Lamia T Rejab BDS. MSc (Assist Lect)

Sawsan H Al-Jubori BDS, MSc (Assist Lect)

Examination of the particle's shape, size and distribution of the commercial dental gypsum products

> **Department of Prosthetic Dentistry** College of Dentistry, University of Mosul

هناك نوعان من الجبس المستعمل في طب الأسـنان: نــوعα ونــوع β واللــذان يسـميان بــ "الستون" و "البلاستر" السني.

هدف البحث هو دراسة شكل وحجم وكذلك توزيع حجم الجزيئات لمسحوق الجبس لأنواع تجاربة مختلفة. لقد تمت دراسة شكل الجزيئات باستخدام مجهر الضوء الاعتيادي بدلا من مجهر الضبوء المنعكس أو المجهر الإلكتروني ولقد تم إجراء تحليل توزيع حجم الجزيئات وقياس نعومة المسحوق باستخدام ماكنة النخل، وبعد احتساب النتائج تمت مقارنتها مع المقاييس المعتمدة عالمياً (ADA Specification No. 25).

أظهرت النتائج دقة ووضوح الصور لشكل الجزيئات المختلف لنوعى الجبس "الستون" و "البلاستر" بواسطة مجهر الضوء الاعتيادى؛ وأظهرت نتائج تحليل توزيع حجم الجزيئات أن هناك فرق في التوزيع للأنواع التجارية لمادة الجبس السنى والتي تم فحصمها في هذه الدراسة وكذلك أظهرت النتائج أن جميع الأنواع تمتلك حجم جزبئات أكبر من المواصفات المعتمدة والمحددة عالمياً (ADA Specification No. .(25

calcium sulfate dihydrate, different forms of hemihydrate can be obtained which are α - and β - forms. β -hemi-hydrate forms known as dental plaster is irregular, porous and spongy; while α - form known as

INTRODUCTION Gypsum products used in dentistry are based chemically upon calcium sulfate

1.7

ABSTRACT

Gypsum products used in dentistry are in the form of α and β calcium sulfate hemihydrate as dental stone and plaster.

The aim of the study is examination of the particle's shape, size and distribution of the different commercial dental gypsum products. The particle's shape was examined microscopically with transmitted light microscope instead of reflected light microscope or electron microscope. Analysis of the particle's size distribution and the measurement of the powder particle's fineness was performed by sieving procedure using sieving machine. The data was collected and calculated and then compared with the ADA Specification No. 25 for gypsum products.

The results showed that the microscopical examination with transmitted light microscope give clear accurate and precise image about the different shapes of the stone and plaster. The results of the analysis for particle's size distribution showed that there is a difference in the distribution between the different tested commercial dental gypsum products and also showed that all products have particle's size larger than the ADA Specification No. 25.

Key Words: Gypsum products, microscopical examination, particle's size.

hemihydrate.^(1–3) Depending on the method

of dehydration from natural occurring

الخلاصة

dental stone is more regular and denser than β - form. Both products are subsequently modified by grinding.⁽⁴⁻⁶⁾

The differences in the particle's shape, size and distribution affect the water/ powder ratio thus affect the physical properties of set material.^(7–9)

Various types of the gypsum products with their recommended particles size or fineness according to ADA Specification No. 25 for gypsum products are listed in Table (1).

The aims of the study were microscopical examination of the particle's shape of the α - and β - hemihydrate (stone and plaster) with transmitted light microscope instead of reflected light microscope or electron microscope; analysis of the particle's size distribution of the commercial dental gypsum products by sieving procedure and determination of the fineness of the gypsum products.

Types of Gypsum	Fineness Passes Sieve 150 µm (Weight %)		
I. Plaster, Impression	98		
II. Plaster, Model	98		
III. Dental Stone	98		
IV. Dental Stone, High Strength	98		
V. Dental Stone, High Strength, High Expansion	98		

Table (1): Types of gypsum product according to ADA Specification No. 25^(3, 6)

MATERIALS AND METHODS

Microscopical Examination

Dental stone (ZETA, Italy) and dental plaster (AL-AHLEIA, Iraq) were tested microscopically in this study. The specimens were prepared by mixing 1 mg of dried powder with drop of "Taha Indicator" (which is a transparent fluid oil, used as a lubricant for sewing machine. Chemically is one of saturated cyclic hydrocarbones known as alkanes or cycloalkanes which is relatively inert, ordinarily do not react with most common acids, bases or oxidizing or reducing agents) on glass slide, then covered with coverslip, then examined under transmitted light microscope at (X 400).⁽¹⁰⁾ The specimens were examined and photographed with (Olympus BH2, Microphotograph, Japan).

Sieving Procedure

Sieving procedure was performed to investigate the particle's size distribution and fineness of the different commercial dental gypsum products which were two dental plasters (AL–AHLEIA, Iraq) and (AL–MALIGE, Iraq) and six different stones (ZETA, Italy), (QD, England), (KAFFIRE, England), (MEHECO, China), (FUJI ROCK, Japan) and die stone (SILKY ROCK, USA).

Sieving procedure was performed using sieving machine (LABC, Germany) that consists of set of sieves of different sizes.

One hundred gram of dried powder for each product was placed on the upper most largest sieve and the rest of the sieves were fitted beneath it as follow: 250 μ m, 150 μ m, 90 μ m, 45 μ m and less than 45 μ m, respectively. Fraction retained on each sieve was weighted and recorded.^(9, 11)

Sieving procedure was carried out three times for each product. Weight means and weight percentages were calculated and recorded to be compared with ADA Specification No. 25.

RESULTS AND DISCUSSION

Microcsopical Examination

The results of microscopical examination with transmitted light microscope by using "Taha Indicator" of AL–AHLEIA plaster show the irregular, fibrous, porous particles that represent the β - form of calcium sulfate hemihydrate as shown in Figure (1), while the results of microscopical examination of ZETA stone show the more regular and denser prism–like particles which represent the α - form hemihydrate (Figure 2). This finding comes in agreement with the findings of other studies.^(3, 4, 6, 12) The differences in the particle's shape affect the surface area per unit weight, so the α - hemihydrate have lower surface area per unit weight than β - hemihydrate and this permits the use of a lower water / powder ratio and so result in less porous, harder and stronger set mass for the dental stones.

Figure (1): Microscopical examination of AL– AHLEIA plaster (Particles are irregular, fibrous and porous)

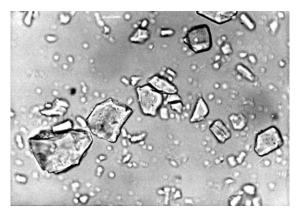


Figure (2): Microscopical examination of ZETA stone (Particles are regular, dense and prism–like)

The results of microscopical examination of the dried powder with transmitted light microscope by using "Taha Indicator" indicated that this simple and easy method give accurate, clear and precise images about particle's shape and could be of great benefit in the process of evaluation, comparison and differentiation between the different types of gypsum products and discovering the industrial deceit without needing to perform other tests to evaluate other physical properties of the material like setting time, setting expansion, compressive strength and so on. So it helps to save effort, time and cost, and also could be depend on it as a useful method in the studies and researches for evaluation, comparison and differ-entiation of the other dried powdered materials.

Particle's Size, Distribution and Fineness

The fineness and particle's size distribution of the tested materials are listed in Tables (2) and (3).

The results in Table (2) show that all tested products have weight percentage for fineness less than 98% of the ADA Specification that mean they have larger particle's size than required. Dental plasters have the lower values than of the stones; while AL–MALIGE has the lowest value.

The results in Table (3) appeared the differences in the particle's size distribution between the tested products; also showed that most of the particles of the two dental plasters and some of the dental stones which were ZETA, QD and KAFFIRE stones are large in size, while most of the particles of the other rest

tested stones are small in size.

dental gypsum products					
	Fineness				
Gypsum Products	Passes Sieve 150 µm				
	(Weight %)				
AL–MALIGE Plaster	11.94				
AL–AHLEIA Plaster	24.43				
ZETA Stone	31.8				
QD Stone	45.15				
KAFFIRE Stone	69.25				
FUJI ROCK Stone	77.44				
SILKY ROCK Die Stone	78.58				
MEHECO Stone	93.24				

Table (2): Fineness of the tested commercial dental gypsum products

 Table (3): Particles size distribution of the tested commercial dental gypsum products

-	Gypsum Products Weight Retained (%)							
Sieve Size (µm)	AL-MALIGE*	AL-AHLEIA*	ZETA*	QD*	KAFFIRE*	FUJI ROCK**	SILKY ROCK**	MEHECO**
250	0.33	0.36	1.1	0.85	0.84	0.43	1.11	0.32
150	87.73	75.21	67.1	54.0	29.91	22.13	20.31	6.44
90	7.47	14.78	16.33	5.73	15.25	26.41	26.5	18.91
45	4.2	9.51	13.78	27.57	50.19	36.12	35.87	42.97
-45***	0.27	0.14	1.69	11.85	3.81	14.91	16.21	31.36
Total	100	100	100	100	100	100	100	100

* Most of the particles of the large size; ** Most of the particles of the small size; *** Sieve size less than 45 μm.

From the results we could have the conclusion that the manufacturers that produce gypsum products can depend on the particle's size distribution through the interlocking or spreading of the small particles among the large one in such away that the total surface area can be regulated to control and reach the recommended required water / powder ratio, but fine particles are required to ensure accurate production of details in an impression;^(3,7,13) so that the particle's shape, size and distribution must be put in attention considerably to produce material with physical properties within the accepted recommended values.

CONCLUSIONS

Microscopical examination of the

dried gypsum powder with transmitted light microscope give accurate, clear and precise image of the different forms of α - and β - hemihydrate particles.

The fineness of the tested commercial gypsum products not agreed with ADA Specification No. 25. All products have larger particle's size.

There is a difference in the particle's size distribution between the different tested products.

REFERENCES

- McCabe JF. Anderson's Applied Dental Materials. 6th ed. Blackwell Scientific Publication, London. UK. 1985.
- 2. Prombonas A, Vlissidis D. Compressive strength and setting

temperature of mixes with various proportion of plaster to stone. *J Prosthet Dent*. 1994; 72(1): 95-100.

- Anusavice KL. Philip's Science of Dental Materials. 10th ed. WB Saunders Co. Philadelphia. USA. 1996.
- 4. Spartley MH, Combe EC. A comparison of some polymer containing die mater-ials. *J Dent*. 1973; 17(1): 1-20.
- 5. American Dental Association Specifi-cation. Guide to Dental Materials and Devices. 7th ed. Chicago. USA. 1974-1975.
- 6. Craig RG. Restorative Materials. 10th ed. Mosby Co. Missouri, USA. 1997.
- 7. Combe EC, Smith DC. Some properties of gypsum plasters. *Br Dent J.* 1964; 117(6): 237-242.
- 8. Rejab LT, Kazanji MN. Measurement of surface roughness of the stone cast pour-ed on different

impression materials. *Al–Rafidain Dent J.* 2001; 1(Sp Iss): 237-246.

- Rejab LT, Kazanji MN. The effect of particle's size distribution of gypsum powder on cast surface roughness. *Al–Rafidain Dent J.* 2002; 2(1): 50-55.
- 10. Rejab LT. New technique for microscopical examination of the powdered dental materials with transmitted light microscope by using "Taha Indicator". *Al–Rafidain Dent J.* 2002; 2(Sp Iss): 375-378
- Friedman GM, Johnson KG. Exercises in Sedementology. John Wright and Son. Inc. 1982. Exer. 2.
- 12. Salh AM. Comparative study of the chemical, mineralogical and physical properties of technical plaster and local plaster (Juss). MSc thesis. University of Mosul. 2002.
- Skinner EW. Science of Dental Mater-ials. 8th ed. WB Saunders Co. Philade-lphia. USA. 1982.

Received: 23/7/2003

Accepted for Publication: 6/11/2003

.....