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Abstract 

 There are many statistical methods related to the forecasting of time 

series without any input variables such as autoregressive integrated moving 

average (ARIMA models). In this research, some linear dynamic systems, 

represented by ARIMA with exogenous input variables (ARIMAX models) 

were used to forecast crude oil prices (considered as output variable) for 

OPEC organization with the help of crude oil production (considered as 

input variable) depending on the data starting from the period of 1973 until 

2018. Using traditional ARIMAX method and proposed method (Bivariate 

Wavelet Filtering) for the time series data in order to select one of them for 

forecasting through comparing some measures of accuracy, such as MSE, 

FPE, and AIC. Then, applying crude oil prices for OPEC using the 

traditional ARIMAX models and ARIMAX models with applying the 

bivariate wavelet filtering, especially bivariate Haar wavelet. The main 

conclusions of the research were that the success of bivariate wavelet 

filtering in forecasting of crude oil prices using proposed model was more 

appropriate than traditional models, and the forecasting of crude oil prices 

using proposed method in 2020 will be fairly less than 2019.  

Keywords: Time Series, linear dynamic systems ARIMAX models, 

Wavelet transformation, Bivariate Wavelet Filtering 
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تحليل بعض النماذج الديناميكية الخطية مع المويجات الثنائية\  

 الملخص

ٍخغٍشاث  تزٍٍْت دوُ أٌاىق الإدصائٍت اىَخعيقت فً اىخْبؤ باىسيسيت ائهْاك اىعذٌذ ٍِ اىطش

فً هزا و(. ARIMA) َّارجّذذاس اىزاحً اىَخناٍو ىلأوساط اىَخذشمت َّىرج الاأداخيت ٍثو 

ٍع ٍخغٍشاث  ARIMAَّىرج ئباىَخَثيت بعض الأّظَت اىذٌْاٍٍنٍت اىخطٍت حٌ إسخخذاً اىبذث، 

مَخغٍش  عذسخخذٍج ىيخْبؤ بأسعاس اىْفط اىخاً )ٌا فقذ(،ARIMAXاىَذخلاث اىخاسجٍت )َّارج

اعخَادًا عيى اىبٍاّاث اىخً حبذأ ومَخغٍش ٍسخقو(  ذحابع( ىَْظَت أوبل بَساعذة إّخاج اىْفط اىخاً )ٌع

والأسيىب اىَقخشح )ٍششخ  ARIMAX . باسخخذاً اىطشٌقت اىخقيٍذٌت2012دخى  1793ٍِ اىفخشة 

ىيخْبؤ ٍِ خلاه ٍقاسّت بعض  اإدذاهَخخٍاس اىبٍاّاث اىسيسيت اىزٍٍْت ٍِ أجو اىَىٌجاث اىثْائٍت( 

 .MSE ، FPE ، AIC ٍقاٌٍس اىذقت ٍثو
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اىخقيٍذٌت  ARIMAX سعاس اىْفط اىخاً لأوبل باسخخذاً َّارجاثٌ حطبٍق 

ٍىٌجت هاس اىثْائٍت  وخصىصاً  ،ٍششخ اىَىٌجاث ثْائٍت اىَخغٍش ٍع حطبٍق  ARIMAXوَّارج

(Haar .)ّجاح ٍششخ اىَىٌجاث ثْائٍت  أٌُ تخْخاجاث اىخً حىصيج اىٍها اىذساسالاس هٌأً ٍِ و

َت ٍِ اىَْارج ئاىْفط اىخاً باسخخذاً اىَْىرج اىَقخشح ماّج أمثش ٍلا اىَخغٍش فً اىخْبؤ باسعاس

ٍا عًاً أقو ّى 2020اىخقيٍذٌت، وسٍنىُ اىخْبؤ بأسعاس اىْفط اىخاً باسخخذاً اىطشٌقت اىَقخشدت فً سْت 

 ٍِ2017. 

حذىٌللو  ، ARIMAXَّللارج ، الأّظَللت اىذٌْاٍٍنٍللت اىخطٍللت ،اىسلاسللو اىزٍٍْللت  الكلمااات اليئي:ااة 

 .ٍششخ اىَىٌجت اىثْائً، اىَىٌجاث 

1. Introduction 

An important field of Statistics is Time Series Analysis which could 

be used in many other scientific fields in order to make future planning and 

management for governmental and non-governmental institutions. It deals 

with the methods and theory involved in analyzing datasets which are 

collected over time and helps to understand the past behavior of 

phenomena. It can be used for comparison between two or more times 

series concerning the type of growth, for instance growth in crude oil 

prices, consumption of a product, etc.  

Forecasting of Linearly time series analysis is a famous developed 

method that  researchers use in their forecast, but in the actual world most  

data systems are nonlinear, which demonstrates itself in a much larger 

extents of possible dynamical behaviors (Brockwell and Davis, 2016). 

Also, it is clear that models based on the time series only, without taking 

any related input variable into consideration, could not be accurate. 

Therefore, more accurate models are taken by integrating exogenous input 

variables into the model which is called Linear Dynamic Systems (Nelles, 

2001). 

The linear dynamic systems (LDS) model is the most commonly 

used time series model for economic, engineering, financial, and medical 

applications because of its respective simplicity, mathematically 

predictable behavior, inference, and predictions could be done effectively 

for the models. It is possible to identify LDS models using parametric and 

nonparametric models, and both are divided into time domain models and 

frequency domain models. Time domain models consist of equation error 

models and output error models. Equation error models are the study‟s 

goal Thus, the equation error models is divided into ARX, ARMAX, and 

ARARX (Nelles, 2001; Saaed , 2015;  ،2019أبىىبذة ).   

The ARIMAX models can be utilized to enhance the forecasting of 

output series (Y), through  applying the past data of both the Y series and 

the exogenous input series (X). That is especially right if the input series is 

an important indicator (Wei, 2006).   
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In human  life, data are used to deal with daily work in any field and 

very important to organize life, but analyzing and forecasting of these data 

need some processing such as denoising in order to reduce contamination 

through using many filtering methods, such as wavelet filtering transform. 

The wavelet transform is a new mathematical tool developed mainly since 

the mid-1980‟s (Sheng, 2000). The first such use of wavelets was in 

geophysics for analyzing seismic surveys that are used in oil and mineral 

exploration in order to get pictures of layering in subsurface rock. 

Geophysicists rediscovered them; mathematicians had developed them to 

solve abstract problems some 30 years earlier, but had not anticipated their 

applications in signal processing (Boggess and Narcowich, 2009). 

There are many types of wavelet transforms such as Continuous 

Wavelet Transform (CWT), Discrete Wavelet Transform (DWT), Fast 

Wavelet Transform, etc. The DWT has many attractive qualities that make 

it a good method for time series, displaying features that change in both 

time and frequency. Haar Wavelet is one of the DWT that was used first by 

its creator Alfred Haar in 1910. 

In the practical part of this study, applying two forecasting methods 

represented by traditional and researcher‟s proposed methods on real data 

for forecasting yearly crude oil prices with helping of input exogenous time 

series variable represented by crude oil production for the Organization of 

the Petroleum Exporting Countries (OPEC).  

The main objectives of this research are denoising contaminated data 

using bivariate wavelet filtering in estimation of some linear dynamic 

systems and forecasting them, yearly crude oil prices forecasting for OPEC 

Organization using traditional and proposed methods, and comparison 

between these two methods in order to obtain best model using statistical 

measurements. 

The great importance of this research is that many institutions and 

organizations headed by OPEC Organization, governmental bodies and 

private bodies, ministry of planning, ministry of finance and economy can 

benefit from it, and use it as the basis of future strategic plans. 

2. Methods and Materials   
In this section, time series analysis will be discussed with dynamic 

system models including ARIMAX models and then bivariate wavelet also 

will be discussed. So, this section describes theories and models that will 

be applied in practical section of the research. 

2.1 Time Series Analysis and Linear Dynamic Systems 

One of the most important fields of future estimation is time series, It 

is a data collection recorded over a period of time such as weekly, monthly, 
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quarterly, or yearly. An analysis of history can be used by administration to 

make present decisions and plans depending on long-term forecasting. 

Usually a researcher can assume that past patterns will continue into the 

future (Cryer and Chan, 2008). 

Time series is a set of repeated observations of the same variable 

over time (Cochrane, 2005). Time series, as a stochastic process, is an 

ordered sequence of observations made sequentially in time. The most 

important feature of such data is the likely lack of independence between 

successive observations in time. Time series data can be univariate 

(contains one random variables) or multivariate (more than one random 

variable) (Akpanta and Okorie, 2014).  

 

2.1.1 Linear Dynamic Systems (LDS) 
These types of models are the most common, it is also known as 

Black Box models. In general, the models of LDS are an expansion of the 

time series models by adding the input variable (x) to them, as shown in 

Figure 1, because the time series models are usually not accurate, and 

divided LDS models into two parts: Equation error models and Output 

error models (Andersen, 1997; Isermann and Münchhof, 2010; Nelles, 

 .(2017,اىششابً ;2001

 
Figure (1): Dynamic System with Input xt, Output yt and Disturbance 

   
 

2.1.1.1 Equation Error Models 

 This type includes ARX and ARMAX models، and is characterized 

by the existence of a polynomial order  ( ) as the dynamic denominator 

of the input transform function and the noise transform function. This is in 

line with the fact that noise does not affect directly on the output of the 

model, but instead enters the model before the 
 

 ( )
 filter, where  ( ) is 

presented in Equation 1 (Ljung, 1999).  

   
 

 ( )
  … (1) 

system + 

Disturbance:    

Output: yt Input: xt 



]68Iraqi Journal of Statistical Science (30) 2019                                      [ 

 
 

where:  ( )           
       

  

a) Autoregressive with exogenous input (ARX) model 

This model represents the simple relationship between the input and 

output, (see Figure 2) provided by the linear difference Equation 2, which 

is also sometimes called the equation error model due to its description of 

white noise as a discrete error (Ljung, 1999; Edrees, 2015; شعٍث وجَعت  

,2017): 

   
  ( )

 ( )
   

 

 ( )
    … (2) 

where  ( ) and  ( ) are the transfer functions of the deterministic part 

and the stochastic part, respectively and    is the input signal,    is the 

output signal, and    is the white noise (equation error). 

Thus, Equation 2 could be rewritten as shown below:  

 ( )     ( )     … (3) 

                                               
                    … (4) 

The orders of the above model are na and nb, whereas nk is the model 

time delay. 

By introducing B-notation, which is widely used in the system 

identification literature for the sake of compatibility with the traditional 

definition of the B transform (Backshift Operator), the numerator and 

denominator of Equation 2 can be defined as the following polynomials 

(Ljung, 1999):  

 ( )           
        

      
and 

 ( )     
      

           
           

It is possible to forecast the output variable using the its previous 

observations, as presented in the following formula: 

                                                
                  … (5) 

 

 

Figure (2): ARX Model Structure (Nelles, 2001; Ljung, 2001) 

 

  ( ) + 
 

 ( )
 

xt yt 
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It should be noted that the „AR‟ part of „ARX‟ denotes the autoregressive 

part  ( )   while the letter „X‟ denotes the extra input  ( )  . 
 

b) Autoregressive Moving Average with Exogenous input model 

(ARMAX) 

The main problem with the ARX models is the limited scope for 

defining of the disturbance term. ARMAX models overcome this problem 

by defining the equation error as a Moving Average (MA) of the white 

noise in the ARX models (Roubal, 2009; Nelles, 2013). The ARMAX 

model is presented in Equation 6 and its flowchart is depicted in Figure 3. 

   
  ( )

 ( )
   

 ( )

 ( )
   … (6) 

where   ( ),  ( ) and  ( )are the transfer functions of the deterministic 

part and the stochastic part respectively, while    is the input variable,    is 

the output variable, and    is the white noise (Saaed, 2015).  

The numerator and denominator of Equation 6 could be defined as the 

following polynomials (Wei, 2006; Lee, 2010): 

 ( )           
        

    

 ( )     
      

           
        

 ( )           
        

    
where na,nb and nc, are the orders of model, whereas nk is the model time 

delay. 

It is possible to rewrite Equation 6 in another way, and it is as follows 

(Ljung, 2001):  

 ( )     ( )    ( )  … (7) 

 

 

Figure (3): ARMAX Model Structure (Nelles, 2001; Ljung, 2001) 

 

The above ARMAX model is the most general among the models, because 

it has some special case (Nelles, 2001;  ً2017,اىششاب) : 

xt yt 
  ( ) + 

 ( ) 

   

 

 ( )
 



]89Iraqi Journal of Statistical Science (30) 2019                                      [ 

 
 

1) When  ( )    and  ( )   , AR model will be obtained. 

2)When  ( )         ( )   , MA model will be obtained. 

3)When  ( )         ( )   , FIR
1
 model will be obtained. 

4 When  ( )   , ARX model will be obtained. 

5)When  ( )   , MA model will be obtained. 

 

It is possible to model the equation error as an autoregressive in 

which case the gotten model will be called an ARARX model if the 

equation error was modeled using the AR approach (instead of an 

additional MA filter  ( ), it possesses an additional AR filter 
 

  ( )
 of the 

disturbance), or an ARARMAX model if an ARMA approach was used 

(Nelles, 2001).  

It is possible to forecast the output variable using its previous 

observations, as presented in the following formula: 

                                                
                                             … (8) 

 

2.2 Wavelet Analysis 

Wavelets become very useful when applied to many problems, 

including analysis of time series (in acoustics, geology, filtration and 

forecasting in meteorology and economics), effective data storage, 

especially images (computer graphics, image animation in movie industry). 

Lately, a very fast development of wavelet based data mining techniques 

may be observed (Percival and Walden, 2006). One of the duties of 

knowledge discovery preprocessing is noise reduction. The goal of this 

sub-process is to separate the noise from the signal and then to reduce or 

remove the noise. The definition of a noise stays unclear because for some 

physical processes, it is difficult to clearly define it. In this research, it is 

assumed that the goal of filtering is to change the input signal in such a 

manner that the values of a time series are changed but the characteristic of 

signal stays the way it was. Most commonly used methods consider 

statistical approach or involve Fourier transform (Kozłowski, 2004; Yu et 

al., 2001). 

There are two functions that play a primary role in wavelet 

analysis, they are the wavelet function ψ and the scaling function ϕ. 

These two functions generate a family of functions that can be used to 

reconstruct a signal. To emphasize the "marriage" involved in building 

this "family", ϕ is sometimes called the "father wavelet", and ψ is 

indicated to the "mother wavelet” (Boggess and Narcowich, 2009). 

                                                           
1
 FIR: Finite Impulse Response. 
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2.2.1 Wavelet Properties 

Wavelet is a small wave that grows and decays in a limited time 

period instead of being a wave that goes on forever, such as sinusoidal 

waves which are determined on a whole time domain (−∞,∞) as seen in 

Figure 4 (Percival and Walden, 2000; Kozłowski, 2005). 

 
Figure (4): Difference between Wave and Wavelet (Chan, 1995) 

 

Let ψ be a real function of a real variable   which fulfills the 

following conditions (Kozłowski, 2005): 

∫  ( )    
 

  
   … (9) 

and 

∫   ( )    
 

  
    … (10) 

Condition 10 means that for any      , there is an interval (−T,T) such 

that ( 2007اىزبٍذي،  ): 

∫   ( )          
 

  
…(11) 

Equation 11 is meaning the following also: 

∫   ( )   
  

  
 ∫   ( )   

 

 
  … (12) 

If ε is close to 0, it may be seen that only in an interval (−T, T) 

corresponding to this ε values ψ( ) are different than 0. Outside of this 

interval they must be equal to 0. Interval (−T, T) is small compared to an 

interval (−∞,∞), on which a whole function is determined. Equation 9 

implies that if ψ( ) has some positive values, it also has to have some 

negative ones (a function “waves”). Therefore Equations 9 and 10 

introduce a concept of a wavelet (small wave). 

There is another property of wavelets which is the admissibility 

condition and it is as follow (Sheng, 2000): 

∫
| ( )| 

| |
     … (13) 

This can be used to first analyze and then reconstruct a signal without loss 

of information. In (13)  ( ) stands for the Fourier transform of  (t). 
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The admissibility condition implies that the Fourier transform of   (t) 

vanishes at the zero frequency, i.e.  | ( )| |
   

       

There are different Wavelet types of transformations that are used to 

suit different practical applications, such as (Hubbard, 1996;  عبذاىقادس

,2011): 

 Continuous Wavelet Transform (CWT) 

 Discrete Wavelet Transform (DWT) 

 Fast Wavelet Transform 

 Wavelet Packet Transform 

 Stationary Wavelet Transform 

  

2.2.2 Discrete Wavelet Transform (DWT) 

One of the most important transforms that is used in wavelets is 

DWT. This kind of transform and its variants are applied in a wide variety 

of disciplines, such as geology, turbulence, atmospheric science, applied 

mathematics, etc.(Gencay et al., 2002). Therefore, the researcher tried to 

provide a broad idea about this type of wavelet transforms as an 

introduction of the practical see then chapter of this research and using it 

with time series analysis because it is a basic tool required for time series 

studying through wavelets. 

The difference between CWT and DWT is that the DWT is obtained 

by using a finite number of scales instead of making transform for all 

scales. Discrete wavelets are again formed from a mother wavelet, but with 

scale and shift in discrete steps. The DWT makes the connection between 

wavelets in the continuous time domain and “filter banks” in the discrete 

time domain in a multiresolution analysis framework. Mathematically, the 

difference between CWT and DWT is in the mother wavelets (ψ), where t 

and λ will be transformed into                (Chui, 1992; 

Vidakovic, 1999):  

    ( )  
 

√  
 (

     

  
)   … (14) 

where: 

 : Scale level parameter. 

k: Shift parameter. 

There are many types of wavelets, such as Haar, Daubechies, Meyer, 

Koiflets, Morlet, Shannon, Franklin, etc. (Daubechies, 1992, Grossmann 

and Morlet, 1984). In the next section, the researcher will discuss only one 

kind of these wavelets which is called Haar wavelet, because of its 

simplicity and easiness by most researchers and compatibility with the data 

that is used in practical part. 
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2.2.3 HAAR Wavelet  

First wavelet filter was introduced by the  Hungarian mathematician 

Alfred Haar in 1909 – 1910 (Haar, 1910). The Haar wavelet is one of the 

earliest examples of what is known now as a compact, dyadic, and  

orthonormal wavelet transform. The Haar wavelet, being an odd 

rectangular pulse pair, is the simplest and oldest orthonormal wavelet with 

compact support (Stankovic and Falkowski, 2003). There are two functions 

that have great roles in this wavelet, they are Scale function ( ) and 

wavelet function or mother wavelet ( ). The scale function could be 

defined as follows (Burrus et al., 1998; Cheng, 2011; Morettin et al., 2017; 

Debnath and Shah, 2017): 

 ( )  {
                         
                            

    … (15) 

whereas, the mother wavelet could be written as follows: 

 ( )( )  {

                 
 

 

              
 

 
    

                       

         … (16) 

The following figure shows the Scale function and wavelet function 

(mother wavelet) (Burrus et al., 1998). 

 
Figure (5):  Haar Wavelet Type Describing Scaling Function and 

Mother Wavelet  

 

The Haar wavelet has the following characteristics: 

1. Compact Support 

2. Orthogonal 

3. Biorthogonal 

4. Symmetric 

As a result of wavelet transform, it could be obtaining a set of 

wavelet coefficients calculated at different levels (scales) and in a wide 

range of observation points. There are many ways of doing this, two most 

often applied are orthonormal DWT and its slightly modified version which 
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preserves scales but calculates wavelets in more densely chosen 

observation points (Kozłowski, 2005). 

  

2.2.4 Wavelet Shrinkage 

One of the most explored signal smoothening or cutting method 

utilizing wavelets is Wave Shrink method. Most of the applications of 

wavelet shrinkage deal with a single run of a time series expressed in a 

regression fashion: data = signal + noise (Donoho and Johnstone, 1995; 

Morettin et al., 2017). The method is composed of three main steps 

(Raimondo, 2002; Kozłowski, 2005): 

1) Apply the discrete wavelet transform DWT: At the beginning the 

observed time series is transformed into the wavelet space by DWT.  

2) Shrink the wavelet coefficients towards zero: In step two wavelet 

coefficients are modified, reduced according to the selected 

shrinkage function and a given threshold value. To accomplish this, 

one of three shrinkage functions may usually be used to establish 

how to modify wavelet time series coefficient.  

3) Inverse DWT is applied on wavelet coefficients and as a result 

smoothened original signal (with reduced noises) is derived. 

Shrinkage functions are formulas that define a correction coefficient 

  ( ), which is subtracted from the corresponding wavelet coefficient. 

Calculated correction is relevant (different from 0) for those wavelet 

values, which exceed a given threshold parameter λ (Kozłowski, 2005). 

 

 2.2.5 Threshold Level 

Thresholding allows the data itself to decide which wavelet 

coefficients are significant. There are some types of thresholding, such as 

hard thresholding is a „keep‟ or „kill‟ rule that has discontinuous function, 

soft thresholding is a „shrink‟ or „kill‟ rule that has a continuous function. 

In addition to these two types, there are many others, such as semi-soft 

shrinkage (firm shrinkage), mid shrinkage, non-negative Garrote, etc. and 

as long as the shrinkage function preserves the sign (    (  ( )  
    ( ))),  and shrinks the magnitude (|  ( )|  | |) one can expect a 

denoising effect (Antoniadis, 2007). 

Mathematically wavelet coefficients are estimated using the 

following thresholding levels (Kozłowski, 2005): 

 

 

 

 

2.2.5.1 Hard Shrinkage Function: 
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 ( )  {

        | |   
         | |    

     … (17) 

Subtracting this correction reduces those wavelet coefficients of the 

wavelet time series, which exceed threshold value, to zero. 

 

2.2.5.2 Soft Shrinkage Function: 

  
 ( )  {

               | |   
               
              

        … (18) 

By subtracting   
  correction considered wavelet time series coefficients are 

reduced to λ for positive coefficients and to –λ for negative ones. 

 

3. Main Results and Discussions 
Nowadays, fluctuations of crude oil prices have great impacts on the 

budgets of OPEC exporting countries. Therefore, it is a very important to 

find the  best forecasting model to determine future prices for crude oil in 

order to create optimum plans for these countries to increase their 

economic growth while on the other hand , attempting to determine the best 

forecasting ARIMAX models with and without bivariate wavelet filtering 

for time series data. 

This section will be divided into sub-sections that are related to data 

analysis for the comparison of the effects of bivariate wavelets on time 

series forecasting of the yearly crude oil prices for OPEC organization. 

Depending on the objectives that were stated in this research, linear 

dynamic systems have  been used in this section to make the forecasts 

before and after treating of data contamination problem. The obtained data 

were processed and analyzed through some packages, such as MATLAB & 

SIMULINK R2018b, SPSS v25, EasyFit v5.4, and Microsoft Excel 2016. 

 

3.1 Data collection and Information about OPEC 

The yearly crude oil prices and production of OPEC organization 

countries have been extracted from the U.S. Energy Information 

Administration (EIA) organization that is working as an international 

agency for collecting, analyzing, and publishing worldwide energy 

information (EIA, 2019). The yearly time series for the prices and 

production starts from the period of 1973 to 2018. The yearly crude oil 

price is in US dollar per barrel (Dollar/d) and the yearly production is in 

million barrels per day (Mb/d) for all OPEC members together. 
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Crude Oil is one of the most important raw materials in the Middle 

East. Everyday people are using hundreds of things that are made from oil 

or gas, such as petrol for automobiles, gas for cooking and heating, electric 

power supply, street pavement, clothes, etc. Therefore, the production and 

prices of crude oil products are considered as essential economic and 

political information needed for governments and citizens nowadays in 

order to organize their plans and intentions for the future. 

One of the most important organizations in the field of crude oil 

production and exporting is the OPEC. This organization was created in 

Baghdad  on September, 1960 with a total of 5 founding members (Iraq, 

Iran, Kuwait, Saudi Arabia, and Venezuela). It is a permanent, 

intergovernmental Organization consisting of the following countries
2
: 

Iraq, Iran, Kuwait, Saudi Arabia, Venezuela, Libya, United Arab Emirates, 

Algeria, Nigeria, Ecuador, Angola, Gabon, Equatorial Guinea, and Congo. 

The Purpose of establishing this organization is to merge oil policies 

among the members of these countries, so as to keep prices stable and 

steady supply of crude oil to importing countries (OPEC Organization, 

2019). 

3.2 Data Presentation and Processing 

Presentation of any time series data is very important at the 

beginning of time series analysis in order to discover its properties, such as 

trend, seasonality and cyclical fluctuations. Therefore, it is clear from the 

time series plot that the crude oil price and production data are not 

stationary, i.e. the data have trend and an overall fluctuation. As seen in 

Figure 6, ADF test will be used to identify the stationary of these time 

series data. 

                                                           
2
 Qatar joined OPEC in 1961, but cancelled its membership in January 2019. Indonesia joint OPEC 

in1962 deactivated its membership in 2009, reactivated it in 2016, again decided to deactivate it in 2016. 
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Figure (6): Yearly Crude Oil Prices and Production of OPEC 

Organization (1973 – 2018) 

 After observing the time series plot of the data, it is clear that they 

are not stationary. In order to be confident, it is better to use ADF test for 

determining whether the time series data is stationary or not, that is, the test 

of the following hypothesis: 

H0: The time series has a unit root (Non-stationary) 

H1: The time series does not have a unit root (Stationary) 

Table 1 shows the ADF test results where the p-value of both 

variables is greater than 0.05, i.e. not rejecting of null hypothesis (None of 

the two variables are significant). Thus, the two- time series are not 

stationary and should make transformation to convert them to stationary 

through differencing, detrending, or any other method. 

Different kinds of transformation are used and, at the end the best 

transformation method for the two time series to be stationary was 

detrending method. The ADF test was reused and reveals that the two 

variables are stationary because the p-values were less than 0.05, i.e. 

rejection of unit root hypothesis, as presented in Table 1.  

  

Table (1): ADF test for Crude Oil Price and Production data of OPEC 

(before and after Detrending) 

Time series 

ADF test 

P-value before 

Detrending 

P-value after 

Detrending 

Crude Oil Production (X) 0.785 0.0326 

Crude Oil Prices (Y) 0.525 0.0300 
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It is obvious from figure 7 that the 2 variables are stationary in spite of 

cyclic variations.  

 

 
Figure (7): Detrended Yearly Crude Oil Prices and Production of 

OPEC Organization (1973 – 2018) 
 

3.3 Model Identification and Fitting 

 In this section, model identification through System Identification 

Toolbox (SIT) will be used in order to forecast the time series data using 

traditional and proposed methods. 

3.3.1 ARMAX Model Identification without Bivariate Wavelet 

Filtering  

In this stage of LDS, the researcher will try to identify the best model 

and fit it to the processed data using SIT toolbox in MATLAB. The 

following steps are taken into consideration to find the best model:  

1) Normality testing of model‟s variables (Input and output variables) 

using EasyFit program. 

2) The processed input and output data are entered to the SIT; 

3) Selecting time domain data type for model identification;  

4) Estimation of the parameters of polynomial model;  

5) SIT will automatically select the order of the model (na, nb, nk) for 

ARX models; 

6) Choosing the best model through the accuracy criteria, such as MSE, 

AIC, MAPE, etc.;  
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7) Finally, drawing ACF for model‟s errors and CCF for input variable 

and model‟s errors in order to validate the adequacy of the model and 

randomness of errors. 

8) At the end, normality testing of model‟s errors using EasyFit program.  

 

The above steps will be applied for ARX models without 

undertaking bivariate wavelets filtering of the datasets. In case of 

undertaking the data filtering, it will be conducted after the first step. 

The normality test for input variable (Crude oil production) using 3 

goodness of fit tests: Kolmogorov-Smirnov test, Anderson-Darling test, 

and Chi-Squared test. It appears from all these tests that the input variable 

is distributed normally at α = 0.01, i.e. could not reject null hypothesis. 

Concerning the normality test for output variable (Crude oil price), it is also 

normally distributed at α = 0.01, meaning not rejecting null hypothesis. 

Based on ARX model parameters and MATLAB‟s SIT
3
, from 1000 

models, the system selected best-fit models according to the accuracy 

criteria and number of parameters (MATLAB will present best-fit models 

that the number of their parameters do not exceed 20). The name of the 

parametric model contains the model type, poles numbers, zeros, and time 

delays. For instance, the ARX10106 model is an ARX model with na = 10, 

nb = 10, and a delay of 6 samples.  

Based on the model identification results, seen in Table 2, best ARX 

model is ARX (10,10,6) with a fitting percentage criterion equal to 70.22%, 

MSE – 34.32, FPE – 163, and AIC – 353.18. It appears from FPE column 

in Table 2 that the best ARX model is not ARX (10,10,6) but ARX 

(10,2,9).     
 

Table (2): Best 10 ARX Models According to Accuracy Criteria 

Models AIC FPE MSE Fitting 

ARX(10, 10, 6) 353.18 163.00 34.32 70.22 

ARX(10,  9, 6) 353.93 160.73 36.43 69.32 

ARX(  9,  9, 6) 362.13 182.48 47.49 64.97 

ARX(10,  3, 8) 358.57 156.94 52.31 63.24 

ARX(10,  2, 9) 356.91 149.31 52.70 63.10 

ARX(  9,  7, 6) 365.46 188.31 55.70 62.07 

ARX(  9,  8, 7) 368.88 206.81 57.45 61.48 

ARX(  9,  5, 6) 365.10 180.86 60.29 60.54 

ARX(  9,  6, 7) 369.75 203.20 63.86 59.38 

ARX(9, 2 ,9) 364.90 173.61 68.39 56.97 

                                                           
3
 For more information about SIT, see (Ljung, 2016).  
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Therefore, after estimating the parameters of the ARX(10, 10, 6) model 

through MATLAB, it could be written as presented in the following 

formula: 

 ( )    ( )      
where:  ( )                                       

                                             
          
and  

 ( )                                            

                                     

          
The above selected ARX model has  random residuals and 

uncorrelated residual values with the exogenous input variable, as 

presented in Figures 8 and 9. It is clear from Figure 8 that the 

autocorrelation values within the confidence intervals, and also Figure 9 

describes the cross-correlation of these residuals with the input variable. 

Both correlations are within acceptable intervals. 

 

 
Figure (8): Residual’s 

Autocorrelation for ARX(10, 10, 

6) Model 

 
Figure (9): Cross-Correlation 

Residuals for ARX(10,10,6) Model 

with of Input Variable 

 

Now, it is possible to test the error term for normality test. It appears 

that the normality test for it using 3 goodness of fit tests: Kolmogorov-

Smirnov test, Anderson-Darling test, and Chi-Squared test is distributed 

normally at α = 0.01. 

3.3.2 ARX Model Identification with Bivariate Wavelet Filtering 

After finding an appropriate ARX model for the time series data 

which is related to crude oil price for OPEC with the help of exogenous 

input variable (Crude oil production), the researcher will try to use a 

proposed method for cleaning contaminated data (Denoising data) through 

appropriate bivariate wavelet filters for the time series data using 

MATLAB, and then forecasting it.  

Many bivariate wavelet filters are used for the stationary two datasets 

such as Haar wavelet, Discrete Meyer wavelet (demy), Daubechies 
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wavelet, and Coiflets (coif) wavelet. At the same time, many Threshold 

levels are used with these wavelet methods, such as Fixed Form threshold, 

SURE Threshold, Cross-Validation, and Minimax threshold. Also, for each 

threshold level there are soft and hard thresholding rules. That means that 

more than 30 different combinations of bivariate wavelet filters are used on 

the two datasets, and then using ARX models on the filtered datasets 

(transformed data). 

The most appropriate bivariate wavelet method is Haar wavelet 

method with fixed form thresholding level and soft thresholding rules. In 

order to start applying ARX models, the stationary test is used to be 

confident that the 2 datasets are still stationary. The ADF test was used and 

reveals that the two datasets are stationary because the p-values were less 

than 0.05, i.e. rejection of unit root hypothesis.  

The normality test for input variable (Crude oil production) after 

undertaking wavelet filtering for it using 3 goodness of fit tests: 

Kolmogorov-Smirnov test, Anderson-Darling test, and Chi-Squared test, it 

appears from all these tests that the input variable is distributed normally at 

α = 0.01. Concerning the normality test for the output variable (Crude oil 

price), it appears that it is normally distributed at α = 0.01, meaning do not 

rejecting null hypothesis. 

As presented in Figure 10, the Bar that is highlighted on the plot in 

red colour indicates a type of best-fit criteria that minimizes the sum of the 

squares of the difference between the validation data output and the model 

output. 

 

 
Figure (10):  Best ARX Models according to Accuracy Criteria and 

Number of Parameters after Bivariate Wavelet filtering 

Based on the model identification results, the best ARX model is 

ARX (10,10,8) with a fitting percentage criterion equals to 77.39%, MSE – 

11.03, FPE – 52.39, and AIC – 300.97. Therefore, after estimating the 

parameters of the ARX(10, 10, 8) model through MATLAB, it could be 

written as presented in the following formula: 

 ( )    ( )      
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where:  ( )                                      

                                   
                   

and  

 ( )                                              

                                      

          
 

Among more than 30,000 different ARX models with bivariate 

wavelets filtering, the researcher arrived to the above selected model which 

is the best model. The selected ARX model has a random residuals and 

uncorrelated residual values with the exogenous input variable, as 

presented in Figures 11 and 12. It is clear from Figure 11 that the 

autocorrelation values are within the confidence intervals, and also Figure 

12 describes the cross-correlation of these residuals with the input variable. 

Both correlations are within acceptable intervals.  

 

 
Figure (11): Residual’s 

Autocorrelation for ARX(10, 10, 

8) Model 

 
Figure (12): Cross-Correlation 

Residuals for ARX(10, 10, 8) 

Model with of Input Variable 

 

Now, it is possible to test the error term with wavelet filtering for 

normality test. The normality test for it using 3 goodness of fit tests: 

Kolmogorov-Smirnov test, Anderson-Darling test, and Chi-Squared test, is 

distributed normally at α = 0.01. 

4. Forecasting Performance 
All the previous sections have been done in order to discover an 

appropriate ARX model for the time series data. But the process is not 

finished at this point but the last step remains which is related to 

forecasting of output data. After model identification and validation is 

executed through accuracy criteria, the forecast for crude oil prices with the 

help of production input series are presented in Table 3. It shows the 

forecasting of the OPEC prices through two identified ARX models with 



]999Iraqi Journal of Statistical Science (30) 2019                                      [ 

 
 

and without bivariate models. The forecasts for the ARX(10, 10, 6) are 

very high in 2019, then will decrease in 2020. While in the proposed ARX 

(10, 10, 8) model the forecasts in 2019 are moderate compared to the prices 

in world markets, where the forecast prices are between 59 and 69 USD.   

Table (3): Forecasting of Crude Oil prices of OPEC Organization 

through Determined Dynamic Models 

Year 
ARX(10, 10, 6) 

without Wavelet Filtering 

ARX(10, 10, 8)  

with Haar Wavelet 

Filtering 

2019 92.77 68.37 

2020 68.01 59.20 

From comparison of the above 2 models and looking at the accuracy 

criteria in Table 4, it is concluded that the proposed new forecasting ARX 

model with bivariate wavelet filtering is better than traditional ARX model 

and even the forecasting values in 2019 and 2020 in the proposed model 

are better than traditional ARX model.  

 

Table (4): Accuracy Criteria Comparison between Traditional and 

Proposed Dynamic models (with and without Bivariate Wavelet 

Filtering) 

Models Models AIC FPE MSE Fitting 

Traditional ARX 

Model 

ARX(10, 10, 

6) 
353.18 163.00 34.32 70.22 

Proposed New 

Model 

ARX(10, 10, 

8) 
300.97 52.39 11.03 77.39 

 

Table 4 shows that the values of accuracy criteria for the  proposed new 

model ARX(10, 10, 8) are lower than the traditional ARX(10, 10, 6) model 

and even the fitting value is more than it by 7 percent. Therefore, the 

proposed new model is reliable and can be used for planning purposes by 

OPEC countries or any other entities.  

 

5. Conclusions and Recommendations 

Depending on the results of the analyses in section four, the most 

important conclusions are as follows:  
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1. The ARX model successfully benefited from bivariate wavelet 

filtering, thus, the proposed ARX model is more powerful than the 

traditional ARX model. 

2. The forecasts of OPEC crude oil prices in the next two years using 

proposed model were more appropriate than traditional models.   

3. ARX models have more forecasting parameter options than ARIMA 

models that allow the selection of   more accurate data models, as 

well as  the impact of the independent variable on the dependent 

variable. 

4. It appeared that detrending was better than differencing to convert 

applied time series data to stationary when using bivariate wavelet 

filtering. 

5. It is concluded from the estimated model that the average crude oil 

prices in 2020 will be fairly less than 2019.  

 

Based on the conclusions given in previous section, the following 

major recommendations are drawn: 

1. Strongly recommending OPEC administration and related institutes 

to use the proposed forecasting model for crude oil prices. 

2. Applying other input exogenous variables that have effects on crude 

oil prices of OPEC Organization rather than crude oil production. 

3. Applying other kinds of dynamic systems in forecasting multiple 

time series data, such as ARIMAX, BJ, and Output Error methods, 

and comparing them with filtering models using Haar wavelets. 

4. Applying other kinds of linear and nonlinear dynamic systems in 

forecasting multiple time series data. 

5. Since the proposed method was better than traditional methods, it is 

recommended to apply multivariate dynamic systems with 

multivariate wavelet filtering. 
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