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 Linear regression is one of the frequently used statistical methods that have applications in 

all field of daily life. In a statistical perspective, the regression analysis is used for 

studying the relationship between a dependent variable and a set of independent variables. 

The ridge regression is the most widely model in solving the multicolinearity problem, and 

it's an alternative to OLS. Multicollinearity is the most common problem in multiple 

regression models in which there exists a perfect relationship between two explanatory 

variables or more in the model. In this study, ridge regression model was used to estimate 

linear regression model. This result was compared with result obtained using ordinary 

least squares model in order to find the best regression model. We have used 

meteorological data in this study. The results showed that the ridge regression method can 

be used to resolve the multicollinearity problem, without deleting the independent 

correlated variables of the model and able to estimate parameters with lower standard 

error values. 
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1. Introduction 

 Linear regression is one of the frequently used statistical methods that have applications in all field of daily 

life. In a statistical perspective, the regression analysis is used for studying the dependence relationship 

between a dependent (response) variable and a set of independent (predictor) variables (Rawlings et al, 

1998). In general, the most popular method used for regression is ordinary least squares (OLS) for its ease 

and simplicity. The OLS method is claimed to be unbiased, efficient and consistent estimator as compared 

to other linear regression model are satisfied. If the assumption is violated, the OLS method will no longer 

produce the least variance, leading to the inefficiency in estimating a model. One of the assumptions is that 

there is no exact linear relationship between the explanatory variables (Zahari et al, 2014). 

Multicollinearity refers to a situation in which or more predictor variables in a multiple regression model 

are highly correlated if multicolinearity is perfect, the regression coefficients are indeterminate and their 

standard errors are infinite, if it is less than perfect (Dereny etal, 2011). There are several techniques used 

for the reduction of multicolinearity problem.  Some of these techniques can be listed as: obtaining more 

data, the removal of one or more independent variables from the model, clustering the independent 

variables, and biased estimation techniques (Tunah and Siklar, 2015). 

The ridge regression is the most widely model in solving the multicolinearity problem, and it's an 

alternative to OLS. The main advantage of ridge regression method is to reduce the variance term of the 

slope parameters (Alibuhatto, 2016). The aims of this study are to study the ridge regression method, which 

resolves multicolinearity without removing independent variables from the model but provides biased 

estimator to study the effect of some meteorological factors on the rainfall. 

http://www.stats.mosuljournals.com/
mailto:laylaaziz1974@gmail.com
https://doi.org/10.33899/iqjoss.2020.167390
http://creativecommons.org/licenses/by/4.0/


Iraqi Journal of Statistical Sciences, Vol. 17, No. 2, 2020, Pp (51-57) 

52 

 

2. Theoretical Part 

2. 1. Regression Model 

     Linear regression model is the relationship between a dependent variable and a set of independent 

variables as (Olandrewaju et al, 2017). 

       ∑      
 
                                                         (1) 

Where;     is the     response variable,             are explanatory variables,    is error term, and 

                 are the regression coefficients. 

In matrix form, the model can be written as: 

                                                                                                             (2)                                         

Where;    is       vector of observations on dependent variables,   is a       matrix,   is       

vector of error term, and   is a       vector of regression coefficients. 

The OLS estimate   ̂of   is obtained by minimizing the residual sum of squares (Salh, 2014). 

 ∑   
   

          ́                                                                               (3) 

Then the best linear unbiased estimator of   is 

   ̂    ́      ́                                                                                                 (4) 

With,  

  (  ̂)                                                                                                             (5) 

    (  ̂)      ́                                                                                            (6) 

    (  ̂)            ́        ∑
 

  

 
                                                         (7) 

Assumptions made about the error and the variables: 

1.   is a random vector. 

2.          

3.   (    )  {
          
         

 

4.               

5. X is non-stochastic matrix. 

6. There is no correlation between the non-stochastic x and the stochastic   , i.e  ( ́  )    

7. The x variables are linearly independent, so  | ́ |     

   Thus, x matrix has rank           

2. 2. Multicollinearity 

Multicollinearity is a statistical tool in which there exists a perfect relationship between the explanatory 

variables. When there is a perfect relationship between the explanatory variables, it is difficult to come up 

with reliable estimates of their individual coefficients. It will result in incorrect conclusions about the 

relationship between dependent variable and explanatory variables (Alibuhatto, 2016). 

There are two types of multicollinearity (El-Sibakhi, 2016): 

a. Perfect Multicollinearity  

 If exist perfect linear relationship among the explanatory variables then it is treated as exact 

multicollinearity. In case of perfect multicollinearity the design matrix as data matrix is not of full rank and 

consequently   ́    doesnot exist. In this case| ́ |    

b. Semi- Perfect Multicollineartity 

 If the explanatory variables are strongly as highly correlated but not perfectly then it is called semi- perfect 

mulitcolinearity. In this case  ́       is exist but, with related large diagonal elements. Multicollineartity 

has several effects; these are described as follows (Dereny et al, 2011), (El-Sibakhi, 2016): 

1. High variance of coefficients my reduced the precision of estimation. 

2. Multicollineartity can result in coefficients appearing to have the wrong sign. 

3. Estimates of coefficients may be sensitive to particular sets of sample data. 

4. Some variables may be dropped from the model although they are important in the population. 

5. The coefficients are sensitive of the presence of small number inaccurate data values. 
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2. 3. Detection of Multicollinearity 

1. Correlation Matrix 

  Compute the correlation coefficients between any two of the explanatory variables. A high significant 

value of the correlation between two variables may indicate that the variables are collinear. This method is 

easy, but it cannot produce a clear estimate of the rate of multicollinearity (Alibuhatto, 2016). 

2. The Variance Inflation Factor(VIF) 

The VIF is computed from the correlation matrix of the independent variables (Rawlings et al, 1998), 

(Montgomery and Runger, 2002), (Raheem et al, 2019). 

    
 

    
                                                                                        (8) 

  
  is coefficient of determination in the regression of explanatory variables on the remaining explanatory 

variables of the model. 

3. Condition Number 

    The eigen values of the correlation matrix can also be used to measure the presence of multicollinearity. 

If multicollinearity is present in the predictor variables one or more of the egien values will be small. Let 

                  be the egien values of correlation matrix. The condition number of correlation matrix is 

defined as: 

       
    

    
                                                                                                       (9) 

    If the condition number is less than 100, there is no serious problem with multicollinearity and if a 

condition number is between 100 and 1000 implies a moderate to strong multicollinearity. Also, if the 

condition number exceeds 1000, severe multicollinearity is indicated (Alibuhatto, 2016). 

4. Eigen structure of  ́  , Let                  be the egien values of  ́  .when at least one eigen 

values is close to zero, then multicollineartity is exist (Dereny et al, 2011). 

5. Checking the relationship between the F and T test might provide some indication of the presence 

of multicollinearity. If the overall significance of the model is good by using F- test but 

individually the coefficients are not significant by using T- test, then the model might suffer from 

multicollinearity (El-Sibakhi, 2016), (Raheem et al, 2019). 

2.4. Ridge Regression 

        Ridge regression represents one of the methods which deal with multicollinearity problem (Kamel and 

Aboud, 2013). A possible remedy to this problem is the ridge estimator suggested by Hoerl and Kennard 

(Gullkey and Murrhy, 1975) represented it in 1970 (Kamel and Aboud, 2013). This reduces the variance of 

the estimates at the expense of introducing some degree of bias. This is accomplished by adding a small 

positive number, k, to each of diagonal elements of correlation matrix. The ridge estimator is shown as 

follow (Fitrianto and Yik, 2014). 

  ̂    ́        ́                                                                                (10) 

Where, the I denote an identity matrix and    is ridge parameter. 

The ridge regression estimator has several properties, which can be summarized as follow: 

 (  ̂ )  ( ́    )
  

 ( ́ ) 

               ( ́    )
  

( ́ )     

                                                                                                               (11) 

Where 

    (   ( ́ )
  

)
  

                                                                                (12) 

    ̂   ( ́    )
  

 ́ ( ́    )
  

        

                 ( ́ )
  

  
́                                                                              (13) 
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Where,   ̂    is a biased estimator, but reduce the variance of the estimate, and   ̂  is the coefficient vector 

with minimum length. The MSE of   ̂  is given by: 

 

       ̂       ̂       ́  ̂       

                            ( ́ )
  

    ́     ̂́         ́        ̂  

                  ∑
  

       
   

       ̂́  ( ́    )
  

  ̂                                         (14) 

3.  Application Part  

The data was obtained from the meteorological directorate of Sulaimani for the period (Jan. 2012- Aug. 2017) in 

order to reach an appropriate model, have been used NCSS19 and SPSS22. 

The data that is including one response variable ( ) and seven explanatory variables (  ): 

   Rainfall   

     Average Temperature 

     Relative Humidity 

     Wind Speed 

     Average Vapors 

     Sunshine  

     Station Pressure 

     Soil Temperature 

   Now since some of the variables are significantly related as shown in table (1).The results of the 

correlation matrix above, showed a highly significant possible relationships between variables. These 

results showed that there is presence of multicollinearity among these independent variables.  

Table 1: Correlation matrix of the variables 

Variables                      y 

   1        

   -.893
**

 1       

   .174 -.171 1      

   .854
**

 -.624
**

 .201 1     

   .846
**

 -.777
**

 .321
**

 .678
**

 1    

   -.564
**

 .566
**

 .332
**

 -.347
**

 -.343
**

 1   

   .932
**

 -.827
**

 .057 .804
**

 .748
**

 -.522
**

 1  

y -.665
**

 .635
**

 -.159 -.526
**

 -.636
**

 .348
**

 -.596
**

 1 

        ** Correlation is significant at the 0.01 level. 

The existence of multicollinearity was investigated using variance inflation factor (VIF) and condition 

number. The VIF for all independent variables are as follow: 

              ,             ,            ,            ,             ,       

             ,                

The result of VIF revealed presence of multicollinearity at          is greater than 10. This result 

confirmed a high level of multicollinearity among the independent variables. 

The eigenvalues of the correlation matrix as follow: 

          ,          ,          ,          ,         ,          ,           

The condition number (   
    

    
             

The results also indicate the presence strong multicollinearity between variables. To estimate   ̂ 

coefficients with the minimum variance it is need to resolve this multicollinearity. The parameter 
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estimations (     calculated with k in the range of [0, 1] in order to see the effects of multicollinearity, 

trying to resolve with ridge regression technique, on the coefficients   ̂ are given in table (2). 

 

Table 2: Standardized ridge regression coefficients and max VIF. 

K                      Max VIF 

0.000 -.539 0.151 0.024 0.052 -0.214 -0.038 0.129 36.854 

0.001 -.521 0.155 0.023 0.047 -0.217 -0.035 0.123 33.601 

0.002 -0.505 0.159 0.022 0.042 -0.219 -0.033 0.117 30.761 

0.003 -0.489 0.162 0.021 0.038 -0.221 -0.031 0.112 28.267 

0.004 -0.475 0.165 0.021 0.034 -0.223 -0.029 0.107 26.066 

0.005 -0.463 0.168 0.020 0.030 -0.225 -0.028 0.102 24.112 

0.006 -0.451 0.171 0.019 0.027 -0.227 -0.026 0.098 22.371 

0.007 -0.439 0.173 0.018 0.024 -0.228 -0.025 0.094 20.812 

0.008 -0.429 0.175 0.018 0.021 -0.229 -0.023 0.090 19.412 

0.009 -0.419 0.177 0.017 0.018 -0.231 -0.022 0.086 18.148 

0.010 -0.410 0.178 0.016 0.016 -0.232 -0.020 0.083 17.004 

0.020 -0.344 0.190 0.011 -0.001 -0.239 -0.011 0.055 9.767 

0.030 -0.304 0.194 0.006 -0.012 -0.241 -0.004 0.035 6.343 

0.040 -0.276 0.196 0.003 -0.019 -0.241 0.000 0.020 4.456 

0.050 -0.256 0.197 0.000 -0.024 -0.242 0.004 0.009 3.307 

0.060 -0.241 0.196 -0.002 -0.028 -0.241 0.008 -0.000 2.860 

0.070 -0.230 0.195 -0.005 -0.031 -0.240 0.010 -0.008 2.546 

0.080 -0.220 0.194 -0.007 -0.034 -0.238 0.013 -0.015 2.285 

0.090 -0.212 0.193 -0.009 -0.036 -0.236 0.015 -0.021 2.065 

0.100 -0.206 0.192 -0.010 -0.038 -0.234 0.017 -0.027 1.878 

0.200 -0.172 0.178 -0.021 -0.051 -0.232 0.029 -0.058 1.007 

0.300 -0.158 0.168 -0.027 -0.058 -0.212 0.036 -0.072 0.680 

0.400 -0.149 0.159 -0.030 -0.063 -0.196 0.040 -0.080 0.515 

0.500 -0.143 0.152 -0.031 -0.067 -0.174 0.042 -0.084 0.421 

0.600 -0.138 0.147 -0.032 -0.069 -0.166 0.044 -0.087 0.362 

0.700 -0.134 0.142 -0.032 -0.071 -0.159 0.045 -0.088 0.316 

0.800 -0.131 0.137 -0.032 -0.072 -0.153 0.046 -0.089 0.279 

0.900 -0.128 0.133 -0.032 -0.072 -0.147 0.046 -0.090 0.248 

1.000 -0.125 0.129 -0.032 -0.073 -0.142 0.046 -0.089 0.223 

The regression coefficients and standard errors of these coefficients can be summarized in table (3), by 

using both OLS and RR methods to analyze the data, we get the following results. 

Table 3: Regression coefficients and standard errors 

Independent 

variable 

Ridge 

Coefficient 

Least Square 

Coefficient 

Ridge 

Standard 

Error 

Least Square 

Standard 

Error 

intercept 204.995 428.476   

   -2.544 -3.986 1.977 3.821 

   0.779 0.621 0.735 0.975 

   1.261 2.804 11.906 12.688 
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   -0.053 1.604 4.843 6.701 

   -6.902 -6.195 4.843 5.239 

   -0.101 -0.346 1.091 1.234 

   0.538 1.266 1.909 2.489 

 

    In the study for (Jan. 2012- Aug. 2017) period, ridge parameter k was (0.02) and the ridge regression, 

which indicates the effects of independent variables to the rainfall in Sulaimani, is estimated as  

  
                                                                 

And ordinary least square model, is estimated as 

  
                                                                  

Table 4: Analysis of variance for k = 0.02 

                  

        

      

       

         

        

          1 250937.5 250937.5   

      7 190049.7 27149.96 9.0330 0.00* 

      73 219412.1 3005.645   

                 80 409461.8 5118.272   

                                           

                                                

                                                            

                                                  

                                            

  The root mean squares error of regression coefficients for RR and OLS methods are as follow: 

                   ,                          

And the coefficient of determination (  ) for each model, we obtain the following result: 

               ,                  

   We make a comparison between ridge regression and ordinary least squares. We noted that ridge 

regression model is better than ordinary least square model when the multicollinearity problem is exist 

because it has smaller mean square errors of estimators, smaller standard deviation for all estimators and 

has large coefficient of determination. 

4. Conclusions 

According to the results of this study the multicollinearity was detected, because variance inflation factor 

for    equal (36.854) greater than 10 and condition number equal (215.44) greater than 100, this confirmed 

that the multicollinearty problem is existing. The most direct variables affecting the amount of rainfall are 

the average temperature which affects (-0.665), followed by sunshine that affects (-0.636), then relative 

humidity (0.635), then soil temperature (-0.596), and then other meteorological variables. The (k=0.02) 

value is the optimal value that resolves the multicollinearity problem. The ridge regression model is better 

than ordinary least square model when the multicollinearity problem is exist, because it has smaller mean 

square errors of estimators, smaller standard deviation for all estimators and has large coefficient of 

determination. 
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 لتحليل بيانات الأرصاد الجوية في الدليمانية الحرفاستخدام انحدار 
 ليلى عزيز احمد

 خلاصةال
الانحدار الخطي ىه أحد الأساليب الإحرائية السدتخدمة بذكل متكرر والتي ليا تطبيقات في جسيع مجالات الحياة اليهمية. في السشعهر  

الإحرائي ، يتم استخدام تحميل الانحدار لدراسة الارتباط الخطي الستعدد  بين متغير تابع ومجسهعة من الستغيرات السدتقمة. انحدار 
 .(OLS)سهذج الأكثر انتذارًا في حل مذكمة الارتباط الخطي الستعدد ، وىه بديل لمسربعات الرغرى الاعتيادية الحرف ىه الش

ة بين متغيرين تهضيحيين أو التامتعد الارتباط الخطي الستعدد السذكمة الأكثر شيهعًا في نساذج الانحدار الستعددة التي تهجد فييا علاقة 
دراسة تم استخدام نسهذج انحدار الحرف لتقدير نسهذج الانحدار الخطي. تست مقارنة ىذه الشتيجة مع الشتيجة أكثر في الشسهذج . في ىذه ال

التي تم الحرهل عمييا باستخدام نسهذج السربعات الرغرى الاعتيادية من أجل إيجاد أفزل نسهذج انحدار. لقد استخدمشا بيانات الأرصاد 
ئج أنو يسكن استخدام طريقة انحدار الحرف لحل مذكمة الارتباط الخطي الستعدد ، دون حذف الجهية في ىذه الدراسة. أظيرت الشتا

 .الستغيرات السترابطة السدتقمة لمشسهذج وقادرة عمى تقدير أفزل السعمسة باقل قيسة الخطأ السعياري 
 


