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ABSTRACT

In this paper, we investigated of a new self-scaling by use quasi-Newton method
and conjugate gradient method. The new algorithm satisfies a quasi-newton condition
and mutually conjugate, and practically proved its efficiency when compared with the
well-known algorithms in this domain, by depending on efficiency measure, number of
function, number of iteration, and number of constrained, NOF, NOI and NOC.
Keywords: optimization, self-scaling, constrained, quasi newton method, barrier
method.
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1. Interior Point Method (Barrier Method)

Sequential minimization techniques available to solve the constraint optimization
problems is known as barrier function methods. This approach was first proposed by
Carroll in 1961[3] under the name created response surface technique. The approach
was also used to solve non linear inequality constrained problems by Box, Davies, and
Swam [1969] and Kowalik [1966]. The barrier function approach has been thoroughly
investigated and popularized by Fiacco and McCormick [1964, 1968]. Himmelblau
[1972] also discussed effective unconstrained optimization algorithms for solving
barrier methods. Similar to penalty functions, barrier functions are also used to
transform a constrained problem into unconstrained or into a sequence of unconstrained
problems.

The function @ can be defined as

060 = () +1 ) B(ci() (D)
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u is a positive scalar and @ is defined continuously on the interval t > 0 we assume
0;(t) > wast - 0,. The growth of @;(c;(x)) can be controlled or "cancelled 'by

decreasing r.

The function @(x, 1) is defined so that it becomes infinite at the boundary of the
feasible region R , i.e barriers are constructed on each constraint , and the solution
Xmin(W) € R ; then x* , is approached from the interior of R in a sequence defined by
the controlling parameter r. the barrier function method is only suitable for inequality
constraints [11].

2. Type of Barrier Method
2.1 The logarithmic barrier method (Frisch, 1955)
The logarithmic barrier function is defined as
m

O(x) =— Z logx;(x) .. (2)
i=1

iz

The logarithmic barrier function is well defined the interior {x: x;(x) > 0,i =
1, ..., m} of the feasible set , but because of the singularity of the logarithm at zero , the
logarithmic barrier function grows to +oco as x approaches a boundary point of the
feasible set[7].

2.2 The inverse barrier function (carroll ,1961)
The inverse barrier function is defined as[4]

B{ci(®)} = ¢ (x) - (3)
3. Properties of the Barrier Function Methods

The function in (1) , where u is strictly positive scalar value and f(x) is the
objective function ,is the barrier function if it has the following properties:
i) when the function f(x) and [c;(x),i = 1, ...,m] are continuous in R , the function
@ (x, ) is continuous in R°
i) if [x;] is a sequence in RO that converges to a point in R — R? then,

Mm@ (x;, p)] = +oo - (4)
i) if [u;] is a sequence where u | 0, then for every x° € R?,
Jim [@(x°, )] - (5)

exists and is equal of £(x°)
iv) if [u;]isasequence such that u; | 0 and suppose that [x;] is a sequence in R° that
convergence to a point x , then

lim jinf[@(xj, w)] = f(x,) .. (6)
4. The SUMT Method by Using Barrier Function Methods

For the sequential unconstrained minimization techniques (SUMT) with inverse
barrier function , we can solve the constrained problem defined as

min f(x) X € R" . (7)
Subject to the constraints

ci(x)=0,fori=1,..m ..(8)
construct a new objective function @(x, ) which is defined in

0; = O(x, ) = f(x) + wB(x,) - (9)
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B(x,) = ) o)) (10)

Now , our aim is to minimize the function @(x, u) by starting from a feasible
point x, and with an initial value p, which is derived as

B(x, 1) —f(x)+ﬂz ()—f(x)+uB(X) (1)

Then, the gradient of (2)(x W) is

V@(x, w) =Vf(x)+ uVB(x) .. (12)
The squared magnitude of this vector is given by
VFQ)TVF(x) + 2uVfT(x)VB(x) + u?VB(x)TVB(x) ..(13)
and this is minimum when

—Vf(x)"VB(x)

= .. (14
Ko = VB TVB(x) (14)
This initial value for , as suggested by Fiacco and McCarmick[5] appears to give

good results ; in general , the method of reducing u is simple iterative method such that

H.
His1 = ;l - (15)
where p is constant equal to 10 and the search direction d; in this case can be defined
di = _Higi (16)

Where H; is the n*n positive definite symmetric, approximation to the inverse
Hessian matrix G~1 , and g is the gradient vector of the function @(x, ) where g; =
g(x) =Vo(x, 1) .

At the i-th iteration given the current iterative x and the search direction d; , the next is
obtained by

Xiy1 = X + /1idi (17)
Where A optimal step size which is obtained by cubic interpolation . We start with 1 =
2(twice the newton step length) and test if x;,,is feasible . We thus test c;(x;,,) to see
that it is positive for all i, but if a constraint is violated we replace A by 1/a , from a
new point x;,, and test again .

Eventually , we find a feasible x;,; and we can then proceed with the
interpolation . Our choice a=2 becomes close to the distance to nearest constraint
boundary ; then the matrix H; is updated by a correction matrix to get

Hi+1 = Hl' + Hl- (18)
Where , 6 is a correction matrix which satisfies Quasi-Newton like condition (namely
H;y; = p;v;) where v; and y; are different vectors between two successive points and
gradients respectively and p; is any scalar .The initial matrix H, can be any positive
definite matrix . However , H is usually chosen to be the identity matrix 1. Hj is
updated through the formula of the (BFGS) update (Fletcher , 1970)[6].

1 2
Hipy = HY + H® .. (19)
Omitting the subscript i and defining x* = x;,; we have
H; H
H® = H;, — & + ww] ..(20)
Vi [Hiyi
H® = 2L . (21)
Vi Vi
Where

23



Eman T. Hamed & Marwa W. Hamad

L > . (22)

w; = (y-TH-y-)O'5< -

l P vly: ¥ Hyi
The minimization of @(x, ) is carried out until two successive function values F; and
F, are found such that

F, —F
1
Where , € is any small positive number 0.000001 and terminate when
m
1
uz ) ..(24
2o @
Where , § is any small value number is equal 0.000001 and
M.
Hiv1 = ﬁ - (25)

Now , we are going to give the outlines of the well-known Barrier function
algorithm in the following section .

4.1 Algorithm (Barrier) in Quasi Newton Method:-

Step(1):- let x, be an initial feasible point for the minimizer x* of f and initial u = y, ,
where p, is a scalar defined in (14), H, =1

Step(2):- seti=1

Step(3):- set d; = —H;g;

Step(4):- compute x;,, = x; + A;d; with an initial value of A = 2

Step(5):- update H by correction matrix to get H;,; = H; + 6;

Step(6):- if (FlF;FZ) < € s satisfied, then go to step 7otherwise go to step 2
1
Step(7):- check for convergence , i.e if ﬂzﬁlﬁ < & is satisfied , then stop the
algorithm

Step(8):- otherwise set u;,; = u;/10 and take x = x;(t) as a new starting point ; set
i=i+1 and go to step 2.

5. Self-Scaling Quasi-Newton Methods

The general strategy of self-scaling quasi-Newton method is to scale the Hessian
approximation matrix H; before it is updated at each iteration. This is to avoid alarge
difference in the eigenvalues of the approximated Hessian of the objective function.
Self-scaling variable metric algorithms was introduced by Oren (see [9] and [10]).

The Hessian approximation matrix H; can be updated according to a self-scaling
BFGS update of the form

Hi+1=Hi_pil i ¥ i ll+l1+lel l“leyl (26)
v y; ViV |1V Vi
where
Vi = Vg(xp41) — Vg (xy)
Vi = Xit1 — X
ViTJ’i 27)

pi =

Yoy Hw;

where , pis the self-scaling factor. For a general convex objective function, Nocedal
and Yuan[8] proves global convergence of a Self scaling-BFGS in (26) with Wolfe line
search. They also present results indicating that the un scaled BFGS method in general
is superior to the Self Scaling-BFGS with its p of Oren and Luenberger.
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A suggestion of Al-Baali, see [2], is to modify the self-scaling factor to
T
p; = min{ Ui ,1} ..(28)
i Hiyi

This modification of p;gives a global convergent Self scaling-BFGS method
which is competitive with the unscaled BFGS method.

In order to eliminate the truncation and rounding errors, the new scalar parameter
o is added to make the sequence and efficiency as problem dimension increase. The
poor scaling is an imbalance between the values of the function and change in x. The
function values may be change very little even though x is changing significantly. This
difficulty can sometimes be remove by good scaling factor for the updating H and the
performance of self-scaling methods is undoubtedly favorable in some cases especially
when the number variables are large [3].

5.1 Derivation of New Self scaling p;
Suppose the search direction in quasi newton method is defined by

div1 = —piHis19i44 _ _ o - (29)
And the search direction conjugate gradient method is defined by
di+1 = —Gi+1 + Pid; - (30)
Since the search direction equality Hy is BFGS update and gis conjucay coefficient
di+1(QN) = d;i4,(CG) ..(31)
—piHi+19i+1 = —9i+1 + Bid; .. (32)
Multiply by y[
—piVi His19iv1 = —¥{ Giv1 + Bi(d] y) . (33)
o _YiTgi+1 + Bi(diTyl') (34)
l _yiTHi+1gi+1 .
—(gii-—aNTa: (dTl (g:i.—a:
p; = (9i+1-90) 9i+1+Bi(d; (gi+1-9i) ..(35)

—(9i+1=90THi419i41
By using, the exact line search (d{ g;+1 = 0), orthogonal (g{ gi+1 = 0) , (9{ Hig; =
0,i # j)and(d; = —g;) see[1], and substituting in (35).

_ =Ngi+1l>+Billgill?
pi =

..(36)

~9f1Hir19i41
5.2 New Quasi Newton Condition

Quasi newton method solve unconstrained optimization problem
min f(x) x € R™
And the search direction given by
diy1 = —Pir1Hiz19i+1
One proposed by Broydon , Fletcher , Goldfarb and shanno at about the same time
. this is referred to as the BFGS updating formula and is given by

Hiyv] + vy H; < }’iTHiYi) vv]
= +|14+== =
Vi Vi ViVi JViYi
For standard BFGS update, we can separate it into two components H® and H® as
defined in

Hiy1-H; —

.(37)

Hyew = H® + pH®
Where
H;y;v]

T
Vi Yi

HO =H, — ..(38)
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v\ v.v!l T H.
H® = (1 4+ 2 fy> v P .. (39)
ViVi JViYVi V)i
Which satisfies the QN-like condition
Hyewy = pv ) ) ) ... (40)
2 2
HO & o H@Vy, = (. — Hvivl o Z1gi |2 +6illgil (1 yi Hiyi) vivi
(HZ+ pH )y = (Hy vl vi * ~0{11Hir10141 1+ vlyi ) vl
T
vy Hi
) - (41)
Hiyiv] yi —||gi+1||2+ﬂi||gi||2< yTHiyi>vivai
= H P 3 1 L L _
( iVi ViT)’i —giT+1Hi+1gi+1 + VLTYi V;r)’i
—llgir1*+Billgill®> viy{ Hiyi
= .. (42
_g'il;.lHi+1gi+1 VlTyl' ) ( )

=gl + Billgill®
_ng+1Hi+1gi+1
H* newYi = pivi
Hence , the new formula H* y,,, = H® + pH®) satisfies the QN-like condition .
Our last enquiry : Is formula H* y,,, = H® + pH® generates conjugate search
direction ?
To answer this question, we suggest the following theorem:

5.3 Theorem: -

The search directions generated by d;,; = —Hj.v9gi+1 are conjugate. The
objective function is quadratic.

v, . (43)

Proof:-

Let (x)=1/2xTGx + bTx, be a quadratic function. choose an initial
approximation matrix H; = H is symmetric positive definite. We have to prove that for
an ELS, the search direction d must satisfies

Hiy19ks1 =Hgsr , 0si<ksn . (44)
Now , proceed by induction let i=0 this implies
Hy9k+1 = HGk41 .. (45)
Assume that this property is true for i andH* y,,, = H® + pH® we have
His19ke1 = (H® + piH®) gpesn .. (46)
HyyviTg viviTg yi HiyiviviTg
= Higk+1 - viT L + i UiTyk:l + Pi UiTyi L
iyil H;
_ ivyviTygik+1 (47)
v g1 =0 for i=1,..,k .. (48)
ViTHigrs1 =0 fori<k .. (49)
Use the relation (48) and (49)
Hiy19k+1 = HiGk+1 ..(50)

Thus , the new formula H*y,,, = H® + pH® generates mutually conjugate
gradient directions.

5.4 The New Algorithm:-

Step(1):- let x, be an initial feasible point for the minimizer x* of f and initial u = y, ,
where pu, is a scalar defined in (14), H, =1

Step(2):- seti=1

Step(3):- set di = _Hl'gi
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Step(4):- computex;,; = x; + A;d; with an initial value of 1 = 2.
Step(5):- update H by correction new matrix which is defined in 38-39, where p is
defined in (36)

Step(6):- if (FlF;FZ) < € Is satisfied , then go to step 7 otherwise go to step 2
Step(7):- check for convergence , i.e if #Z&Tlx) < 6 Is satisfied then stop the
algorithm

Step(8):- otherwise set ;1 = u;/10 and take x = x*as a new starting point ; set i=i+1
and go to step 2.

6. Numerical Results:

Several standard non-linear constrained test functions were minimized to compare
the new algorithms with standard algorithm see (appendix). With 1 <n <10 and1 <
ci(x) <10and 1 < h;(x) <10

All programs are written in fortran language and for all cases the stopping

criterion taken to be
&1
“Z <6,6=10"°
i=1

ci(x)

The new algorithm has proven its efficiency in practice the comparative
performance for all of these algorithms are evaluated by considering NOF, NOI, and
NOC, where NOF is the number of function evaluations and NOI is the number of
iterations and NOC is the number of constrained evaluations.

In Table(1), we have compared our new algorithm with the standard algorithm.

Table (1). Comparison of the BFGS algorithm with the new Self-Scaling algorithm

Test fn. BFGS- algorithm Self - Scall_ng BFGS
algorithm
NOF | NOI NOC NOF NOI NOC

1- 121 27 511 117 26 481
2- 84 24 2 600 180 20
3- 695 61 491 245 50 285
4- 641 187 7094 610 200 550
5- 283 72 1145 151 39 432
6- 203 48 914 139 31 618
7- 169 42 552 149 37 427
8- 145 34 387 108 26 302
9- 570 146 6029 134 36 562
10- 1037 218 2 340 70 2
11- 162 35 226 124 28 184
12- 338 61 344 75 23 50
13- 208 56 229 177 49 154
14- 83 26 2 74 23 2
15- 132 37 2 106 30 2
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Appendix
1- minf (x) = —x1x,%3
s.t
20—x;, =20
1—-x,>20
42 —x3 =20
72 —x; —2x, —2x3 =20
X >0

2-minf (x) = 2x% + x3 + 2x,x, — 20x; — 14x,
s.t
X1 +3x, <5
2x1 —x, < 4
X >0
3-minf(x) = (x; — 3)* — (x; — 4)°
s.t
2x% + x5 < 34
2x; +3x, <18

X >0
4-minf (x) = (x; — 2)* + (01 — 2x)?
s.t
X2 +x,<0
X >0
5-minf(x) = x; — 2x,
s.t
1+x;,—x2>0
x; =20
X >0
6- minf (x) = —x1x,x3
s.t

2x% +x2 +3x2 <51
Xi >0
7-minf (x) = 2x% + 2x2 — 2x,x, — 4x; — 6X,
s.t
Xy +5x, <5
ZX:% — Xy <0

Xi >0
8- minf(x) = —2x; — x,
s.t
x? + x5 <25
xi—x3<7
X >0
9-minf(x) = x? + x2 — 14x; — 6x, — 7
s.t
X1 +x, <2
X1 —2x, <3
Xi >0

10- minf (x) = x% + x2
s.t
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x;—1=20
x+1=0
X; = 0
11- minf (x) = x,x% + 2
s.t
xf—x%>-2
X >0
12- minf (x) = (x; — x)* + (x; — 2x,)?
s.t
x2—x2-4<0

X >0
13- minf (x) = x? + x2
s.t
(x; —1)2—x2+4<0
X; = 0
14- minf (x) = (x; — 2)* + (x, — 1)
s.t
X1 —2x,+1<0
xt—x,<0
X >0

15- minf(x) = (x; — 2)? + (x, — 1)?
s.t

X1 — 2x, = —1
2

—X
—41+x§+120
xl-ZO
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