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Categorical and ordered variables are commonly used in many scientific researches.
Researchers often use the ML method, which assumes a multivariate normal distribution,
and this is not true with categorical data because the normal state assumption is violated
when a Likert scale is used which leads to shaded results. In this research, it has been
suggested the robust MLR method with covariance matrix of the sample which deals with
the data as it is a continuous data especially when the Likert scale is five or above. It has
been suggested a method for reducing the error by linking error measurement, where a
link was performed between three standard errors, and through the fit indices, it was
obtained a good result in reducing the standard error of capabilities and improving the
quality of fit indexes. It has been also used two of the robust methods, WLSMV method
which known as RDWLS method, and ULSMV method which known as RULS method,
use a polychoric correlation, each two methods deal with the data as it categorical. This
research also included a comparison between the robust estimation methods ML , MLR ,
WLSMYV and ULSMYV and study its effects on the population corrected robust model fit
indexes , and then select the best method for dealing with the categorical ordered data .
The results showed a superiority of the robust methods in comparison with other methods,
where it showed a robust corrections in the standard errors by using the polychoric
correlation coefficient matrix, in addition to robust correction of the chi square. In addition
of that, the fit indices is replaced by the robust fit indexes of chi- square robust, TLI, CFI
and RMSIA.

DOI: https://doi.org/10.33899/igjoss.2020.167418 , © Authors, 2020, College of Computer and Mathematical Science, University of Mosul.

This is an open access article under the CC BY 4.0 license (http://creativecommons.org/licenses/by/4.0/).

1. introduction

Many scientists or researchers have discussed different estimation methods for modeling structural
equations, where Assumed theoretical models include free parameters that we need to estimate, including
modeling latent factors, measurement errors, and factor correlations if it is a Measurement model. If the
model is structural, the estimated parameters reflect the correlations between basic independent variables
and the paths that link the complete independent variables. The statistical methods that social scientists
often use are generally called the first generation techniques. Which involves regression-based approaches
such as multiple regression, logistic regression and variance analysis, other tools such as first generation
exploratory and confirmatory component analysis, cluster analysis and multidimensional scaling
techniques. Nevertheless, many researchers have more increasingly turned to second-generation approaches
over the past 20 years to resolve the shortcomings of first-generation methods. researchers introduce non-
observable variables or Latent variables that are evaluated indirectly by observed indices. We also make
measurement errors in measured variables easier to account for.
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2. objective of research
Using robust methods to estimate the parameters in SEM when the data are in ordinal categorical and no
normal distribution.Choosing the best way for deal with the ordinal categorical data when we have a five-
Likert scale through the estimator that deal with the data as it is a continuous and the robust estimator that
deal with the data as it is an ordinal categorical. Study the correcting estimator of robust methods.
Measuring the impact of the estimation methods on conformity fit indicators when using the robust Chi
Square Correction for Muthen (2010), the corresponding fit indicators for each CFI, TLI, RMSEA are all
dependent on the Chi Square robust and are replaced by the new Chi-Square value, the fit indicators are
called robust model fit index, and thus it is compared The effest of robust estimation methods on the robust
fit indicators. Suggesting a method to reduce the error by making a correlation between the standard errors
of the variables, where as the fit indicators give several suggestions to improve the fit of conformity, and a
variation was made between covariance Z62 ~~ Z72 and 292 ~~ 2102 and Y11 ~~ Y21
3. Ordered Categorical Variables
Ordered categorical variable involves more than two categories. Pearson (1901) has a long history of
analysis and work of polychoric and polyserial correlations, (Li, Li and Li, 2014). When the data is ordered
and categorical, the association measures differ from those for continuous variables. A common definition
for ordered categorical variables is that an ordered categorical variable is classified into the observed
ordinal variable through applying a number of thresholds.The relationship is called tetrachoric correlation
with two underlying continuous variables, while the calculated variables are binary. The resulting
correlation is called polychoric association, if the calculated variables have more than two classes. One way
in which observed ordered categorical results occur by dividing a continuous, normally distributed latent
response variable (y*) into differentcategories (e.g., Bollen, 1989). Thresholds (t) are the points which
divide the continuous latent response variable (y*) into a set number of categories (c) where the total
number of thresholds is equal to the number of categories less one (¢ — 1).where 7, = —ccand 7, = ® is
The relationship between a latent response distribution, y*, with an observed ordinal distribution, y, is
formalizedas y=c, if 7, <y" <7T.y4q
The observed ordinal value for y changes if a threshold on the latent response variable y * is exceeded . For
example, if a Likert scale has five response choices, it will require four threshold values to divide y * into
five ordered categories. The ordinal data (y) observed is thought to be t

(1 ify* <7,

2 ify <y <1,

y=+<3 ift, <y <15 (D

[4 ift; <y* <7,

k5 V>,
Usually, polychoric correlations are computed using the two-stage method Olsson (1979) defined. (Flora
and Curran, 2004) (Course, 2013)
4. Building structural model
The fundamental building blocks of SEM analyzes are implemented using a sequential series of five phases or
processes: model definition, model identification, model estimation, model checking and model adjustment.
Such fundamental building blocks are utterly necessary for SEM models to be carried out. Wang (2020)
4.1 Modeling of Structural Equation (SEM)
SEM of two basic sets of models: the measuring model and the model structure , uses the confirmatory factor
analysis ( CFA) to form the latent variables (factors) and adjust the measuring error of the indicator . The
exogenous indicator x measurement model and the endogenous indicators y can be described as

x=MNE+S

y=An+e @
The structural model is defined as
n=Bn+T¢{+¢ (3)

where ¢ and n are Described as the latent variables vectors given above, B is the m x m matrix of
m? Coefficients of regression between the latent endogenous variables, and T is the m x n  Coefficients of
SR regression matrix among latent endogenous and exogenous variables, ¢ is the m x 1 vector with
MNN (0, W) observed residual ¢
The covariance matrix is obtained as follows
A,(1—B)7Ier" + W](1—B)A, + 0, A,(I—B) TPA,

() =
@ =1 A,®T'(1-B)'A, A DN, + O

4)
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Therefore the matrix of covariance was proven. (Timm, no date)

4.2 Estimation of Model Parameters

Estimation is a technique for calculating unknown parameters by optimizing the basic fit function
consisting of the hypothesized model and the data observed, Estimation is basically the most important
aspect for analysis including methods estimation following

4.2.1  Maximum likelihood function for SEM (ML)

Maximum Likelihood (ML) is the most commonly used fit function for structural equations modeling .
Almost every software programs uses ML as their main estimator . This approach , leads to estimates of the
parameters which increase the likelihood to obtaining the covariance matrix empirical S. from implied
covariance matrix model X(@). The minimized log Likelihood possibility function log L is (Bollen, 1989) In
this case, MLE function can be defined as in equation (5).

Fru(0) =In|Z| +tr(ST™H) —InS— (p+ q) (5)

Where q is X variable number and p is Y variable number. Where 6 is a parameter vector. X is a
covariance matrix model implied . F,,,, is The fitting function value measured at the estimates final. |Z|
determinant. tr is the trace of a matrix. (Bollen, 1989) , and Standard errors are the square roots of the
diagonal components of the approximate asymptotic covariance matrix from FML under the multivariate
normality assumption:

acov(é) =|e 627}7 B =n"1(AT™1A)! (6)
0000’10 =6,

where A = (00(0)/00")9-6, Is the model's partial derivatives matrix as respects the parameters. The
square roots of the diagonal components then the standard errors.  Estimates of parameters provided by
ML are desirable asymptotic, such as unbiased, consistency and efficiency in addition the test statistics
which use Wishart's probability are described as

Ty = (N = DFy, df =p"—q, (7

or follows a y2distribution with p* — g degrees of freedom, where p* represents the number of non-
duplicated elements in the observed covariance matrix p* = 0.5p(p + 1) , whiel g the number of unknown
parameters. (Crisci, 2012) (Bollen, 1989)

4.2.2. Robust Maximum likelihood function for SEM (MLR)

There are two deal methods for non-normal continuous Ordinal data: maximum probability robust (MLR)
(Satorra and Bentler, 1994), and weighted least square (WLS) (Browne, 1984). WLS is not advised
because its weight matrix requires large sample sizes. MLR is a way of using an asymptotic matrix with
covariances. It produces less biased standard errors and works well when dealing with various sample sizes
and non-normality degrees. Ordinal measured variables are seldom distributed normally, but often display
non-normality in the context of Asymmetrics to a certain degree and showed that in applied studies non-
normality in the shape of distribution Asymmetrics (due to Categorical Variables) was very
popular.(Micceri, 1989)

Estimates of the parameters derived with ML are not effective asymptotically as long as assumption of
normality is not lasting. The Cov()ML in equation (16) not consistent with both asymptotic covariance
matrix, resulting in incorrect standard estimates of errors.. (Yuan, Bentler and Zhang, 2005) . Estimated
parameters using MLR are similar with those calculated using ML, while the chi-square function and
standard parameter-related errors are modified to be robust to non-normal results. If the model is not
specified or data is not normal, the correction of SB scaling (Satorra & Bentler, 1994) and (Yuan, Bentler
and Zhang, 2005)Asparouhov and Muthén (2005) rescues Ty, by

_ _p'-q
TML - tr(Ur*) TM (8)
UT is the weights of the matrix that given by the eigenvalues .

Where U=W™1-WIAQWIANTIAW™L, W=D'(Z@)"1®2(6)")DIs the usual theoretical
weight matrix; D is the matrix of duplication; and T is either the data kurtosis matrix or a distribution-free
approximation of the sample covariance matrix. (Browne, 1984).

There is always a need to rescalue the standard errors. Note that the parameter covariance matrix under the
multivariate normality assumption is defined by Equation (16), whereas the robust parameter covariance
matrix has a sandwich-like form under non-normality, as shown in the Equation (9) Asparouhov and
Muthén (2005)
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cov(v/N@) = (AW 1A) T AW "W lA(A'W—1A)~t (9)

4.2.3. Diagonally weighted squares and Robust DWLS Robust Corrections to Standard Errors and Test
Statistics

The WLS estimator's statistical requirements make it an impractical alternative to treat ordered categorical
data when an incredibly broad sampling size is accessible (i.e. a complete asymptotic covariance matrix is
challenging to quantify and invert). The estimate of Diagonally WLS (DWLS) was developed to address
the limitations of full estimate of the WLS. Specifically, by decreasing the statistical sensitivity associated
with the complete WLS estimator, DWLS eliminates the need for a large sample size DWLS may also
incorporate scaling similar to the S — B scaling approach that results in robust DWLS estimation or
WLSMV (Course, 2013) The general form of the DWLS fit function is:

Fpwis = (S —a(0))" (Wp)™!(S" — a'(6)) (10)

In ordinary data, one technique is to fit the SEM model with the polychoric correlation matrix rather than

the sample covariance matrix called cat-WLS. W, = diag(I'*) includes only diagonal elements of a
polychoric association and threshold projections approximate asymptotic covariance matrix. Therefore,
The estimated asymptotic covariance matrix of the parameter calculations provides robust correction of
standard errors 6. for D-WLS estimation (Muthén, du Toit, & Spisic, 1997)

acov(8)pwis = N 1AW A TTAWHIT*WtA(A' W 1A) ™ (11)

Asparouhov and Bengt Muthén (2010) proposed a new way to compute the mean- and variance-adjusted
x? (denoted as Tysmy). The method of estimating this correction is called WLSMV or R-DWLS

Twismv = aTpwis — b (12)

"
Where a = Y and b=df— |HLeCDE
tr[(UT*)2] tr[Ur*ur)]

4.2.4. Unweighted squares and RULS Robust Corrections to Standard Errors and Test Statistics

the ULS is approach of the necessity that all variables observed be on the same scale. One benefit is that the
ULS approach does not need a positive-definite covariance matrix, including does not require distributional
assumption.)(Kline, 2015) (Nalbantoglu Yilmaz, 2019). Cat-ULS are the approaches that better work in
small and medium samples. It is also minimizes squared model residuals; , it uses the matrix of identity as
the matrix of weight W=l . Recent data indicates parameter estimates for cat-ULS and cat-DWLS is equal
with cat-ULS or better performing (Forero, Maydeu-Olivares, & Gallardo-Pujol, 2009); (Yang- Wallentin

et al., 2010) (Savalei and Rhemtulla, 2013) . Let r be the %p(p — 1) x 1Polychor correlation vector
estimated from the categorical data observed The cat-ULS parameter estimatesd a saturated threshold
structure by minimizing the fit can be represented as follows
Fyis = (r = p(6))' (r — p(6)) (13)

Robust correction of standard errors is taken out in the estimated parameter estimates asymptotic
covariance matrix for ULS calculations (Muthén, 1993; Satorra & Bentler, 1994). (Li, 2016)

A A A A A

aCov(@)yLs = N"LH(A'A)IAT*ANA)  (14)

Asparouhov and Muthen (2010) a new approach has been proposed 'to introduce a second order
adjustment, one that doesn't change the degrees of freedom of the model. Under this approach, the Robust
mean- and variance-adjusted statistics based on the Reliable Cat-ULS estimator are as follows: ULSMV
Tysmy = aTyps — b (15) L
Where  ayis= —Z—— by = df — ayss tr(UU,Sr*)

tr(UyisI™ UyisT™)

(YYang-Wallentin, Jéreskog and Luo, 2010) (Xia and Yang, 2018)
4.3 Model evaluation

A main feature of SEM is the performance of an overall model fit test to the basic hypothesis,X(0)=X ,
the degree for which the model estimation variance covariance matrix %" differs with the sample variance
covariance matrix observed S . However , If the model-estimated variance covariance matrix, X, iS non
significantly different with the observed data covariance matrix, S, then we can say the model fits the data
well, otherwise, the null hypothesis was rejected . Bollen 1989; Joreskog and Sérbom 1989; Bentler 1990)
The estimation of the all model fit will be performed before the parameter estimates are interpreted. Any
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assumption from the sample estimation may be misleading without testing the model fit Numerous model
fit indices been have developed to determine the closeness of S to X. . (Bollen,1989)
43.1 Comparative fit index (CFI)
(CFI) for Bentler (1990) compares the defined fit model with the null model that assumes no covariances
among the observed variables. This estimate is based on the non-centrality parameterd D = y2 — df df
where df is the model's degrees of freedom. as the following format
CFI = dnull_ddspecified (16)

null
where d null and d specified are the rescaled non-centrality parameters for the null model and the specified

model, respectively , A value of more than 0.90 indicates a good fit. Schumacker and Lomax, 2010)

4.3.2. Tucker Lewis index (TLI)

(TLI) for (Tucker and Lewis, 1973 ) is also one way to compare the goodness of fit a specified model . and
it is defined as

2
X,21u11 _ Xspecificd

df’ df, i
TLI = null — specificd (17)
Xnull 1

dfnull
where y2 null/df null and y 2 specified / df specified ratios of y 2 statistics to the degrees of freedoms of
the null model and ratios of y 2 statistics to the degrees of freedoms the specified model. A higher value
close to one indicates a good fit .Wang (2020)
4.3.3. Root Mean Square Error of Approximation (RMSEA) Index
RMSEA by ( Steiger & Lind, 1980) is an indicator of the difference between the covariance matrix with
the degree of freedom found , and the assumed covariance matrix indicating the model (Chen, 2007) As for
the cut-off limits, the value is 0.08 or less indicates good fit indicators. The fit index is calculated the
following way

A

1

RMSEA ; , = \]max(O Puin _ 1y (18)

af n-1

where Fy,, indicates the fit function is minimized and n indicates the sample size
(Schermelleh-Engel, Moosbrugger and Miller, 2003). In above equation RMSEA provides better results
when we increases the sample size compared to the smaller sample sizes . The term [1/(n — 1)] is
asymptotically closer to zero when the sample size becomes big (Rigdon, 1996). This test, as described
here, is based on a non-centrality parameter:

df
RMSEA,;, = |max(0, ML'll)df max(0,

(n— 1)df (19)

A

where A, = Ty, — df is the rescaled non-centrality parameter a Cl for The parameter Non centrality is
acquired by obtaining the value A ,ssuch that TML;n is the 95th percentile of the chi-square distribution

noncentral unter; x*(df,Ags)and Agssuch that Ty, is the 5th percentile of the chi-square distribution
noncentral under ; x2(df, 4,05)The RMSEA ClI limits are defined by

A A

)df) RMSEA 1, nupper = max(O z;’df) (20)

(Browne and Cudeck 1993) Wang( 2020 )(Brosseau-Liard, Savalei and L|, 2012)

4.3.4. Standardized , Root Mean Square Residual (SRMR)

By (Bentler, 1995)The (SRMR) is an estimate of the standardized average residuals between both the
covariance matrices observed and the hypothesized (Chen, 2007). indicates good fit for this indicator is
0.05 or less. They can define as:

14 i Sij=%j,
SRMR = \/221=1 Z] 1 (511511 ) (21)
p(p+1)

Where s;; is the covariance observed between the two variables , ¢ij represents The corresponding item
reproduced in the matrix of covariances, while sii and s jj are observed standard deviations (Kline, 2011;
Schermelleh-Engel and Moosbrugger, 2003)

RMSE Ay iouer = max(O
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4.4 Robust Model-fit Indexes with methods robust estimation
As RMSEA, CFl and TLI are all properties of chi-square statistics due to the finite sample sizes, it is
conceptually important to replace uncorrected standariz chi-square statistics by robust chi-square statistics
when applying them. WLSMV WLSM or ULSMV. The model-fit indexes so defined are called population-
corrected (PR) model-fit indexes and are named as RMSEAPR, CFIPR, and TLIPR. (Brosseau Liard et al.,
2012)

The chi-square, corrected by mean and variance, is given by Twismy = aiTML +b  (Asparouhov &

Muthen, 2010) For either WLSMV or ULSMV let T, d, a, and b be the robust chi-square statistics, the
degrees for freedom in the model, the scale factor and the shift factor. The design-fit indices of sample size
PR are measured as

—1117\' by—d
RMSEApp, = |max(0, %) (22)
This equation is obtained by simply replacing TML;n in Equation (19) with T,,. mean- and variance-
adjusted muthen (2010) also compute an approximate CI for Equation (20) as follows:

A

Ass95 )

A

A —
RMSEAPR,n,lower = max(O,(nfsf';’Zf) RMSEAPR,nupper - max(O, (n-1)df (23)
CFIPR_n =1- ag(n—-1)Fy+by—dy (24)
ag(n—-1) F gp+bp—dp
TLmn —1— ag(n—-1)Fy+by—dy . d_H (25)

A dn
ag(n—-1) F g+bp—dp

(Brosseau-liard et al., 2014)(Xia and Yang, 2019)
4.5 Modification indices
The indices of modifications help to classify regions of possible model weakness. Their usefulness lies in
their capacity to prescribe such changes in order to boost the model's goodness-of-fit. In addition,
adjustment indices (provided by all software) will identify the parameters, which greatly contribute to the
fit of the model when applied to it. Gana (2019)
5. Applied side
In this part, a comparison is made between estimation methods in terms of parameter estimater , standard
error and fit indicators . The model of structural equations is one of the most methods in that used many
fields. the model was applied on a data of catigorical ordered from the five Likert scale represented by a
questionnaire devoted specified for the the administrative aspect, where the objective of the research is to
use the robust estimation methods especially when we deal with the categorical ordered data, so the
Violation the assumption of normal distirabuation is predominant. ML is the most common technique
available in most programs, Satorra (1998) suggested methods for correcting statistics and standard errors
to a degree commensurate with the multivariate kurtosis of the observed data. An applied study was carried
out by relying on data from a doctoral thesis for a field study within the University of Mosul, represented
by strategic communication patterns and their reflection in building dynamic capabilities A questionnaire
Questions, Mosul University Professors (Ayman, 2019) . Taking part of the scale and constructing a model
consisting of 6 latent variables (dimensions) where the latent variable yl1 represents the sharing of
knowledge. A process by which the organization looks to be creative with the products it provides to its
customers. The latent variable y2 brand is the sum total of the banana of the organization that passed to the
different audiences of the organization. The latent variable y3 represents the polarization of external
knowledge, Gain knowledge from outside the organization (market, research centers, and universities).
These three variables operate as latent Exogenous (independent) variables. As for the latent mediation
variables, they are represented by Z1: how efficient the integration in which the organization has access to
the knowledge that its subsidiaries have. The second latent variable is the mediation Z2, the flexibility of
integration represents the multiplicity and type of knowledge areas that the organization possesses and from
which it derives its capabilities, while Y1 represents the approved endogenous variable, repair, the
organization's ability to learn from its previous experiences and the experiences of other organizations. . the
study represented 32 observational variables that represent the paragraphs of the questionnaire distributed
among the latent changes, which are not seen. The sample size was 384 views. Modeling requires a sample
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size greater than 200. One of the well-known rules in the field of determining the least sample size is what
Jackson has proposed around the base of g: N, q represents the number of parameters that need to be
estimated relative to the sample size for N, and suggested method two is the number of observe N to the
number of variables p , as the sample size is suitable for conducting the study when 10 <(N/p) (1/10), i.e.
10 for each variable at least .Jackson(2003)

A Mardia test was performed to verify the assumption of the multivariate normal distribution. find the
data do not follow the normal distribution at the level 0.05 ,also by drawing a QQ-plot Figure (1) shows
that the data are not normal distribution

Normal Q-Q Plot

10

Sample Quantiles
4 B8
\
h\
4
4
\ B
\ o

Theoretical Quantiles

figure (1) chi- squared QQ-plot for data set
The application of transformations in order to change the shape of the distribution into a better
approximation to the normal distribution, there are many methods. The interpretation of the transformed
variables is often very difficult and the results in wrong conclusions in the medical, administrative and
educational fields. , and therefore requires the use of alternative methods to deal with non normal
distributions. There are several tests that were performed until it was determined before the model was
built, by it omitted the non-significant observed variables on the latent variable to construct the model
correctly. In addition, verifying for not having been found a problem of multiple linear relationship by the
absence of a high correlation between the latent variables. and The mean of all factors is greater than 0.70
The following results are shown by alpha-Cronbach’s and omega test and the results are shown in the table
(1) and figure (2) Confirmatory Factor Analysis

Table(1) reliability values for on factors
X1 X2 X3 Z1 722 Y1

alpha 0.8578668 0.8691948 0.8922236 0.8831467 0.8552136 0.8799359
omega 0.8600011 0.8698286 0.8928239 0.8840544 0.8549437 0.8797867
omega?2 0.8600011 0.8698286 0.8928239 0.8840544 0.8549437 0.8797867
omega3 0.8609672 0.8694482 0.8939084 0.8841796 0.8537930 0.8781420

figure (2) Confirmatory Factor Analysis and correlation coefficients between factors

Figures on one-way arrows indicate the values of the estimated parameters of the variables, and the two-
headed arrows indicate the correlations between the variables, and the numbers on the arrows indicate the

95



Iragi Journal of Statistical Sciences, Vol. 17, No. 2, 2020, Pp (89-101)

values of the correlations. The hypotheses of modeling the structural equations were developed, the
figure(3) showing a path analysis between the latent variables and the use of the R program with the
Lavaan package to estimate four methods, namely ML, MLR, ULSMV and WLSMV to find the best
method estimation for SEM . as the number of free parameters that required to estimate are 75 parameters
which Are variations, covariance , and path analysis regression coefficients. The assumptions for modeling
structural equations are shown in the scheme below

[N N SN S S S S NN A SN S B SN SN NN N

|X11|X21 K3 | Ha1 [ X5 [ XE1 | X722 XB.2|X92|X1U K112 X122 | K13 X14|X1E-|X15 HT

| Zn |ZZ1 || Z3 || Za || Z51 |Z€2‘|’|Z?2 || 282 || 282 || Z10 |Y1: || w21 || Y3 || il |YE1 |
i e e
figure (3) Experimental research hypothesis (structural equation model)

The model consists of two parts, measurement the model, which is represented by the following
mathematical equations

X11 = Ax11 X + 61 X163 = AX163X3 + 016
Xo1 = M Xy + 6, X173 = AX173X3 + 617
X31 = Ax31 X1 + 83 Zyy = Az1121 + 64
Xp1 = Axgy X1 + 6, Zyy = 22912, + 6,
X51 = Axg51 X7 + 65 Zgq = AZ31Z; + 5
Xe1 = Ax61 X1 + &g Zyy = A249Z1 + 6,
Xy2 = Ax72X; + 6, Zsy = Az51Z1 + &5
Xgo = Axgy Xy + O3 Zey = A263Z, + 66 (26)
Xoy = Axgy X, + g Zyy = AZ57Z5 + 65

X102 = M102X5 + 61 Zgy = AzgyZ5 + bg.

X112 = Ax112X5 + 614 Zyy = AzgyZ3 + g

X122 = Ax122X5 + 612 Zyoz = A2102Z5 + 819
X133 = AX133X3 + 13 Vi, =y11h + 6,

X143 = AX143X3 + 614 e

X143 = AX143X3 + 614 Y51 = Ays: Y1 + 65

As for the structural model, it is written in the following format
Zy =yuXi +vXo +yikzs + 4
Zy =y Xy + V22 Xo V13X + 27)
Y1 = B11Z1 + P12Z1 + 3

The parameters Ax;q ... ¥s1 V11 ---Y13 +B11 ---B12  are unknown and their estimation is required. The
factor loads of the standard model, the measurement errors on the measured variable, and the structural
model parameters represent a pathway analysis between the latent variables . After the assumptions have
been set for the model and the measurement and structural model is determined, the estimation process is
the most important stage in the modeling , as it is related to the fit function which is reducing the difference
between the sample matrix S and the matrix derived by the model. The estimation methods provide us two
type of information ,the first one estimating the free parameters of the model and standard errors for these
estimates, the second is the fit feature between the two matrices, which allows the calculation of good fit
indicators.

Traditionally when the Likert scale is five it treats with the data as it is continuous when using both
ML and MLR methods, so that we use a Pearson correlation coefficient with these methods . and with
development , it suggested several methods to deal with the class data ordered categorical , including the
robust methods of each of WLSMV ULSMV using poly correlation coefficient .
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A good decision regarding the estimation method has a direct impact on the results, and the ML
method does not give biased results when the number of categorical is high and the size is large and the
data is distributed almost normality. tables (2) estimate the parameters directly and indirectly. Direct via
mediation variables as well as estimates of parameters of the standard model in equation (26) and estimates
of parameters of Exogenous, intermediate, and endogenous underlying latent variables of the four methods.

Table (2) Estimation of the parameters of the ML, MLR, WLSMV and ULSMV method for the struc
tural model, standard errors
methods estimation

ML MLR WLSMV ULSMV

parameter estimate | Std.Err | estimate | Std.Err | estimate | Std.Err | estimate | Std.Err
X1 =~X11 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
X1 =~X21 0.876 0.075 0.876 0.064 0.923 0.054 0.910 0.058
X1 =~X31 1.166 0.090 1.166 0.081 1.046 0.052 1.046 0.057
X1 =~ X41 0.902 0.074 0.902 0.078 0.996 0.061 0.998 0.068
X1 =~ X51 1.057 0.079 1.057 0.080 1.122 0.059 1.132 0.065
X1 =~ X61 0.937 0.080 0.937 0.082 1.159 0.062 1.181 0.068
X2 =~ XT72 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
X2 =~ X82 0.983 0.071 0.983 0.061 1.051 0.037 1.042 0.038
X2 =~ X92 0.924 0.074 0.924 0.078 0.945 0.047 0.945 0.048
X2 =~ X102 1.088 0.078 1.088 0.075 1.046 0.042 1.040 0.043
0.998 0.998

X2 =~ X112 1.086 0.081 1.086 0.085 1.011 0.042 0.044 0.044

X2 =~ X122 1.110 0.083 1.110 0.083 0.960 0.042 0.949 0.042
X3 =~ X133 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
X3 =~ X143 0.977 0.057 0.977 0.042 1.015 0.027 1.008 0.029
X3 =~ X153 1.053 0.062 1.053 0.057 1.005 0.029 1.002 0.033
X3 =~ X163 0.988 0.060 0.988 0.058 1.011 0.030 1.013 0.034
X3 =~ X173 1.006 0.063 1.006 0.057 0.987 0.029 1.002 0.033

Z1=~711 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
Z1=~2721 1.19 0.082 1.19 0.082 1.128 0.041 1.127 0.043
Z1=~731 1.122 0.076 1.122 0.082 1.168 0.043 1.173 0.046
Z1=~741 1.062 0.074 1.062 0.076 1.076 0.041 1.064 0.043
Z1=~751 1.062 0.074 1.062 0.079 1.159 0.045 1.164 0.048
22 =~ 762 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
22=~772 1.009 0.070 1.009 0.047 1.003 0.034 1.001 0.036
22 =~1782 0.929 0.073 0.929 0.060 0.879 0.037 0.905 0.040
22 =~1792 0.957 0.067 0.957 0.076 1.025 0.039 1.050 0.046
72 =~7102 1.017 0.070 1.017 0.077 1.025 0.039 1.084 0.046
Yl=~Y11 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
Yl=~Y21 0.888 0.061 0.888 0.046 1.131 0.038 1.151 0.043
Y1=~Y3l 0.875 0.059 0.875 0.050 1.121 0.037 1.149 0.043
Y1l=~Y4l 0.945 0.064 0.945 0.060 1.129 0.040 1.156 0.046
Y1=~Y51 0.925 0.063 0.925 0.060 1.097 0.042 1.115 0.049
Z1 ~x1 0.101 0.045 0.101 0.059 0.108 0.042 0.094 0.043
71 ~x2 0.498 0.084 0.498 0.109 0.511 0.059 0.536 0.063
Z1 ~x3 0.283 0.062 0.283 0.078 0.296 0.044 0.285 0.048
Z2 ~x1 0.187 0.054 0.187 0.068 0.210 0.049 0.207 0.050
72 ~x2 0.469 0.094 0.469 0.122 0.478 0.069 0.479 0.071
Z2 ~x3 0.272 0.072 0.272 0.091 0.259 0.055 0.249 0.058
Y1~71 0.556 0.094 0.556 0.136 0.487 0.055 0.470 0.062
Y1~272 0.525 0.087 0.525 0.131 0.380 0.050 0.399 0.060
dir_Z1 0.556 0.094 0.556 0.136 0.487 0.055 0.470 0.062
dir_Z2 0.525 0.087 0.525 0.131 0.380 0.050 0.399 0.060
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ind1_X1 TO_Y1 | 0.056 0.026 0.056 0.037 0.052 0.021 0.044 0.022
Ind2_X1_TO_Y1 | 0.098 0.032 0.098 0.045 0.080 0.022 0.083 0.024
tot_X1.TO Y1 0.154 0.041 0.154 0.060 0.132 0.030 0.127 0.031
indl_X2_TO_Y1 | 0.277 0.062 0.277 0.087 0.249 0.039 0.251 0.043
Ind2_X2_TO_Y1 | 0.246 0.062 0.246 0.088 0.182 0.036 0.191 0.040
tot_X2_TO_Y1 0.523 0.079 0.523 0.113 0.431 0.048 0.442 0.051
indl_X3 TO_Y1 | 0.157 0.042 0.157 0.058 0.144 0.026 0.134 0.028
Ind2_X3_TO_Y1 | 0.143 0.043 0.143 0.057 0.099 0.024 0.099 0.027
tot nd 4 TO_Y1 | 0.300 0.056 0.300 0.078 0.243 0.033 0.233 0.035

All Std.Err values are small for all estimators, but there is a difference between the estimators. using
Robust corrections for the standard errors leads to a reduction in the errors of the estimator for all
parameters . in addition , most of the estimated parameters are greater than twice the standard error , and
the sum of the parameter divided by the estimated error is greater than 1.96 which indicates that the
parameters are significant. Through the results of the tables above, the MLR method provided better
performance than the ML when we deal with the data as continuous using the Pearson correlation
coefficient, also , the MLR method presented small standard errors compared to the ML, where as the
estimation method is the same but the correction in the robust standard errors As a result, the corresponding
fit indicators provided a perfect match compared with the way ML method, so it is preferable to use MLr
with the ordered catigorical data that does not normal distribution

We also note from the table of estimators WLSMV, ULSMV robust, a significant improvement in the
values of parameter estimates and standard errors. Where as the errors less than methods ML, MLR using
polycoric correlation coefficient with wismv,ulsmv. Although small results were obtained for standard
errors for each estimator by wlsmv, ulsmv, but fit indicators for a ulsmv provided better performance than a
wlsmv.Based on the results of the above methods we recommend to use the ULSMV method , for this
reason also will be explained the robust ulsmv estimation method in reserch.

By analyzing the results of the model and setting research hypotheses based on theory, there is an indirect
effect of the latent Exogenous variables through the mediation latent variables on the endogenous latent
variable , and there is no direct effect on the relationship , and there is complete mediation as we note
through the application.

Table (2) shows parameter estimates for the ULSMV estimator as there is a direct effect from the
Exogenous latent variable for each x1 x2 x3 which represented by knowledge and brand sharing and
knowledge polarization on the mediation variable Z1 the adequacy of integration .also, there is an effect on
the second mediation variable flexibility of integration Z2 , and all the track effects were significant,
achieving the results of the model hypothesis. Also, there was a direct effect by the two mediation
variables, Z1 and Z2, on the endogenous variable, Y1 learning.

Through the two mediation variables, there is an indirect provocation of the Exogenous latent variables X1
X2 X3 by the mediation variable Z1, and at the same time there is an indirect effect from the Exogenous
latent variables X1 X2 X3 to the endogenous latent variable Y1 by the second mediation variable Z2 ,so
that the amount of indirect effect X1 to Y1 by the mediation variable Z1 is 0.44 with a standard error of
0.22.

There is an indirect effect from the variable X1 to Y1 via the second mediation variable variable Z2 which
is 0.83 and with a standard error of 0.24 ,while the overall effect of X1 across each of the two mediation
variables Z1 Z2 to Y1 is 0.127 with a standard error of 0.31. in the same Method, the effect of the direct
and indirect pathway of both X2 to Y1 was studied by the two mediation potential variables Z1 72, as well
as X3 to Y1 via Z1 Z2 where as all values were significant and errors were small.

5.1 Classical and robust fit indicesr

The main types of fit indicators were presented, and the assumed sem model was examined from the
perspective of different estimation methods. We note that the model estimated according to ML methods
obtained good fit indicators, while the RMSEA TLI CFI SRMR indicators was within the ideal interval,
and the model estimated under the MLR method obtained higher quality fit indicators than the ML,
especially when using the Yuan- Bentler, and the scaling correction factor was 1.218. By dividing this
value on the standard Chi Square value of ML we get the robust corrected value which is 834.945, and
since the fit indicators for RMSEA TLI CFI depend on the chi-Square corrector, it replaced the value of the
robust chi-Square and leads to an improvement in the fit indicators of the conformity.
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As for the conformance fit indicesr of the WLSMV method using the robust Chi Square Correction Factor
for Muthén 2010 , when we deal with the data categorical ordinal and the polycoric correlation coefficient ,
the value of Chi Square is 1127.826, while the correction value was equal to Scaling correction factor =
248.365 and shift parameter is 0.971. the fit indicators for the ULSM estimator with Muthén correction
2010 , provided superior performance in model fit for all conformance indicators when we deal with
categorical data. therefore, we recommend using the ULSMV estimator when the data is ordinal with
Likert scale categorical data, contrary to what most researchers use with Common ML estimator in most
programs.
From this results , we conclude that the best fit of data when we deal with the data as it is continuous using
MLR robust, where as the robust estimator provides a correction in the kurtosis of resulting from the lack
of a normal distribution of data, and most of the fit robust indicators performed better than the ML fit
indicators, As for the WLSMV ULSMV estimators, the strong fit indicators for the ULSMV estimator
provided an optimal fit performance better than the WLSMV when dealing with the data as orderd
catigorical by correction in the mean and variance . table(4) shows the fit indicators for the methods.
Table (3) indicators of classical and robust fit of the four estimators
estimator | Chi Square | df | y*\df | RMSEA | lower | upper | SRMR | CFI TLI
ML 1016.830 | 453 | 2.244 0.057 | 0.052 | 0.062 | 0.047 | 0.924 | 0.917
MLR 834.945 | 453 | 1.843 0.047 | 0.042 | 0.051 | 0.047 | 0.935 | 0.929
WLSMV | 1127.826 | 453 | 2.489 0.062 | 0.058 | 0.067 | 0.045 | 0.954 | 0.950
ULSMV | 997.628 | 453 | 2.202 0.056 | 0.051 | 0.061 | 0.045 | 0.955 | 0.951

5.2 fit indicators of classic and robust fit after adjusting for errors between observed variables

We note through the fit indicators before and after making the covariance between measurement errors Z62
~~ Z72 and 292 ~~ 7102 and Y11 ~~ Y21, there is improvement in all indicators for all methods , as the
values of the Chi Square have decreased and the values of the root mean square error of approximation
index decreased close to 0.05 and less .this indicates that the index is within the good interval, as the closer
to zero the greater the strength of fit to the model and the value falls within the interval of confidence
accepted. In addition to to that, it has been shown increasing in the values of CFI and TLI indicators and its
approached one. the value of the SRMR index which is based on the analysis of the standard residual
matrix, when ever close to zero indicates a good match and less influence with the parameters of the chi-
Square.

Table (4) indicators of classical and robust fit of the four estimators after Adjustment

estimator | Chi-square | df x*\df | RMSEA | lower | upper | SRMR | CFI TLI
ML 892.994 450 1.984 0.051 0.046 | 0.055 | 0.045 | 0.940 | 0.934
MLR 734.921 450 1.633 0.045 0.039 | 0.051 | 0.045 | 0.953 | 0.948
WLSMV | 1007.141 | 450 2.238 0.057 0.052 | 0.062 | 0.043 | 0.962 | 0.958
ULSMV 941.117 450 2.091 0.053 0.049 | 0.058 | 0.043 | 0.963 | 0.959
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figure (4) adjusting for errors and corelation between observed variables
6. Conclusions
the fit indicators for the MLR provided performance and fit higher than the ML due to the procedures for
corrections robust on both the standard errors and the fit index test yuan.bentler. The ULSMV, WLSMV
method presented small standard errors compared to the MLR robust when dealing with the data as ordinal
Categorical using the polycoric correlation coefficient, , as well as the fit index robust that is used in
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WLSMV and ULSMV estimators relative to the robust Muthen (2010) gives agood fit. after making the
covariance between measurement errors Z62 ~~ Z72 and Z92 ~~ Z102 and Y11 ~~ Y21, there is
improvement in all indicators for all methods, standard errors were reduced .We recommend the use of
robust methods when the data are not normal distributed and ordinal (categorical). When the data is ordinal
(categorical)., it is preferable to use each of the WLSMV ULSMV methods, and also when we have a
Likert scale greater than 4 categories, it is preferable to use the robust MLR estimator
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