant and their roles against COVID-19 

complications is highlighted. This article suggested that surfactant therapy may 

have a role in COVID-19 therapy and this can be in a form of exogenous 

(synthetic) surfactant administrated through endotracheal tube or through 

aerosolization. The pros and cons of these methods of administration have been 

discussed. Moreover, a possible way of stimulation of endogenous surfactant by 

administrating a drug that stimulates the synthesis of surfactant has been 

suggested. 
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 , الدور المحتمل في المرض والعلاج 19-الرئوية في مرض كوفيد عوامل السطحيةال

 الخلاصة

شاملا   فهما  يتطلب  الفيروسية  الاصابات  هذه  مع  التعامل  ان  عالميا.  تهديدا  المستجد  كرورنا  بفايروس  الإصابات  تمثل 

لا أن  يجب  المرض  هذا  علاج  ان  المناسب.  العلاج  الى  نصل  كي  المرض  لهذا  المرضية  بمضادات   للفسيولوجيا  ينحصر 

والأعراض   للدواء  المقاومة  الطفرات  الى  بالإضافة  الفعالية  كقلة  القصور  من  العديد  من  تعاني  والتي  الاعتيادية  الفايروسات 

( المستجد  فايروس كورونا  بأن  علما  الإحاطة  ان  بها.  المرغوب  العوامل  SARS-CoV-2الجانبية غير  أنتاج  وحدة  يهاجم   )

( دور surfactantالسطحية  حول  البحث  هذا  أهمية  بجلاء  يبين  الثاني  النوع  من  الحويصلية  بالخلايا  والمتمثلة  الرئة  في   )

تلعبه في علاج مرضى   الذي ممكن ان  الرئوية  السطحية  للعوامل  المحتمل  المرض والدور  الرئوية في هذا  السطحية  العوامل 

 . 19-كوفيد

وامل السطحية الرئوية في تنظيم وظيفة الرئة والدور المناعي المرتقب. بالإضافة الى  يحاول هذا البحث توضيح الدور المهم للع

بكوفيد الإصابة  لتعقيدات  المضاد  ودورها  الرئوية  السطحية  العوامل  مكونات  حول  اضاءات  تقديم  الى  البحث  يهدف  -ذلك 

العلمية الى الاقتراح بأن العلاج بالعوامل السطحية  19  19-ئوية يمكن أن يلعب دورا في علاج كوفيدالر .تخلص هذه الورقة 

والذي يتمثل بالعوامل السطحية الرئوية الخارجية أو المصنعة والتي يمكن اعطاءها عن طريق الضخ المباشر عبر أنبوب من 

لاوة على خلال القصبة الهوائية أو من خلال طريقة التبخير. بالإضافة لذلك تم مناقشة ايجابيات وسلبيات طرق الإعطاء هذه. ع

ذلك تقدم هذه الورقة العلمية اقتراح  تحفيز تصنيع المزيد من العوامل السطحية الرئوية في الرئة وذلك بإعطاء دواء ذو قابلية 

 لتحفيز عملية تصنيع هذه العوامل في داخل الرئة.  

Introduction 

ne of the many  pathogens 

that infect the respiratory 

system of animals and 

humans is a coronavirus. This family 

of viruses was the cause of two 

former outbreaks including the severe 

acute respiratory syndrome (SARS-

CoV) in China in 2003, and the 

Middle East Respiratory Syndrome 

(MERS-CoV) which was first 

reported in Saudi Arabia in 2012. 

Both of these outbreaks were 

considered previously as a great threat 

to public health; however, they were 

not considered a pandemic. In 

December 2019, a varying number of 

patients have admitted to hospitals 

with the initial diagnosis was 

pneumonia of mysterious reason 1,2. 

Later, these patients were found to be 

infected with a novel series of 

O 
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coronavirus defined as "SARS-CoV-

2". This new disease caused by 

coronavirus was named by WHO 

COVID-19  3. Later on, the WHO 

considered this disease a pandemic. 

The source of SARS-CoV-2 is 

unknown, however, some genetic 

studies assumed that SARS-CoV-2 

might be a result of a combination of 

two viruses including a bat SARS-like 

CoV and a coronavirus of unknown 

origin 4. 

Pathophysiology of SARS-CoV-2 

infection 

The initial step of viral infection is the 

binding of the virus to the host surface 

receptors and then the virus will fuse 

with the cytoplasmic membrane. It is 

well known that the main target of the 

virus in epithelial cells of the lung. 

The sequence of binding of SARS-

CoV-2 spikes is similar to what is 

happened with SARS-CoV where the 

entry of the virus into the host cells 

occurs after binding of the virus to the 

ACE2 receptors on the cell membrane 

5. 

After some stages of progression of 

the disease, the virus reaches the 

alveoli (the gas exchange units of the 

lung) and infects alveolar type II cells. 

Both SARS-CoV and SARS-CoV-2 

infect, specifically, the alveolar type 

II cells more than alveolar type I cells 

6,7. SARS-CoV proliferates inside 

type II cells and this leads to the 

production and releases a lot of viral 

particles which damage the cells and 

may lead to cellular death 8. The viral 

replication will continue and extend to 

adjacent cells and infect type II cells 

in the invading areas. When this 

occurs, a large number of type II cells 

will be lost 9,10. Knowing that alveolar 

type II cells are a precursor for type I 

cells explains the huge effect of the 

virus on the physiological role of 

alveoli and the consequent respiratory 

complication. 

The pathologic consequence of SARS 

and SARS-CoV-2 infection is 
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widespread damage of the alveoli, 

where the hyaline membranes become 

rich in fibrin with the presence of a 

few multinucleated giant cells 11,12. 

The irregular healing of the wound 

may lead to severe scarring and 

fibrosis. Retrieval of lung function 

will require epithelial regeneration 

and intense acquired and innate 

immune response. It was found that 

administrating epithelial growth 

factors like keratinocyte growth factor 

to COVID-19 patients  might be 

harmful and might increase the viral 

load by producing more ACE2 

expressing cells 13. The risk of 

COVID-19 is particularly high for 

elderly individuals where the immune 

response is diminished and there is a 

decline in the ability to reform the 

damaged epithelium. besides, in 

elderly there is a reduction  in the 

mucociliary clearance and  this may 

permit the virus to propagate in the 

alveoli of the lung more readily 14. 

Although that most COVID-19 cases 

are mild and required no treatment, 

however, in some cases ( 5.37% of 

those aged under 60 years compared 

to 16.91% of those above 60) the 

disease progressed into what is known 

as Acute respiratory distress 

syndrome (ARDS) 15. Acute 

respiratory distress syndrome and 

acute lung injury (ALI) are popular 

diseases, required highly expensive 

intervention and they are potentially 

fatal diseases with mortality rates of 

about 40%. They are characterized by 

acute respiratory failure with 

widespread, bilateral injury of the 

lung and severe hypoxemia. There are 

many clinical conditions associated 

with the development of ARDS, such 

as pneumonia, sepsis, aspiration of 

gastric contents and major trauma 16. 

Unfortunately, this pulmonary 

damage may increase alveolar 

endothelial-epithelial permeability, 

leading to flooding of the alveoli, 

decrease lung function, and deprive 

the lungs of adequate quantities of 

surfactant 17.  
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Pulmonary surfactant 

Pulmonary surfactant is a lipid-rotein 

complex 18, that is secreted by special 

cells of the alveolar epithelium. 

Pulmonary surfactant is assembled 

and secreted onto the respiratory 

surface to play a dual function in 

innate defense mechanism and 

biophysical stability of the membrane 

of alveoli. Alveolar epithelial type II 

cells are the cells that are responsible 

for the production of pulmonary 

surfactant. After production, a 

surfactant is transported to what is 

called lamellar bodies where the lipids 

and proteins are combined and stored 

before it can be secreted 19.  

It is well known that pulmonary 

surfactant is responsible for reducing 

the surface tension, at the air-water 

interface, of the intraluminal alveoli 

and prevent the collapse of the alveoli 

20. However, pulmonary surfactant 

represents a primary defense 

mechanism against the entry of 

pathogenic microorganisms into the 

lung. Surfactants have a role in 

mucociliary clearance since 

surfactants are responsible for the 

displacement of particles into the 

liquid phase, which is followed by 

subsequent processes of defense 

mechanisms including the movement 

of particles out of the lungs or ending 

the particles into lymphatic glands 

19,21.    

Composition of pulmonary 

surfactant 

Pulmonary surfactant composition 

includes about 80 % phospholipid, 5–

10% neutral lipids, which is mainly 

cholesterol, 8–10% proteins, and 5–

6% specific surfactant proteins 22. It is 

worthy to mention that the 

phospholipid, dipalmitoyl 

phosphatidylcholine (DPPC) 

represents about 30-65% of the 

pulmonary surfactant. Alao, surfactant 

contains other saturated phosphatidyl 

cholines (PC), such as 

palmitoylmirystoyl phosphatidyl 

choline (PMPC) and unsaturated PCs, 
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such as palmitoyl oleoyl-PC (POPC) 

23. 

One of the important key constituents 

of pulmonary surfactant is cholesterol, 

which accounts for about 3–8% of the 

total mass under normal physiological 

conditions 24. The proportion of 

cholesterol in surfactant might affect 

its function. A study in 2016 

demonstrated that the presence of a 

high concentration of cholesterol, 

above the physiological levels of 

cholesterol, might lead to the 

impairment of surface tension 

reduction from injured lungs 25.  

Indeed, it is not only the percentage of 

different compositions that is 

important in the effective functioning 

of the surfactant, but the orientation of 

phospholipid is also important. 

Phospholipids of surfactant are 

oriented in a state of matter called 

liquid crystal (LC). Dipalmitoyl 

phosphatidyl choline, the main 

constituent of the lung surfactant, has 

an LC transition temperature of 41-

42°C, which is above the body 

temperature. At body temperature 

(37°C), DPPC exists as a rigid gel 

phase, which plays an important role 

in reducing the surface tension of the 

alveolar interface to very low values 

during dynamic compression 26, 27.   

Membrane-associated surfactant 

proteins   

Four surfactant proteins are involved 

in pulmonary surfactant-associated 

functions including SP-A, SP-B, SP-

C, and SP-D 28. The first three 

proteins are called apolipoproteins 

because they are associated with 

surfactant phospholipids. SP-D is not 

considered apolipoprotein although it 

interacts with phospholipids under 

specific conditions. Both SP-A and 

SP-D proteins play a role in the 

intrinsic immune defense system 

while the hydrophobic proteins (SP-B 

and SP-C) are involved in the surface 

activity of surfactant. However, the 

importance of the contribution of 

these proteins in surfactant ability is 
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varied. It is known that SP-B is the 

most important protein in pulmonary 

surfactant for maintaining respiratory 

function. Experiments showed that 

deactivation of the SP-B gene 

expression results in respiratory 

failure at birth. This is due to the 

impossibility of maintaining the 

physiological function of the lungs 28. 

In addition, the net positive charge of 

SP-B might increase its interaction 

with anionic phospholipids. 

Moreover, the sort of orientation of 

some proteins in the membrane 

surface may enhance the binding with 

A phospholipid, for example, the 

parallel orientation to the surface of 

the membrane will maintain a sort of 

hydrophobic interactions between the 

helical sectors (the amphipathic 

sectors) and the surface of the 

membrane 29.  

In contrast to SP-B and SP-C, both 

SP-A and SP-D proteins have a 

hydrophilic nature and can be 

considered as components of the 

innate immune system that modulates 

the inflammatory response and aids in 

removing microbes from the 

respiratory epithelial surfaces. In 

addition, SP-A and SP-D showed 

intrinsic antimicrobial activity 30. The 

surfactant immune mechanism is not 

implemented against bacterial 

infection only. Fungal and viral 

infections are implemented as well. 

The surfactant will act through 

facilitating the uptake of these foreign 

molecules and enhance the 

phagocytosis process leading to the 

elimination of these invading 

microorganisms. The surfactant 

proteins SP-A and SP-D have the 

abilities to attach to both types of 

bacteria, the Gram-negative and 

Gram-positive bacteria 31,32. The co-

existence of SP-A and SP-D on the 

mucous membrane of the respiratory 

tract and alveoli aids in the 

aggregation of influenza A virus 

particles and enhances the neutrophil 

attack on virus 33, 34. Moreover, the 

SP-D, which is available in lung and 
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respiratory fluid, can bind to the 

envelope protein of the human 

immune deficiency virus (HIV) and 

inhibits the in-vivo multiplication of 

this virus 35. Very interestingly, a 

study published in 2007 demonstrated 

that the lung surfactant-associated 

protein (collectin SP-D) can bind to 

SARS-CoV  spike-protein, 

specifically, to the glycoprotein of the 

spike of SARS-CoV 36. This 

highlights the possible role of 

surfactant in the defense mechanism 

against coronavirus.  

Abnormalities of pulmonary 

surfactant 

As mentioned before SARS-CoV-2 is 

known to be capable of infecting type 

II alveolar cells, the pneumocytes that 

are responsible for the production of 

surfactant. Abnormalities of lung 

surfactant can produce intense lung 

injury and they are associated with 

loss of stability of the alveoli, 

floating, and alveolar breakdown. 

These alveolar dysfunctions have 

been noticed in infant respiratory 

distress syndrome (IRDS) and acute 

respiratory distress syndrome (ARDS) 

37,38,39. The main abnormalities that 

occur with a surfactant include an 

about 80% decline in the overall 

phospholipid content, decrease in the 

surfactant content of dipalmitoyl 

phosphatidylcholine (DPPC) and 

phosphatidylglycerol and other 

fractions, and decrease of apoproteins 

contents 37,38.  

The surfactant lacks or deficiency due 

to block of surfactant synthesis in 

type II alveolar cells might be the 

reason for the sudden deterioration of 

respiratory function in COVID-19 

patients. Therefore, treatment with a 

synthetic surfactant that may aid in 

renewal or replacement of the 

depleted endogenous surfactant 

storage may provide a strong biologic 

and physiologic plausibility for the 

use of exogenous surfactant therapy in 

COVID-19–related ARDS. 

Surfactant replacement therapy 
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Exogenous-surfactant replacement 

therapy has been tried with great 

success in IRDS 39 while studies in 

adult respiratory distress syndrome 

have had dissimilar results. Initial 

reports about using surfactant in adult 

respiratory distress syndrome have 

shown that artificial exogenous 

surfactant (Exosurf)(40) or bovine 

surfactant (Survanta) 41 can improve 

oxygenation and lung function. 

In one study, the authors mentioned 

the results of a large, prospective, 

multicenter trial involving 725 

patients with adult respiratory distress 

syndrome induced by sepsis and 

treated with Exosurf or placebo. 

The obtained results demonstrated 

that exogenous-surfactant 

supplementation did not cause an 

amelioration in patients condition 42. 

There are many explanations for the 

failure in the improvement of patients 

with adult respiratory distress 

syndrome in the Exosurf  trial. The 

first explanation may be related to the 

causative condition that may lead to 

adult respiratory distress syndrome 43. 

For example, in the study conducted 

by Gregory et al., the patients who 

participated in the study had different 

etiologies that lead to adult respiratory 

distress syndrome whereas the 

Exosurf study was restricted to 

sepsis-induced adult respiratory 

distress syndrome. Therefore, the 

causative factor of adult respiratory 

distress syndrome may have to be 

taken into consideration in future 

studies 41. 

The second important explanation for 

the variations in the exogenous 

surfactant efficacy may be related to 

the type of surfactant preparation that 

was used. Exosurf is a type of 

exogenous surfactant that does not 

contain apoproteins that normally 

present in natural surfactant and this 

can affect the onset of action of 

surfactant 43.  

Whereas the study of Gregory et al. 

used a bovine surfactant that contains 
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two apoproteins constituents, the 

synthetic preparation does not contain 

these apoproteins. These obtained 

data indicated that any surfactant 

preparation must contain apoproteins 

to be effective 44. 

Another important thing in surfactant 

therapy is the mode of delivery of 

surfactant. In the Exosurf trial 42, 

surfactant was administered by 

continuous aerosolization, the study 

conducted by MacIntyre et al. 45 

demonstrated that only a small 

amount of aerosolized surfactant 

(about 4.5 %) was delivered to the 

lungs. The problem with this route of 

administration is that the small 

quantity of delivered surfactant has no 

therapeutic effect because it 

undergoes inhibition by the similar 

inflammatory mediators that are 

linked with ARDS. There are 

previous negative results with the use 

of surfactant in ARDS, where patients 

failed to express noticeable benefit as 

the therapy failed to reach its intended 

target in the adult lung. 

Another way of administration of 

exogenous surfactant is direct 

administration through a 

bronchoscope. Gunther et al. 46 used 

natural bovine surfactant 

(Alveofact) in a dose of 300 mg/kg 

of body weight administered through 

fibreoptic bronchoscope, which 

delivered surfactant to each segment 

of lung. This study demonstrated that 

using the fibreoptic bronchoscope to 

deliver surfactant had no harmful 

effects on lung function or 

hemodynamics. Within 12 hours of 

administration, these patients had a 

substantial improvement in 

oxygenation, although deterioration in 

gas exchange has been noted in seven 

patients; for these seven patients, the 

additional amount of surfactant was 

administered within the first 24 h. 

There was a substantial decline in 

mortality in these patients. This study 

provides additional supports for the 
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idea that larger amounts of surfactant 

is necessary to be administered to 

produce a therapeutic effect. 

Other researchers have suggested that 

administration of surfactant by 

bronchoscopic installation provides 

two advantages including the delivery 

of a large amount of surfactant and 

allows the clinician to perform a 

bronchoalveolar lavage which aid in 

removing inflammatory mediators 47.  

Recently, a new product named KL4 

was introduced by Windtree 

Therapeutics. Aerosolized KL4 is a 

synthetic surfactant with an 

amphipathic peptide and it was used 

successfully in RDS in premature 

infants. Windtree Therapeutics 

company announced to conduct a 

clinical trial on KL4 as a potential 

therapeutic for ARDS in patients with 

COVID-19, however, no results is 

published yet 48. 

Interestingly and very recently, the 

first clinical trial on using of synthetic 

surfactant in adult respiratory distress 

syndrome in COVID-19 was 

registered on 

clinicaltrial.gov/ct2/show/M. In this 

controlled study, twenty COVID-19-

induced respiratory failure patients 

will be randomized to receive either 

the Bovine lipid extract surfactant 

with standard care or the standard 

care alone. The product will be 

administered through the endotracheal 

tube directly to the lung and the 

treatment will be repeated for three 

days. The anticipated results of this 

study will be available at the 

beginning of 2021. 

In the meantime, we are suggesting a 

better alternative, a drug with the 

ability to enhance the synthesis and 

secretion of endogenous surfactant 

from its source (the alveolar type II 

cells). However, this is recommended 

in patients with mild to moderate 

cases of COVID-19, where the 

alveolar type II cells are not 

completely distressed. This article 

suggests early treatment of COVID-
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19 patients with a very high dose of 

Ambroxol. Ambroxol is a mucolytic 

agent that stimulates the secretion of 

surfactant which will aid in 

mucociliary clearance of the virus in 

addition to the surfactant role in 

preventing the collapse of alveoli and 

prevention of the subsequent 

complication. Ambroxol is an 

approved drug in many European 

countries and its unique action on 

stimulating the secretion of surfactant 

from alveolar type II cells is well 

documented 49. Also, Ambroxol has 

been used in the treatment of neonatal 

ARDS and it demonstrated the anti-

inflammatory effect that might be 

useful in COVID-19 patients. In 

addition, Ambroxol manifested an in-

vitro inhibitory action on rhinovirus 

infection of the human tracheal cell 

line, which is one of the common 

respiratory tract infections 50.  Very 

recently, a non-peer-reviewed work 

demonstrated the in-vitro 

effectiveness of clinically-relevant 

concentration of Ambroxol on SARS-

CoV-2 in Vero cell line 51. This result 

is in accordance of a newly published 

article that suggested Ambroxol as a 

potential therapy for SARS-CoV-2 

and assumed that it works in a similar 

mechanism to azithromycin 52. 

Altogether there is a need for further 

experimental work on Ambroxol to 

confirm the proposed action of 

Ambroxol in COVID-19 patients. 

Conclusion 

The respiratory complications 

encountered with the severe cases of 

COVID-19 respiratory illness 

motivates the sense about the 

possibilities of using synthetic 

surfactant in treating COVID-19 

ARDS patients. This article 

highlighted the structure and 

physiology of surfactant, the role of 

surfactant in respiratory distress in 

general and surfactant role in the 

etiology of COVID-19.  

The history of long years of 

successful management of RDS in 
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premature infants with surfactant, 

especially the natural surfactant, is 

encouraging. However, although the 

feasibility, and safety encountered 

with the use of surfactant in ARDS in 

infants is very clear, there is no 

obvious benefit from using of 

surfactant in ARDS in adults. , The 

real problem with a surfactant therapy 

is in the critical components of the 

surfactant.  

The natural surfactant of animal 

origin is closely similar to human 

surfactant; however, they lack certain 

essential proteins or certain 

components that they lose during the 

extraction process. The real challenge 

with the synthetic surfactant is with 

obtaining optimum composition, 

which resembles the natural surfactant 

constituents, especially the 

apoproteins constituents.  

To conclude, optimum surfactant 

composition is very important to 

achieve an ideal therapeutic response 

and must contain apoproteins. In 

addition, the method of delivery of 

surfactant is critical for achieving 

adequate concentration of the product 

in all lung segments. Moreover, the 

surfactant should be administered in a 

large amount to achieve a perfect 

therapeutic response.   

The potential role of surfactant in 

COVID-19 needs more investigations 

and this should include 

interdisciplinary teams working 

together to reach the suitable synthetic 

surfactant with a suitable dosage form 

to be administered at suitable time of 

the infection. Alternatively, the 

suggested drug, Ambroxol, may 

achieve the goal by enhancing the 

production of endogenous surfactant. 

However, further investigation of the 

Ambroxol effect in COVID-19 is 

required in order  to prove this 

supposed role in COVID-19 

treatments. 
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