
Iraqi Journal of Veterinary Sciences, Vol. 34, No. 1, 2020 (197-201) 

197 

Levels of disaccharidases in the brush border membrane  

of equine small intestine 
 

M.A. Alrammahi 
 

Department of Physiology, Biochemistry and Pharmacology, College of Veterinary Medicine, University of Al-Qadisiyah,  

Al-Diwaniyha, 58001, Iraq, Email: miran.alrammahi@qu.edu.iq 

 

(Received June 1, 2019; Accepted June 25, 2019)  

 

Abstract 

 

The disaccharides, consisting of sucrose, lactose and maltose, are hydrolysed into monosaccharides (D-glucose, D-galactose 

and D-fructose) by intestinal brush border enzymes: sucrase, lactase and maltase. The aim of this study to investigate changes 

in the brush-border membrane carbohydrate digestive enzymes. From intestinal mucosal scrapings of equine, brush border 

membrane vesicles were isolated. The results showed that sucrase, maltase and lactase are present in the equine small intestine. 

The activity of all three enzymes is highest proximally (in the duodenum and jejunum) and lower in the ileum. There was 

considerable variation between individual horses, however the majority showed highest disaccharidase activity in the jejunum, 

with some showing highest activity in the duodenum. Sucrase activity is highest in the jejunum and duodenum and lower in the 

ileum. Maltase activity is similar in all three regions, but slightly higher in the jejunum. Lactase activity is low in all three regions 

of the small intestine, slightly higher in the equine jejunum and duodenum than ileum. From this study, we can conclude that the 

equine small intestine digests disaccharides by the brush-border associated disaccharidases sucrase, maltase and lactase. Levels 

of sucrase and lactase are comparable to other species, but maltase is much higher. 
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 الخلاصة
 

بواسطة   فركتوز(-كالكتوز ودي-كلوكوز، دي-)دي اللاكتوز والمالتوز تتحلل الى سكريات أحادية ،لسكريات الثنائية وهي السكروزا

 الهضميةنزيمات  لأا  التغيرات في  التحري عنالهدف من الدراسة هو    والمالتيز.يز، اللاكتيز  وكرالسوهي    المعوي الفرشاتي  الغشاء  أنزيمات

الدقيقة   الأمعاءالفرشاتي من طبقة الغشاء المخاطي المقشوطة من  تم عزل حويصلات الغشاء    .الفرشاتي للامعاء  لغشاءالمعوية الموجودة في ا

 نشاط الإنزيماتحيث بينت النتائج أن    للخيول. أظهرت النتائج أن انزيمات السوكريز، المالتيز واللاكتيز موجودة في الأمعاء الدقيقة للخيول.

اعلى نشاط   إلا أن الغالبية أظهرت  كان هناك تباين واضح بين الخيول  عشر والصائم( وأقل فعالية في اللفائفي.  الأتنى  الثلاثة أعلى تقريباً )في

كون أعلى في الصائم  السوكريز ت أنزيمر. حيث بينت النتائج بأن فعالية كذلك أظهر البعض نشاطاً أعلى في الأثنا عشللأنزيمات في الصائم 

  أعلى قليلاً  الاثنى عشر، الصائم واللفائفي ولكنهاالمالتيز متساوية في كل من  أنزيمية في اللفائفي بينما كانت فعالية اقل فعالعشر و ىثنوالإ

 الصائم والاثنى عشر مقارنة قليلاً في ا أعلى ولكنه الدقيقة الأمعاء أجزاءفي الصائم. بينما كانت فعالية أنزيم اللاكتيز منخفضة في كل 

 الثنائيةالدقيقة في الخيول تهضم السكريات الثنائية بواسطة ألانزيمات  الأمعاءل هذه الدراسة، يمكننا أن نستنتج بأن باللفائفي. من خلا

الثنائية السوكريز والمالتيز مماثلة للأنواع الأخرى  الأنزيماتمستويات ي وأن الفرشات المرتبطة بالغشاء )السوكريز، المالتيز واللاكتيز(

 م المالتيز أعلى بكثير.ولكن مستوى أنزي
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Introduction 
 

In non-ruminant herbivore species, such as horse, the 

natural diet is grass from pasture forage. The large intestine 

(caecum and colon) of horses is an immensely enlarged 

fermentative chamber which contains a uniquely adapted 

microbial population (1-3). The microbial fermentation of 

dietary plant fibre leads to the production of 

monocarboxylates, acetate, propionate and butyrate, often 

referred to as short chain fatty acids (SCFAs). The 

absorption of these SCFAs via the colonic epithelium 

provides a significant proportion of the horse’s energy 

requirements (1-3). Today’s horses are normally fed more 

concentrate-based diets containing high levels of digestible 

carbohydrates (2). It is therefore important that in order to 

prevent intestinal dysfunction, horses are able to digest these 

carbohydrates before they enter the large intestine (3). It has 

been shown in many species that digestible carbohydrates 

are hydrolysed into their component monosaccharides in the 

lumen of small intestine by pancreatic α-amylase and the 

brush border membrane disaccharidases (sucrase, maltase 

and lactase) (4,5). Sucrase hydrolyses sucrose into glucose 

and fructose, lactase hydrolyses lactose into glucose and 

galactose, and maltase hydrolyses maltose into two 

molecules of glucose (6). Glucose and galactose are then 

transported across the brush border membrane (BBM) of 

intestinal enterocytes via the sodium-dependant glucose 

transporter SGLT1 (7-9), while fructose is absorbed into the 

enterocyte via the sodium-independent fructose transporter 

GLUT5 (9-11). These monosaccharides are then transported 

into systemic circulation across the basolateral membrane of 

the intestinal enterocyte via the sodium-independent 

monosaccharide transporter, GLUT2 (4,5,8,10).  

The aim of this study is to investigate expression of 

brush-border membrane carbohydrate digestive enzymes in 

the equine small intestine. 

 

Material and methods 

 

Animals and collection of tissue samples 

Intestinal samples from duodenum, jejunum and ileum 

from 7 mature horses aged 4-6 years were collected from a 

local abattoir in Neston, UK and treated as described by Al-

Rammahi (12). 

 

Brush border membrane vesicles 

From equine small intestinal mucosal scrapings, brush 

border membrane vesicles (BBMV) were isolated using a 

method based on that by (13) as described (3,12). The final 

pellet which containing purified BBMV was homogenized 

by passing through a 27 gauge needle several times in 0.1 

mM MgSO4, 300 mM mannitol, 0.02% (w/v) NaN3 and 20 

mM HEPES/Tris, pH 7.4 buffer. Until used, the BBMV were 

aliquoted and stored in liquid nitrogen. All steps were carried 

out at +4ºC (5,12). 

 

Estimation of protein 

According to the Bio-Rad assay technique, the protein 

concentration was estimated in the BBMVs using its ability 

to bind Coomassie Brilliant Blue G250 in acidic conditions. 

We used the bovine γ-globulin as a standard (12,14,15). 

 

Disaccharidase activity 

In a glass test-tube, 50µl of BBMV was placed (in 

triplicate). The samples were placed in a water bath at 37 ºC 

and allowed to reach temperature as described previously 

(2,3,14). The reaction was started by the addition of 50 µl 

assay mix (depending on which enzyme was being assayed); 

Sucrase - 100 mM NaH Maleate pH 6.0, 56mM Sucrose; 

Lactase - 100 mM NaH Maleate pH 6.0, 56 mM Lactose, 200 

mM para-Chloromercuric Benzoate (PCMB) and Maltase - 

100 mM NaH Maleate pH 6.0, 56 mM Maltose. Then 

incubated at 37 ºC for 15 minutes. The reactions were 

stopped by placing the tubes in a boiling water bath at 100 

ºC for 2 minutes and then cooling them to room temperature. 

1 ml of Solution 1 (Boehringer Mannheim; containing 

Triethanolamine buffer pH 7.6, NADP, ATP and MgSO4) 

and 1.9 ml double distilled H2O were added to each tube and 

the solution mixed.  Finally, 20 µl of Suspension 2 

(Boehringer Mannheim; containing hexokinase, glucose-6-

phosphate dehydrogenase) were added to each tube and the 

reaction mixed and allowed to stand for 15 minutes. 

Afterwards aliquots were placed in 1 ml cuvettes and the 

absorbance of 1 cm path length at 340 nm was measured (U-

2000 Spectrophotometer, Hitachi).  

 

Statistical Analysis 

Data are presented as means ± SEM. Significance 

statistical comparisons were determined by using one-way 

analysis of variance (ANOVA). Results were considered 

significant when P values < 0.05. 

 

Results 

 

Sucrase 

The enrichment (6.6-10.6 fold) of sucrase activity in 

vesicles over homogenate confirmed that the membrane 

vesicles isolated were of BBM. The results showed that 

sucrase specific activity (μmol/min/mg protein) in the 3 

regions of the small intestine of 7 grass-fed horses is highest 

in the proximal small intestine (duodenum and jejunum) 

compared to the distal (ileum) (table 1), and this data is 

represented as a histogram in figure 1. 

 

Maltase 

The results showed that maltase activity (μmol/min/mg 

protein) of 7 grass-fed horses is similar in all regions of the 
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small intestine table 2, and this data is represented as a 

histogram in figure 2. 

 

Lactase 

The finding showed that the lactase specific activity 

(μmol/min/mg protein) in 3 regions of the small intestine of 

7 grass-fed horses is highest in the proximal small intestine 

(jejunum > duodenum) compared to the distal (ileum). Table 

3 shows the lactase specific activity, and this data is 

presented as a histogram in figure 3. 

 

Table 1: Specific activity of sucrase 

 

 

Sucrase Specific Activity (µmol/min/mg protein) 

Homogenate SEM n Vesicles SEM n Enrichment 

Duodenum 0.036 0.006 7 0.380ns 0.078 7 10.6 

Jejunum 0.042 0.010 7 0.395* 0.075 7 9.4 

Ileum 0.033 0.004 7 0.216* 0.029 7 6.6 

Enrichment is fold-increase of sucrase specific activity in BBMV over homogenate, * P  >0.05, ns not significant. 

 

Table 2: Specific activity of maltase 

 

 

Sucrase Specific Activity (µmol/min/mg protein) 

Homogenate SEM n Vesicles SEM n Enrichment 

Duodenum 0.059 0.008 7 0.831ns 0.113 7 14.1 

Jejunum 0.075 0.016 7 0.908ns 0.106 7 12.1 

Ileum 0.086 0.011 7 0.776ns 0.111 7 9.1 

Enrichment is fold-increase of maltase specific activity in BBMV over cellular homogenates, ns not significant. 

 

 
 

Figure 1: Sucrase specific activity in all 3 regions of the 

equine small intestine showing the enrichment in BBMV 

over cellular homogenates.  

 
 

Figure 2: Maltase specific activity in all 3 regions of the 

equine small intestine showing the enrichment of in BBMV 

over cellular homogenates.  

 

Table 3: Specific activity of lactase 

 

 

Sucrase Specific Activity (µmol/min/mg protein) 

Homogenate SEM n Vesicles SEM n Enrichment 

Duodenum 0.030 0.004 7 0.082ns 0.024 7 2.7 

Jejunum 0.029 0.005 7 0.100ns 0.030 7 3.4 

Ileum 0.025 0.005 7 0.047ns 0.006 7 1.9 

Enrichment is fold-increase of maltase specific activity in BBMV over cellular homogenates, ns not significant. 
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Figure 3: Histogram of lactase specific activity in all 3 

regions of the equine small intestine showing the enrichment 

in vesicles over cellular homogenates.  

 

Discussion 

 

The horses’ natural diet, grass from pasture forage, 

undergoes seasonal variation in its soluble (hydrolysable) 

carbohydrate content (16). However, this variation is much 

less than in the natural diet of most omnivores, and is 

certainly less than the difference between grass and the high 

grain (starch) concentrate diets fed to many horses in 

managed environments (3). It has previously been proposed 

that the equine intestine may have a slower or blunted 

adaptive response to dietary change (17), which is be an 

important consideration for the development of dietary-

induced intestinal dysfunction in horses. It is not known 

however if the slower adaptive response is in the digestion 

or the absorption of dietary carbohydrates. Starch is mainly 

hydrolysed in the small intestine by pancreatic α-amylase 

and the intestinal brush-border membrane disaccharidase, 

maltase, to glucose (18,19).  

We can see here that the activity of maltase in the equine 

jejunum (0.908 µmol/min/mg) is up to 3 times higher than 

that in other species such as pig (0.306 µmol/min/mg) and 

cat (0.400 µmol/min/mg) (2) and it is therefore unlikely that 

there is a deficiency in maltase activity limiting starch 

digestion in the horse (20,21). However, it has been shown 

that the levels and activity of α-amylase in the equine 

intestine are low compared to other species (4,5), and it 

would seem probable that the initial breakdown of starch into 

maltose, maltotriose, and α-dextrin is the limiting step of 

starch digestion in horses given concentrate diets containing 

large amounts of grain (22). 

In this study, we compared the activity of disaccharidases 

along the length of the small intestine of horses maintained 

on grass. In the horse small intestine, SGLT1 is only slowly 

upregulated over time, a lag period which may be due to the 

time required for α-amylase upregulation and greater rates of 

starch hydrolysis (3). Studies carried out in other species 

have indicated that there is an adaptive response in amylase 

expression and activity in response to increases in 

hydrolysable dietary carbohydrates (23). This is also true in 

horse, however, the rate of increase is much smaller than in 

omnivorous species such as pigs or even in the carno-

omnivorous dog Kienzle et al (21) suggesting that a longer 

term adaptation period is needed for enhancement in α-

amylase activity in response to increased dietary hCHO in 

horse (22). Increased knowledge of the digestive system of 

the horse, and insight into the underlying mechanisms of 

intestinal adaptation in response to a change in diet, will help 

to improve the development of scientifically-based dietary 

strategies that could be used to modify the capacity of the 

equine intestine to digest hydrolysable carbohydrates with 

the aim of enhancing feed formulation and improving the 

health and welfare of the horse. 

 

Conclusion 

 

From these results it is clear that the equine small 

intestine is expressing disaccharidases in the brush border 

membrane. The equine small intestine is capable of digesting 

disaccharides by the brush-border associated disaccharidases 

sucrase, maltase and lactase. Levels of sucrase and lactase 

are comparable to other species, but maltase is much higher. 
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