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Abstract 

In this paper we use the fixed-point theorem of Latrach, Taoudi and Zeghal under some 

conditions to find a solution for Volterra_Hammerstein integral equation in the Banach space  

  (,   -  ). We use this fixed point theorem with new assumptions. 
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 الممخص

لمحصول عمى حل لمعادلة فولتيرا  تحت بعض الشروط النقطة الصامدة لـلاتراش وتودي وزيكال مبرهة استخدمت

 حيث اننا استخدمنا مبرهتة النقطة الصامدة هذه مع شروط جديدة. . (  -   ,)   هامرستين التكاممية في فضاء بناخ

 .بشكل ضعيف ، المتراصهامرستين، نظرية النقطة الصامدة –معادلة فولتيرا  :الدالةالكممات 
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1. Introduction: 

This paper studies Volterra_Hammerstein integral equations in the Banach space  

  (,   -  ). We get a solution for Volterra-Hammerstein integral equation: 

 ( )   ( )  ∫ (   ) (   ( ))               ,   -

 

 

                                                                  ( ) 

Where     is fixed. Here  ( ) takes values in the space   (,   -  ). Note   

  ,   -    (,   -  ),    ,   -    (,   -  )    (,   -  ) and   ,   -  

,   -   . In this study we investigate the solution of Volterra-Hammerstein integral 

equation in   (,   -  ) using fixed point theorem of K. Latrach, M.A. Taoudi, A. Zeghal 

[1]. We assume that the integral  ∫  ( )  
 

 
  exists. 

Equations of Hammerstein-type play an important role in automation and in the network 

theory and in the optimal control system [2]. 

Equation of  Hammerstein-type was studied by many authors. Aref Jeribi, Bilel Krichen  

and Bilel Mefteh found a solution for equation (1) by using Krasnosel'skii type theorem [3]. 

Mustafa Nader gave conditions that ensure the existence and the uniqueness of the solution 

for equation (1)  in the    space [4]. Authors in [5-8] found sequences converged to the exact 

solution of equation (1) under such assumptions. 

2. Preliminaries: 

At the beginning define the nonlinear operator 

  ( )   ( )  ∫  (   ) (   ( ))   
 

 

 

In the sequel we need the conditions below: 

H1:  If (  )     is a weakly convergent sequence in   (,   -  ), then  (   )    has a 

strongly convergent subsequence in   (,   -  ). 

H2: ∫ ‖ (   ) (   ( ))‖
 

 
     ‖ ( )‖                    ,   -  

H3:   ( )   ( )    , where   ( )  ∫ ‖ ( )‖                  (‖ ( )‖    
 

 
  ,   -)  

H4: ∫ ‖ (   )( (   ( ))   (   ( )))‖    
 

 
 ‖   ‖, 
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where       

H5:  ( ( ))     .∫  (   ) (   ( ))
 

 
/           ( ( )    .∫  (   ) (   ( ))

 

 
/        

,   -     

where T is any linear functional on   (,   -  ). 

If  ( )    then the above conditions H1, H2, H3, H4 and  H5 will be satisfied. 

Theorem 1: ([1], Theorem. 2.1.) Let   be a nonempty closed convex subset of a Banach 

space  . Assume that        is a continuous function which satisfies (  ). If  ( ) is 

relatively weakly compact, then there exists       such that       . 

 

Theorem 2: [9] If          satisfies the Lipschitz condition, then f is uniformly 

continuous on A. 

 

Theorem 3: ([10], Theorem 3,  Robert C. James). A bounded closed convex subset   of a 

Banach space is not weakly compact if and only if there is a positive number   for which 

there exists a sequence *  + of members of  , and a sequence *  + of linear functionals with 

unit norms, such that    (  )       if          and    (  )      if           

3. Main Result: 

We now in a position to give the following result: 

Theorem 4:  Under conditions H1, H2 , H3 , H4  and H5  the equation (1) has at least one 

solution. 

Proof: the proof is based on theorem 1. 

Define  

  * ( )    (,   -)  ‖ ( )‖   ( )                    ( )   +  

Where    is linear functional in   (,   -  ). We can see the set C is nonempty because 

     

  is closed bounded convex set. Indeed, since  

‖ ( )‖   ( )      ( )   ( )   ( ) 
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     ∫  ( )
 

 

    ( )  ∫  ( )    
 

 

  

This mean that   is closed and bounded, let            , now we have to prove that for 

any    (   ) and for every pair                 (   )      .  Without loss of 

generality we suppose that        which implies that both             are positive 

    (   )        (   )     , 

and  

    (   )       (   )     . 

Therefore       (   )     ,  hence    is convex set. 

If one prove that        , continuous satisfy H1, and N( C )  is relatively weakly 

compact then  Theorem 1  guarantees equation (1) has at least one solution.  

We start to show that          . by using  H2 and H3: 

‖ ( ( ))‖   ‖ ( )  ∫  (   ) (   ( ))  
 

 

‖ 

   ‖ ( )‖  ∫ ‖ (   ) (   ( ))‖  
 

 
 

       ‖ ( )‖       ( ) 

       ( )      ( )  

Now by H5 

 ( ( ))   ( ( ))   (∫  (   ) (   ( ))  
 

 

)    

Therefore         . 

Now we prove             is continuous by H4: 

‖     ‖  ‖ ( )  ∫  (   ) (   ( ))    ( )  ∫  (   ) (   ( ))  
 

 

 

 

‖ 

 ∫ ‖ (   )( (   ( ))   (   ( )))‖  
 

 

 

  ‖   ‖. 
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By theorem 2           is uniformly continuous, therefore continuous. 

Now we show that   (   )   is relatively weakly compact. Since   ( ( ))      for all    

is a linear functional, therefore by theorem 3   ( )  is weakly compact and so it is relatively 

weakly compact. 

4. Conclusions: 

Equation of Hammerstein type has a solution under such assumptions. We get the same 

result that obtained by G. Emmanuele [11] but in different assumptions. The author assumed 

in [11] that   is a Caratheodory function such that   maps    (   ) into    (    ) (where 

(  )( )     (   ( )) and   is a compact subset of   ), continuously, and   is a measurable 

function such that the functions      (   ) belong to     and   ( where (  )( )   

 ∫  (   ) ( )  
 

 ) is a linear, continuous operator from    (    ) into    (   ), where     

are finite dimensional Banach spaces and use the Schauder fixed point Theorem with 

conditions in [11]. But we assume that   ,   -    (,   -  ),   ,   -    (,   -  ), 

  ,   -    (,   -  )    (,   -  ) and   ,   -  ,   -    and  we use of  Latrach,  

Taoudi  and  Zeghal fixed point theorem with conditions (H1-H5). 
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