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ABSTRACT 

In this paper, we investigated of a new self-scaling by use quasi-Newton method 

and conjugate gradient method. The new algorithm satisfies a quasi-newton condition 

and mutually conjugate, and practically proved its efficiency when compared with the 

well-known algorithms in this domain, by depending on efficiency measure, number of 

function, number of iteration, and number of constrained, NOF, NOI and NOC. 

Keywords: optimization, self-scaling, constrained, quasi newton method, barrier 

method. 

 القياس الذاتي للمتغير المتري في الأمثلية المقيدة

 ايمان طارق حامد مدوليد حمروة 
 كلية علوم الحاسوب والرياضيات
 جامعة الموصل، الموصل، العراق

 09/04/2014 ريخ قبول البحث:ات                                    03/03/2014 ريخ استلام البحث:ات

 الملخص

في هذا البحث تم استحداث تقيس ذاتي جديد باستخدام طريقة شبة نيوتن وطريقة التدرج المترافق. 
الخوارزمية الجديدة اثبتت انها تحقق شرط شبة نيوتن والمتجهات المترافقة واثبتت كفاءتها عمليا عند مقارنتها مع 

 .              NOC, NOI, NOFالخوارزميات المعروفة في هذا المجال باعتماد كفاءة المقاييس 
 .barrierطريقة ، طريقة شبه نيوتن، المقيدة، القياس الذاتي، : الامثليةالكلمات المفتاحية

1. Interior Point Method (Barrier Method) 

Sequential minimization techniques available to solve the constraint optimization 

problems is known as barrier function methods. This approach was first proposed by 

Carroll in 1961[3] under the name created response surface technique. The approach 

was also used to solve non linear inequality constrained problems by Box, Davies, and 

Swam [1969] and Kowalik [1966]. The barrier function approach has been thoroughly 

investigated and popularized by Fiacco and McCormick [1964, 1968]. Himmelblau 

[1972] also discussed effective unconstrained optimization algorithms for solving 

barrier methods. Similar to penalty functions, barrier functions are also used to 

transform a constrained problem into unconstrained or into a sequence of unconstrained 

problems. 

The function ∅ can be defined as 

 ∅(𝑥, 𝜇) = 𝑓(𝑥) + 𝜇 ∑ ∅(𝑐𝑖(𝑥))

𝑚

𝑖=1

                                                                                       … (1) 
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 𝜇 is a positive scalar and ∅  is defined continuously on the interval 𝑡 > 0 we assume 

∅𝑖(𝑡) → ∞ 𝑎𝑠 𝑡 → 0+. The growth of ∅𝑖(𝑐𝑖(𝑥)) can be controlled or "cancelled "by 

decreasing r. 

The function ∅(𝑥, 𝜇) is defined so that it becomes infinite at the boundary of the 

feasible region R , i.e barriers are constructed on each constraint , and the solution 

𝑥𝑚𝑖𝑛(𝜇) ∈ 𝑅 ; then 𝑥∗ , is approached from the interior of R in a sequence defined by 

the controlling parameter r.  the barrier function method is only suitable for inequality 

constraints [11].  

2. Type of Barrier Method 

2.1 The logarithmic barrier method (Frisch, 1955) 

The logarithmic barrier function is defined as 

∅(𝑥) = − ∑ 𝑙𝑜𝑔𝑥𝑖(𝑥)

𝑚

𝑖=1

                                                                                                         … (2) 

The logarithmic barrier function is well defined the interior {𝑥: 𝑥𝑖(𝑥) > 0 , 𝑖 =
1, … , 𝑚} of the feasible set , but because of the singularity of the logarithm at zero , the 

logarithmic barrier function grows to +∞ as x approaches a boundary point of the 

feasible set[7]. 

2.2 The inverse barrier function (carroll ,1961)  

The inverse barrier function is defined as[4]  

∅{ci(x)} = ci
−1(x)                                                                                                                 … (3) 

3. Properties of the Barrier Function Methods  

The function in (1) , where 𝜇 is strictly positive scalar value and f(x) is the 

objective function ,is the barrier function if it has the following properties: 

i) when the function f(x) and [𝑐𝑖(𝑥), 𝑖 = 1, … , 𝑚] are continuous in R , the function 

∅(𝑥, 𝜇) is continuous in 𝑅0 

ii) if [𝑥𝑖] is a sequence in 𝑅0 that converges to a point  in 𝑅 − 𝑅0 then, 

lim
𝑘→∞

[∅( 𝑥𝑖 , 𝜇)] = +∞                                                                                                     … (4) 

iii) if [𝜇𝑖] is a sequence where 𝜇 ↓ 0 , then for every 𝑥0 ∈ 𝑅0, 

 lim
𝑘→∞

[∅(𝑥0, 𝜇𝑖)]                                                                                                                 … (5) 

exists and is equal of 𝑓(𝑥0) 

iv) if   [𝜇𝑗] is a sequence such that 𝜇𝑗 ↓ 0 and suppose that [𝑥𝑗] is a sequence in 𝑅0 that 

convergence to a point 𝑥̅ , then 

  lim
                              j

inf [∅( xj, μj)] ≥ f(xj̅)                                                                                    … (6) 

4. The SUMT Method by Using Barrier Function Methods 

   For the sequential unconstrained minimization techniques (SUMT) with inverse 

barrier function , we can solve the constrained problem defined as 

 min 𝑓(𝑥)              𝑥 ∈ 𝑅𝑛                                                                                                         … (7) 
Subject to the constraints 

 𝑐𝑖(𝑥) ≥ 0 , 𝑓𝑜𝑟 𝑖 = 1, … 𝑚                                                                                                   … (8) 

 construct a new objective function ∅(𝑥, 𝜇) which is defined in 

∅𝑖 = ∅(𝑥, 𝜇𝑖) = 𝑓(𝑥) + 𝜇𝑖𝐵(𝑥𝜇)                                                                                       … (9) 
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𝐵(𝑥𝜇) = ∑ ∅𝑖[𝑐𝑖(𝑥)]

𝑚

𝑖=1

                                                                                                        … (10) 

Now , our aim is to minimize the  function ∅(𝑥, 𝜇) by starting from a feasible 

point 𝑥0 and with an initial value 𝜇0 which is derived as 

∅(𝑥, 𝜇) = 𝑓(𝑥) + 𝜇 ∑
1

𝑐𝑖(𝑥)

𝑚

𝑖=1

= 𝑓(𝑥) + 𝜇 𝐵(𝑥)                                                           … (11) 

Then ,  the gradient of ∅(𝑥, 𝜇) is 

𝛻∅(𝑥, 𝜇) = 𝛻𝑓(𝑥) + 𝜇𝛻𝐵(𝑥)                                                                                            … (12) 
The squared magnitude of this vector is given by 

∇𝑓(𝑥)𝑇∇𝑓(𝑥) + 2𝜇∇𝑓𝑇(𝑥)∇𝐵(𝑥) + 𝜇2∇𝐵(𝑥)𝑇∇𝐵(𝑥)                                               … (13) 

and this is minimum when   

 𝜇0 =
−∇𝑓(𝑥)𝑇∇𝐵(𝑥)

∇𝐵(𝑥)𝑇∇𝐵(𝑥)
                                                                                                          … (14) 

This initial value for  , as suggested by Fiacco and McCarmick[5] appears to give 

good results ; in general , the method of reducing 𝜇 is simple iterative method such that  

 𝜇𝑖+1 =
𝜇𝑖

𝜌
                                                                                                                                … (15) 

where 𝜌 is constant equal to 10 and the search direction 𝑑𝑖 in this case can be defined 

 𝑑𝑖 = −𝐻𝑖𝑔𝑖                                                                                                                            … (16) 

Where 𝐻𝑖 is the n*n positive definite symmetric, approximation  to the inverse 

Hessian matrix 𝐺−1 , and g is the gradient vector of the function ∅(𝑥, 𝜇) where 𝑔𝑖 =
𝑔(𝑥𝑖) = ∇∅(𝑥, 𝜇) . 

At the i-th iteration given the current iterative x and the search direction 𝑑𝑖 , the next is 

obtained by 

  𝑥𝑖+1 = 𝑥𝑖 + 𝜆𝑖𝑑𝑖                                                                                                                  … (17) 

Where 𝜆 optimal step size which is obtained by cubic interpolation . We start with 𝜆 =
2(twice the newton step length) and test if 𝑥𝑖+1is feasible . We thus test 𝑐𝑖(𝑥𝑖+1) to see 

that it is positive for all i, but if a constraint is violated we replace 𝜆 by 𝜆 𝑎⁄  , from a 

new point 𝑥𝑖+1 and test again . 

Eventually , we find a feasible 𝑥𝑖+1 and we can then proceed with the 

interpolation . Our choice a=2 becomes close to the distance to nearest constraint 

boundary ; then the matrix 𝐻𝑖 is updated by a correction matrix to get   

𝐻𝑖+1  = 𝐻𝑖 + 𝜃𝑖                                                                                                                     … (18) 

Where , 𝜃 is a correction matrix which satisfies Quasi-Newton like condition  (namely 

𝐻𝑖𝑦𝑖 = 𝜌𝑖𝑣𝑖) where 𝑣𝑖 and 𝑦𝑖 are different vectors between two successive points and 

gradients respectively and 𝜌𝑖 is any scalar .The initial matrix 𝐻1 can be any positive 

definite matrix . However , H is usually chosen to be the identity matrix I.  𝐻𝑘 is 

updated through the formula of the (BFGS) update (Fletcher , 1970)[6]. 

𝐻𝑖+1 = 𝐻𝑖
(1)

+ 𝐻𝑖
(2)

                                                                                                             … (19) 

Omitting the subscript i and defining 𝑥∗ = 𝑥𝑖+1 we have 

𝐻(1) = 𝐻𝑖 −
𝐻𝑖𝑦𝑖𝑦𝑖

𝑇𝐻𝑖

𝑦𝑖
𝑇𝐻𝑖𝑦𝑖

+ 𝑤𝑖𝑤𝑖
𝑇                                                                                         … (20) 

𝐻(2) =
𝑣𝑖𝑣𝑖

𝑇

𝑣𝑖
𝑇𝑦𝑖

                                                                                                                            … (21) 

Where 



 Eman T. Hamed & Marwa W. Hamad 
 

 

 24 

𝑤𝑖 = (𝑦𝑖
𝑇𝐻𝑖𝑦𝑖)

0.5 (
𝑣𝑖

𝑣𝑖
𝑇𝑦𝑖

−
𝐻𝑖𝑦𝑖

𝑦𝑖
𝑇𝐻𝑖𝑦𝑖

)                                                                               … (22) 

The minimization of ∅(𝑥, 𝜇) is carried out until two successive function values 𝐹1 and 

𝐹2 are found such that  

|
(𝐹1 − 𝐹2)

𝐹1
| < 𝜖                                                                                                                     … (23) 

Where , 𝜖 is any small positive number 0.000001 and terminate when 

𝜇 ∑
1

𝑐𝑖(𝑥)

𝑚

𝑖=1

< 𝛿                                                                                                                     … (24) 

Where , 𝛿 is any small value number is equal  0.000001 and  

𝜇𝑖+1 =
𝜇𝑖

10
                                                                                                                               … (25) 

Now , we are going to give the outlines of the well-known Barrier function 

algorithm in the following section . 

4.1 Algorithm (Barrier) in Quasi Newton Method:- 

Step(1):-  let 𝑥0 be an initial feasible point for the minimizer 𝑥∗ of f and initial 𝜇 = 𝜇0 , 

where  𝜇0 is a scalar defined in (14), 𝐻1 = 𝐼 

Step(2):- set i=1 

Step(3):- set  𝑑𝑖 = −𝐻𝑖𝑔𝑖 

Step(4):- compute 𝑥𝑖+1 = 𝑥𝑖 + 𝜆𝑖𝑑𝑖 with an initial value of 𝜆 = 2 

Step(5):- update H by correction matrix to get 𝐻𝑖+1 = 𝐻𝑖 + 𝜃𝑖  

Step(6):- if |
(𝐹1−𝐹2)

𝐹1
| < 𝜖   is satisfied, then go to step 7otherwise go to step 2 

Step(7):- check for convergence , i.e if 𝜇 ∑
1

𝑐𝑖(𝑥)

𝑚
𝑖=1 < 𝛿 is satisfied , then stop the 

algorithm 

Step(8):- otherwise set 𝜇𝑖+1 = 𝜇𝑖 10⁄  and take 𝑥 = 𝑥𝑖(𝑡) as a new starting point ; set 

i=i+1 and go to step 2. 

5. Self-Scaling Quasi-Newton Methods 

The general strategy of self-scaling quasi-Newton method is to scale the Hessian 

approximation matrix 𝐻𝑖 before it is updated at each iteration. This is to avoid alarge 

difference in the eigenvalues of the approximated Hessian of the objective function. 

Self-scaling variable metric algorithms was introduced by Oren (see [9] and [10]). 

The Hessian approximation matrix 𝐻𝑖 can be updated according to a self-scaling 

BFGS update of the form 

𝐻𝑖+1 = 𝐻𝑖 − 𝜌𝑖 [
𝐻𝑖𝑦𝑖𝑣𝑖

𝑇 + 𝑣𝑖𝑦𝑖
𝑇𝐻𝑖

𝑣𝑖
𝑇𝑦𝑖

 ] + [1 +
𝑦𝑖

𝑇𝐻𝑖𝑣𝑖

𝑦𝑖
𝑇𝑣𝑘

 ] [
𝑦𝑖𝑦𝑖

𝑇

𝑦𝑖
𝑇𝑣𝑖

]                                    … (26) 

where 

𝑦𝑖 = ∇𝑔(𝑥𝑘+1) − ∇𝑔(𝑥𝑘)        

𝑣𝑖 = 𝑥𝑖+1 − 𝑥𝑖                 

𝜌𝑖 =
𝑣𝑖

𝑇𝑦𝑖

𝑦𝑖
𝑇𝐻𝑖𝑦𝑖

                                                                                                                          … (27) 

where , 𝜌 is the self-scaling factor. For a general convex objective function, Nocedal 

and Yuan[8] proves global convergence of a Self scaling-BFGS in (26) with Wolfe line 

search. They also present results indicating that the un scaled BFGS method in general 

is superior to the Self Scaling-BFGS with its 𝜌 of Oren and Luenberger. 
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A suggestion of Al-Baali, see [2], is to modify the self-scaling factor to 

𝜌𝑖 = min{
𝑣𝑖

𝑇𝑦𝑖

𝑦𝑖
𝑇𝐻𝑖𝑦𝑖

, 1}                                                                                                         … (28) 

This modification of 𝜌𝑖 gives a global convergent Self scaling-BFGS method 

which is competitive with the unscaled BFGS method. 

In order to eliminate the truncation and rounding errors, the new scalar parameter 

σ is added to make the sequence and efficiency as problem dimension increase. The 

poor scaling is an imbalance between the values of the function and change in x. The 

function values may be change very little even though x is changing significantly. This 

difficulty can sometimes be remove by good scaling factor for the updating H and the 

performance of self-scaling methods is undoubtedly favorable in some cases especially 

when the number variables are large [3]. 

5.1 Derivation of  New Self  scaling 𝝆𝒊 

Suppose the search direction in quasi newton method is defined by 

𝑑𝑖+1 = −𝜌𝑖𝐻𝑖+1𝑔𝑖+1                                                                                                            … (29) 
And the search direction conjugate gradient method is defined by 

𝑑𝑖+1 = −𝑔𝑖+1 + 𝛽𝑖𝑑𝑖                                                                                                            … (30) 

Since the search direction equality 𝐻𝑘 is BFGS update and 𝛽is conjucay coefficient  

𝑑𝑖+1(𝑄𝑁) = 𝑑𝑖+1(𝐶𝐺)                                                                                                        … (31) 

−𝜌𝑖𝐻𝑖+1𝑔𝑖+1 = −𝑔𝑖+1 + 𝛽𝑖𝑑𝑖                                                                                            … (32) 

Multiply by 𝑦𝑖
𝑇 

−𝜌𝑖𝑦𝑖
𝑇𝐻𝑖+1𝑔𝑖+1 = −𝑦𝑖

𝑇𝑔𝑖+1 + 𝛽𝑖(𝑑𝑖
𝑇𝑦𝑖)                                                                        … (33) 

 𝜌𝑖 =
−𝑦𝑖

𝑇𝑔𝑖+1 +  𝛽𝑖(𝑑𝑖
𝑇𝑦𝑖)

−𝑦𝑖
𝑇𝐻𝑖+1𝑔𝑖+1

                                                                                               … (34) 

 𝜌𝑖  =
−(𝑔𝑖+1−𝑔𝑖)𝑇𝑔𝑖+1+𝛽𝑖(𝑑𝑖

𝑇(𝑔𝑖+1−𝑔𝑖))

−(𝑔𝑖+1−𝑔𝑖)𝑇𝐻𝑖+1𝑔𝑖+1
                                                                                … (35)  

By  using, the exact line search (𝑑𝑖
𝑇𝑔𝑖+1 = 0), orthogonal (𝑔𝑖

𝑇𝑔𝑖+1 = 0)  , (𝑔𝑖
𝑇𝐻𝑖𝑔𝑗 =

0 , 𝑖 ≠ 𝑗) and(𝑑𝑖 = −𝑔𝑖) see[1], and  substituting in (35). 

𝜌𝑖 =
−‖𝑔𝑖+1‖2+𝛽𝑖‖𝑔𝑖‖2

−𝑔𝑖+1
𝑇 𝐻𝑖+1𝑔𝑖+1

                                                                                                            … (36)  

5.2 New Quasi Newton Condition 

Quasi newton method solve unconstrained optimization problem  

min 𝑓(𝑥)                      𝑥 ∈ 𝑅𝑛 
And the search direction given by  

𝑑𝑖+1 = −𝜌𝑖+1𝐻𝑖+1𝑔𝑖+1 
One proposed by Broydon , Fletcher , Goldfarb and shanno at about the same time 

. this is referred to as the BFGS updating formula and is given by 

𝐻𝑖+1=𝐻𝑖 −
𝐻𝑖𝑦𝑖𝑣𝑖

𝑇 + 𝑣𝑖𝑦𝑖
𝑇𝐻𝑖

𝑣𝑖
𝑇𝑦𝑖

+ (1 +
𝑦𝑖

𝑇𝐻𝑖𝑦𝑖

𝑣𝑖
𝑇𝑦𝑖

)
𝑣𝑖𝑣𝑖

𝑇

𝑣𝑖
𝑇𝑦𝑖

                                                    … (37) 

For standard BFGS update, we can separate it into two components 𝐻(1) and 𝐻(2) as 

defined in  

𝐻∗
𝑁𝑒𝑤 = 𝐻(1) + 𝜌𝐻(2) 

Where 

𝐻(1) = 𝐻𝑖 −
𝐻𝑖𝑦𝑖𝑣𝑖

𝑇

𝑣𝑖
𝑇𝑦𝑖

                                                                                                            … (38) 
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𝐻(2) = (1 +
𝑦𝑖

𝑇𝐻𝑖𝑦𝑖

𝑣𝑖
𝑇𝑦𝑖

)
𝑣𝑖𝑣𝑖

𝑇

𝑣𝑖
𝑇𝑦𝑖

−
𝑣𝑖𝑦𝑖

𝑇𝐻𝑖

𝑣𝑖
𝑇𝑦𝑖

                                                                             … (39) 

Which satisfies the QN-like condition  

 𝐻𝑁𝑒𝑤
∗ 𝑦 = 𝜌𝑣                                                                                                                          … (40) 

(𝐻(1) + 𝜌𝐻(2))𝑦𝑖 = (𝐻𝑖 −
𝐻𝑖𝑦𝑖𝑣𝑖

𝑇

𝑣𝑖
𝑇𝑦𝑖

+
−‖𝑔𝑖+1‖2+𝛽𝑖‖𝑔𝑖‖2

−𝑔𝑖+1
𝑇 𝐻𝑖+1𝑔𝑖+1

((1 +
𝑦𝑖

𝑇𝐻𝑖𝑦𝑖

𝑣𝑖
𝑇𝑦𝑖

)
𝑣𝑖𝑣𝑖

𝑇

𝑣𝑖
𝑇𝑦𝑖

−  

𝑣𝑖𝑦𝑖
𝑇𝐻𝑖

𝑣𝑖
𝑇𝑦𝑖

))𝑦𝑖                  … (41)  

= (𝐻𝑖𝑦𝑖 −
𝐻𝑖𝑦𝑖𝑣𝑖

𝑇𝑦𝑖

𝑣𝑖
𝑇𝑦𝑖

+
−‖𝑔𝑖+1‖2+𝛽𝑖‖𝑔𝑖‖2

−𝑔𝑖+1
𝑇 𝐻𝑖+1𝑔𝑖+1

(1 +
𝑦𝑖

𝑇𝐻𝑖𝑦𝑖

𝑣𝑖
𝑇𝑦𝑖

)
𝑣𝑖𝑣𝑖

𝑇𝑦𝑖

𝑣𝑖
𝑇𝑦𝑖

−      

−‖𝑔𝑖+1‖2+𝛽𝑖‖𝑔𝑖‖2

−𝑔𝑖+1
𝑇 𝐻𝑖+1𝑔𝑖+1

.
𝑣𝑖𝑦𝑖

𝑇𝐻𝑖𝑦𝑖

𝑣𝑖
𝑇𝑦𝑖

)                … (42)  

=
−‖𝑔𝑖+1‖2 + 𝛽𝑖‖𝑔𝑖‖

2

−𝑔𝑖+1
𝑇 𝐻𝑖+1𝑔𝑖+1

𝑣𝑖                                                                     … (43) 

𝐻∗
𝑁𝑒𝑤𝑦𝑖 = 𝜌𝑖𝑣𝑖 

Hence , the new formula 𝐻∗
𝑁𝑒𝑤 = 𝐻(1) + 𝜌𝐻(2) satisfies the QN-like condition . 

 Our last enquiry : Is formula 𝐻∗
𝑁𝑒𝑤 = 𝐻(1) + 𝜌𝐻(2) generates conjugate  search 

direction ? 

To answer this question, we suggest the following theorem: 

5.3 Theorem: - 

The search directions generated by 𝑑𝑖+1 = −𝐻𝑛𝑒𝑤
∗ 𝑔𝑖+1 are conjugate. The 

objective function is quadratic. 

Proof:- 

Let (𝑥) = 1 2⁄ 𝑥𝑇𝐺𝑥 + 𝑏𝑇𝑥, be a quadratic function. choose an initial 

approximation matrix 𝐻1 = 𝐻 is symmetric positive definite. We have to prove that for 

an ELS, the search direction d must satisfies  

𝐻𝑖+1𝑔𝑘+1 = 𝐻𝑔𝑘+1      ,   0 ≤ 𝑖 < 𝑘 ≤ 𝑛                                                                        … (44) 
Now , proceed by induction let i=0 this implies  

𝐻1𝑔𝑘+1 = 𝐻𝑔𝑘+1                                                                                                                  … (45) 

Assume that this property is true for i and𝐻∗
𝑁𝑒𝑤 = 𝐻(1) + 𝜌𝐻(2)  we have  

𝐻𝑖+1𝑔𝑘+1 = (𝐻(1) + 𝜌𝑖𝐻
(2))𝑔𝑘+1                                                                                    … (46) 

 = 𝐻𝑖𝑔𝑘+1 −
𝐻𝑖𝑦𝑖𝑣𝑖

𝑇𝑔𝑘+1

𝑣𝑖
𝑇 + 𝜌𝑖

𝑣𝑖𝑣𝑖
𝑇𝑔𝑘+1

𝑣𝑖
𝑇𝑦𝑖

+ 𝜌𝑖
𝑦𝑖

𝑇𝐻𝑖𝑦𝑖𝑣𝑖𝑣𝑖
𝑇𝑔𝑘+1

𝑣𝑖
𝑇𝑦𝑖

   

−𝜌𝑖
𝑣𝑖𝑦𝑖

𝑇𝐻𝑖𝑔𝑘+1

𝑣𝑖
𝑇𝑦𝑖

              … (47)  

𝑣𝑖
𝑇𝑔𝑘+1 = 0    𝑓𝑜𝑟  𝑖 = 1, … , 𝑘                                                                                         … (48) 

𝑦𝑖
𝑇𝐻𝑖𝑔𝑘+1 = 0    𝑓𝑜𝑟 𝑖 < 𝑘                                                                                               … (49) 

Use the relation (48) and (49) 

𝐻𝑖+1𝑔𝑘+1 = 𝐻𝑖𝑔𝑘+1                                                                                                              … (50) 

Thus , the new formula 𝐻∗
𝑁𝑒𝑤 = 𝐻(1) + 𝜌𝐻(2) generates mutually conjugate 

gradient directions. 

5.4 The New Algorithm:- 

Step(1):-  let 𝑥0 be an initial feasible point for the minimizer 𝑥∗ of f and initial 𝜇 = 𝜇0 , 

where  𝜇0 is a scalar defined in (14), 𝐻1 = 𝐼 

Step(2):- set i=1 

Step(3):- set  𝑑𝑖 = −𝐻𝑖𝑔𝑖 
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Step(4):- compute𝑥𝑖+1 = 𝑥𝑖 + 𝜆𝑖𝑑𝑖 with an initial value of 𝜆 = 2. 

Step(5):- update H by correction new matrix which is defined in 38-39, where 𝜌 is 

defined in (36) 

Step(6):- if |
(𝐹1−𝐹2)

𝐹1
| < 𝜖 is satisfied , then go to step 7 otherwise go to step 2 

Step(7):- check for convergence , i.e if  𝜇 ∑
1

𝑐𝑖(𝑥)

𝑚
𝑖=1 < 𝛿 is satisfied then stop the 

algorithm 

Step(8):- otherwise set 𝜇𝑖+1 = 𝜇𝑖 10⁄  and take 𝑥 = 𝑥∗as a new starting point ; set i=i+1 

and go to step 2. 

6. Numerical Results: 

Several standard non-linear constrained test functions were minimized to compare 

the new algorithms with standard algorithm see (appendix). With  1 ≤ n ≤ 10  and 1 ≤
𝑐𝑖(𝑥) ≤ 10 and 1 ≤ ℎ𝑖(𝑥) ≤ 10 

All programs are written in fortran language and for all cases the stopping 

criterion taken to be  

𝜇 ∑
1

𝑐𝑖(𝑥)

𝑚

𝑖=1

< 𝛿, 𝛿 = 10−5 

The new algorithm has proven its efficiency in practice the comparative 

performance for all of these algorithms are evaluated by considering  NOF, NOI, and 

NOC, where NOF is the number of function evaluations and NOI is the number of 

iterations and NOC is the number of constrained evaluations. 

In Table(1), we have compared our new algorithm with the standard algorithm.  
 

Table (1). Comparison of the BFGS algorithm with the new Self-Scaling algorithm 

 

 

 

 
 
 
 

 

 

  

Self – Scaling  BFGS 

algorithm 
BFGS- algorithm Test fn. 

NOC NOI NOF NOC NOI NOF  

481 26 117 511 27 121 1- 

20 180 600 2 24 84 2- 

285 50 245 491 61 695 3- 

550 200 610 7094 187 641 4- 

432 39 151 1145 72 283 5- 

618 31 139 914 48 203 6- 

427 37 149 552 42 169 7- 

302 26 108 387 34 145 8- 

562 36 134 6029 146 570 9- 

2 70 340 2 218 1037 10- 

184 28 124 226 35 162 11- 

50 23 75 344 61 338 12- 

154 49 177 229 56 208 13- 

2 23 74 2 26 83 14- 

2 30 106 2 37 132 15- 
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Appendix  

1- 𝑚𝑖𝑛𝑓(𝑥) = −𝑥1𝑥2𝑥3 

    s.t  

20 − 𝑥1 ≥ 0 

1 − 𝑥2 ≥ 0 

42 − 𝑥3 ≥ 0 

72 − 𝑥1 − 2𝑥2 − 2𝑥3 ≥ 0 

𝑥𝑖 ≥ 0 

2- 𝑚𝑖𝑛𝑓(𝑥) = 2𝑥1
2 + 𝑥2

2 + 2𝑥1𝑥2 − 20𝑥1 − 14𝑥2 

     s.t      

𝑥1 + 3𝑥2 ≤ 5 

2𝑥1 − 𝑥2 ≤ 4 

𝑥𝑖 ≥ 0 

3- 𝑚𝑖𝑛𝑓(𝑥) = (𝑥1 − 3)2 − (𝑥2 − 4)2 

    s.t      

2𝑥1
2 + 𝑥2

2 ≤ 34 

2𝑥1 + 3𝑥2 ≤ 18 

𝑥𝑖 ≥ 0 

4- 𝑚𝑖𝑛𝑓(𝑥) = (𝑥1 − 𝑥2)4 + (𝑥1 − 2𝑥2)2 

    s.t     

𝑥1
2 + 𝑥2 ≤ 0 

𝑥𝑖 ≥ 0 

5- 𝑚𝑖𝑛𝑓(𝑥) = 𝑥1 − 2𝑥2 

    s.t      

1 + 𝑥1 − 𝑥2
2 ≥ 0 

𝑥2 ≥ 0 

𝑥𝑖 ≥ 0 

6- 𝑚𝑖𝑛𝑓(𝑥) = −𝑥1𝑥2𝑥3 

     s.t   

2𝑥1
2 + 𝑥2

2 + 3𝑥3
2 ≤ 51 

𝑥𝑖 ≥ 0 

7- 𝑚𝑖𝑛𝑓(𝑥) = 2𝑥1
2 + 2𝑥2

2 − 2𝑥1𝑥2 − 4𝑥1 − 6𝑥2 

     s.t       

𝑥1 + 5𝑥2 ≤ 5 

2𝑥1
2 − 𝑥2 ≤ 0 

𝑥𝑖 ≥ 0 

8- 𝑚𝑖𝑛𝑓(𝑥) = −2𝑥1 − 𝑥2 

    s.t    

𝑥1
2 + 𝑥2

2 ≤ 25 

𝑥1
2 − 𝑥2

2 ≤ 7 

𝑥𝑖 ≥ 0 

9- 𝑚𝑖𝑛𝑓(𝑥) = 𝑥1
2 + 𝑥2

2 − 14𝑥1 − 6𝑥2 − 7 

     s.t   

𝑥1 + 𝑥2 ≤ 2 

𝑥1 − 2𝑥2 ≤ 3 

𝑥𝑖 ≥ 0 

10- 𝑚𝑖𝑛𝑓(𝑥) = 𝑥1
2 + 𝑥2

2 

      s.t    
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𝑥1 − 1 ≥ 0 

𝑥2 + 1 ≥ 0 

𝑥𝑖 ≥ 0 

11- 𝑚𝑖𝑛𝑓(𝑥) = 𝑥1𝑥2
2 + 2 

      s.t  

𝑥1
2 − 𝑥2

2 ≥ −2 

𝑥𝑖 ≥ 0 

12- 𝑚𝑖𝑛𝑓(𝑥) = (𝑥1 − 𝑥2)4 + (𝑥1 − 2𝑥2)2 

      s.t 

𝑥1
2 − 𝑥2

2 − 4 ≤ 0 

𝑥𝑖 ≥ 0 

13- 𝑚𝑖𝑛𝑓(𝑥) = 𝑥1
2 + 𝑥2

2 

      s.t 

(𝑥1 − 1)2 − 𝑥2
2 + 4 ≤ 0 

𝑥𝑖 ≥ 0 

14- 𝑚𝑖𝑛𝑓(𝑥) = (𝑥1 − 2)2 + (𝑥2 − 1)2 

       s.t 

𝑥1 − 2𝑥2 + 1 ≤ 0 

𝑥1
2 − 𝑥2 ≤ 0 

𝑥𝑖 ≥ 0 

15- 𝑚𝑖𝑛𝑓(𝑥) = (𝑥1 − 2)2 + (𝑥2 − 1)2 

      s.t 

𝑥1 − 2𝑥2 ≥ −1 

−𝑥1
2

4
+ 𝑥2

2 + 1 ≥ 0 

𝑥𝑖 ≥ 0 
 


