
Raf. J. Of Comp. & Math’s. , Vol. 1, No. 2, 2004

 127

Improvement the Back-propagation Technique

Nidhal H. AL-Assady Baydaa I. Khaleel Shahbaa I.Khaleel

shahbaaibrkh@uomosul.edu.iq

Dept. of Computer Science

College of Computer Sciences and Mathematics

University of Mosul, Iraq

Received on: 28/09/2002 Accepted on: 15/03/2003

Abstract

Error backpropagation neural network (EBP) used training

algorithm for feedforward artificial neural networks (FFANNs). The main

problem with the EBP algorithm that it is very slow and the converge to the

optimal solution is not guaranteed. This problem leads to search for

improvements to speed up this algorithm. In this research we use several

methods to speed up the EBP algorithm. A many layer neural network was

designed for building pattern compression system, encoding and

recognition. We also used many methods to speed up this algorithm (EBP)

and comparison between them.
Keywords: Artificial neural networks, backpropagation, image recognition,

pattern compression.

 تحسين تقنية انتشار الخطأ خلفا
 شهباء ابراهيم خليل بيداء ابراهيم خليل نضال حسين الاسدي

 كلية علوم الحاسوب والرياضيات
 جامعة الموصل

 15/03/2003 تاريخ قبول البحث: 28/09/2002 تاريخ استلام البحث:
 الملخص

ي الختتتت ات العةتتتصية ايصتتتف الية يات الم تتتة تستتتم خم روايةميتتتة اامختتتاي ال فتتت رل تتتا تتت
الأماميتتتةا والمختتت لة الموجتتتورز تتتي روايةميتتتة الختتتت ة العةتتتصية يات ايامختتتاي الع ستتتي تتتي تتت
ايقمتتراب والوصتتوى التت الحتتل الأمكتتل لتتيأ كهخا وقتتخ رت تت ب المختت لة التت التحتت عتت تحستته ات

خيتتتخ متتت الفرارتتتخ لمستتتريذ روايةميتتتة الختتتت ة لمستتتريذ تتت ب ال وايةميتتتةا استتتم خم تتتي تتت ا التحتتت الع
العةتتتصية يات ايامختتتاي الع ستتتي للموصتتتل التتت اسستتت روايةميتتتة لمستتتريذ عمتتتل الختتتت ة وتتتت تةتتتمي
شتت ات عةتصية يات اامختتاي ع ستي ومحمويتتة علت عتتخر مت الفتاتتات لممههتف ال متتاي وت هت جميتتذ

 به هاا الفرق المحس ة للخت ة عل ب المفصياات وإجرا المااياة

Nidhal H. AL-Assady , Bayda I. Khaleel & Shahba I.Khaleel

 128

 الةتتويتمههتتف شتتت ة اامختتاي ال فتت رل تتا ايصتتف الية : الختتت ات العةتتصيةالكلماااا المفتاحيااة
 اكتأ ال ماي

INTRODUCTION

The EBP learning rule for multilayer FFANNs known as

the backpropagation algorithm, is generalization of the delta

learning rule for single layer artificial neural networks. EBP is

now the most popular learning algorithm for multilayer FFANNs

because of its simplicity, its power to extract useful information

from examples, and its capability of storing information

implicitly in the connecting links in the form of weights.

The original version of the EBP learning algorithm has

been of great concern to practical users for many reasons: it is

extremely slow if it does converge ,it may get stuck in local

minima bsefore learning all the examples, it is sensitive to initial

conditions , it may start oscillating, and so on. Several methods

have been proposed to improve the performance of the EBP

algorithm. [9]

The most important suggested modifications to the original

EBP algorithm are presented in this research.

1. An Overview of Training

The objective of training network is to adjust the weights.

The input–output sets can be referred to as vectors. Training

assumes that each input vector is paired with a target vector

representing the desired output; together these are called a

training pair. Usually, a network is trained over a number of

training pairs. This group of training pairs is called a training set.

Before starting the training process, all of the weights must be

initialized to small random numbers. This ensures that the

network is not saturated by large values of the weights, and

prevents certain other pattologies. For example, if the weights all

start at equal values and the desired performance requires

unequal values, the network will not learn.

Improvement The Backpropagation Technique

 129

Each training pattern is propagated forward layer by layer

until an output pattern is computed. This output is then compared

to a desired or target output and an error value is determined. The

errors are used as inputs to feedback connections from which

adjustments are made to the synaptic weights layer by layer in a

backward direction. The backward linkages are used only for the

learning phases, as where the forward connections are used for

both the learning and operational phases. After training is

stopped, the performance of the network is tested [10]

Error Backpropagation Training Algorithm

The training process of a FFANN is an iterative process.

Each iteration consists of the following steps: -

Step 1: Initialize all the network weights W to small random

values.

Step 2: Select the next training pair from the training set [Xp , Tp]

(input, target), and compute in a forward direction the output

values for each unit j of each layer L, thus

1L

j

n

1i

L

i

L

ij

1
bias out w

L

+

=

+ +=
L

pj
net (1)

1L
pjnet -

1L

pj

1

e1

1
)f(net

+

+
== ++



L

pj
out (2)

Where 1L

pj

+
net is the weighted sum of inputs to unit j , and

1+L

pj
out is the output of jth unit in layer L+1, p is the pattern ,bias

is bias unit.

Note that the inputs to layer one (input layer) are indexed

with subscript 0, and hence, 0

pj
out =xj (i .e xj represent the input of

the pattern).

Step 3: Calculate the error between the actual output of the

network (outpj) and the desired output (t) the target vector from

the training pair, and then, use the values o

pj
out computed by the

Nidhal H. AL-Assady , Bayda I. Khaleel & Shahba I.Khaleel

 130

final layer units and the corresponding values tpj to compute the

delta quantities (δ).

)(net f)out - (t
o

pj

o

pjpj
=o

pj
 (3)

For all j using pattern p.

Where tpj is the target value for unit j , outpj is the output

value for unit j ,)(
pj

netf  is the derivative of the sigmoid

function (f(net)).

Step 4: Compute the deltas (δ) for each of the proceeding layers

(hidden layers) by backpropagating the errors using:









= 

+

=

++++

2

1

1L

ij

21L

pi

1
 w) (net f

Lm

j

L

pj

L

pi
 (4)

Where m is the number of units in layer L .

Step 5: Adjust all weights wij using
L

ij

old

ij
w w +=new

ij
w (5)

L

pi

1L

ij
out w

+= L

pj
 (6)

Step 6: Return to step 2 and repeat for each pattern p in the

training set until the total error has reached an acceptable value.

From the training steps, we can see that the

backpropagation learning algorithm involves a forward

propagation pass followed by a backward propagation pass. Both

two passes are done for each pattern presentation during the

training. [9]

Forward Pass

Step 2 can be expressed in vector form as follows an input

vector X is applied and an output vector Y is produced. The

input-target vector pair X and T comes from the training set. The

calculation is performed on X to produce the output vector Y.

As we have seen, calculation in multilayer networks is done layer

by layer, starting at the layer nearest to the inputs. The net value

of each neuron in the first layer is calculated as the weighted sum

of its neuron’s inputs. The activation function f then “squashes”

Improvement The Backpropagation Technique

 131

net to produce the out value for each neuron in that layer. Once

the set of outputs for a layer is found, it serves as an input to the

next layer. The process is repeated, layer by layer, until the final

set of network outputs is produced. [3] [9]

2.2 Backward Pass (Reverse Pass)

Adjusting the Weights of the Output Layer

Because a target value is available for each neuron in the

output layer, adjusting the associated weights is easily

accomplished using a modification of the delta rule. Interior

layers are referred to as “hidden layers”, whose outputs have no

target values for comparison; hence, training is more

complicated.

The EBP algorithm for FFANNs proceeds by representing

an input pattern to the input (or the 0th) layer, after which the

network produces an output. This output is compared to a desired

or target output. The difference between the target output and

actual network is called error.

Formally, the error Epj for the jth unit of the output layer O for

the input training pair (Xp , Tp) is computed as :
o

pjpj
out - t =

pj
E (7)

An objective of a learning algorithm is to use this error to

adjust the weights in such a way that the error gradually reduces.

The training process stops when the error of every neuron for

every training pair is reduced to an acceptable level, or when no

further improvement is obtained. In the latter case, the network is

a gain initializes with small weights and the training process

starts a fresh.

Figure (1) shows the training process for a single weight

from unit i in the hidden layer L+1 to unit j in the output layer L.

The output of a unit in layer L+2 is subtracted from its target

value to produce an error signal as shown above. This is

multiplied by the derivative of the squashing)] out -(1 [
o

pj

o

pj
out

Nidhal H. AL-Assady , Bayda I. Khaleel & Shahba I.Khaleel

 132

calculated for that layer’s neuron L, there by producing the δ

value:)out - (t)out - (1out
o

pjpj

o

pj

o

pj
=

Then δ is multiplied by out from a neuron I, the source

neuron for the weight in question. This product is in turn

multiplied by a training rate coefficient η (typically 0.01 to 1.0)

and the result is added to the weight, an identical process is

performed for each weight proceeding from a neuron in the

hidden layer to a neuron in the output layer.

The following equations illustrate this calculation:
1L

ij

old

ij
w w

++=new

ij
w

 out w
1L

pi

21L

ij

+++ = L

pj


Where:
old

ij
w is the value of a weight from neuron i in the hidden layer to

a neuron j in the output layer (weight before adjustment).
new

ij
w is the value of the weight after adjustment.

2L

pj

+ is the value of δ for neuron j in the output layer L+2.
1+L

pi
out is the value of out for neuron i in the hidden layer L+1.

Note that subscripts i and j refer to a specific neuron, as where

subscripts L+2 and L+1 refer to a layer.[5][9]

 Neuron i in Neuron j in

 Hidden layer L+1 Output layer L+2

1L

pi
out +

2L

pj
out +

 _ target0

2L

pj
net +

 (tpj-
2L

pj
out +)

1L

pi
out +

2L

pj
out + (1- 2L

pj
out +)

2L

pj

+

old

ij
w

1L

pi

2L

pj

1L

ij
out w +++ =

2L

pj

+ 1L

pi
out +

  (training rate)

1L

ij

old

ij

new

ij
 www ++= 

Figure (1) Training the weight in the output layer

F`

+






Improvement The Backpropagation Technique

 133

2.2.2 Adjusting The Weights Of The Hidden Layers

Hidden layers have no target vector, so the training process

described above cannot be used. This lack of a training target

Stymied efforts to train multilayer networks until

backpropagation provided a workable algorithm.

Backpropagation trains the hidden layers by propagating

the output error back through the network layer by layer,

adjusting weights at each layer. Equations 3 and 4 are used for all

layers, both output and hidden; however, for hidden layers δ must

be generated without benefit of a target vector. Figure (1) shows

how this is accomplished. First, δ is calculated for each neuron in

the output layers, as in equation (3). It is used to adjust the

weights feeding into the output layers, then it is propagated back

through the same weights to generate a value for δ for each

neuron in the first hidden layer. These values of δ are used, in

turn, to adjust the weights of this hidden layer and, in a similar

way, they are propagated back to all preceding layers.

Consider a single neuron in the hidden layer just before the

output layer. In the forward pass, this neuron propagates its

output value to neurons, in the output layer through the inter

connecting weights. During training these weights operate in

reverse, passing the value of δ from the output layer back to the

hidden layer. Each of these weights is multiplied by the δ value

of the neuron to which it connects in the output layer. The value

of δ needed for the hidden layer neuron is produced by summing

all such products and multiplying by the derivative of the

squashing function by using eq. (4) as shown here:









= 

+

=

++++

2

1

1L

ij

21L

pj

1
w)(net f

Lm

j

L

pj

L

pi


See figure (2) with δ in hand, shows that the weights

feeding the first hidden layer can be adjusted using equations 3

and 4, modifying indices to indicate the correct layers.

Nidhal H. AL-Assady , Bayda I. Khaleel & Shahba I.Khaleel

 134

For each neuron in a given hidden layer, δs must be calculated

and all weights associated with that layer must be adjusted. This

is repeated, moving back toward the input layer by layer, until all

weights are adjusted.

For measuring the performance of the learning algorithm,

an objective function is defined in such a way that as the error

reduces so does the value of the objective. Thus a training

algorithm decides the change of weights using some procedure

that guarantees no increase in the objective functions value. The

objective functions are known as the energy functions (named

after similar functions in physics).

In their original EBP algorithm used the sum of the

squared error as the energy function.


= =

=
p

p

m

j
pj

o

EE
1 1

2
)(

2

1
 (8)

The energy function can be defined for only one training

pattern pair (Xp,Tp) as: 
=

=
o

m

j
pjp

EE
1

2
)(

2

1
 (9)

 Previous Hidden Output

 Layer L Layer L+1 Layer L+2

 w11,L+1
1L,1 +



 w12,L+1

2L,2 +



 w1m,L+1

2L,m +



Figure (2) Training a weight in a hidden layer
m

2

1

Improvement The Backpropagation Technique

 135

There are two versions of the EBP algorithm, online and

batch. In the online EBP algorithm, the weights are updated

using the error corresponding to every training pattern. This

method uses energy function defined by equation (9). However,

in the batch EBP algorithm, the weights are updated after

accumulating errors corresponding to all input patterns, and thus

making use of the energy function defined by equation (8). [4][9]

3. Using β Variable

The variable β can be used in the sigmoidal function

during the backpropagation-training algorithm in order to

determine the steepness of the shape of sigmoid function. When

β is used in backpropagation training it lies, in the range [0.1 –

1.0], a lower value of β gives a smoother transition from a lower

to a higher activation level as the L

pj
net changes its value; a

higher value for β will cause a step-like transition in the

activation level. (i. e when β has a value of 0.1 learning has slow

converge, but when the value of β is 1 the learning is faster. Here

(.)f  is the sigmoidal derivative which is calculated as :
L

pj

L

pj
out)out-(1)(= L

pj
netf (10)

The β variable is used in the standard backpropagation

training algorithm.

4. Modification to Original EBP Algorithm

It has been realized that the original EBP algorithm is too

slow for most practical applications, and many modifications

have been suggested to speed it up. These Modifications on the

original EBP algorithm that have been suggested to speed up the

training of FFANNs are:

Momentum Method (MOM)

The learning strategy used in the original EBP algorithm is

actually a gradient descent on the multidimensional energy

surface in the weight space. A closer look on the effect of the

Nidhal H. AL-Assady , Bayda I. Khaleel & Shahba I.Khaleel

 136

value of the learning rate coefficient η reveals that in an area of

the energy surface where the gradient is not changing sign, a

large value of η reduces the energy function faster; on the other

hand, near an area where the sign of the gradient is changing

quickly, a smaller value of η keeps the descent a long the energy

surface. This disparate need for the value of η suggests a method

that a dapts the value of η dynamically depending on the

characteristic of the energy surface. The momentum strategy

implements such a variable learning rate coefficient implicitly by

adding a fraction of the last weight change to the current

direction of movement in the weight space, and it is a slight

change to the weight updating rule of the original EBP .

When derived the backpropagation algorithm, the mode

statement the learning implements a gradient descent on the error

surface if the weight change is determined after complete

presentation of all training patterns. In practice, we can follow

this statement to update the weights for each cycle rather than for

each pattern presentation.

Momentum method is enhancing the stability of the

training process, and involves adding a term to the weight

adjustment that is proportional to the amount of the previous

weight change. Once an adjustment is made, it is remembered

and serves to modify all subsequent weight adjustments. The

adjustment equations are modified to the following:

 (s) w) out (1)(s w
L

ij

L

pi

1L

ij
+=+ +  L

pj
 (11)

1)(s w (s) w 1)(s
L

ij

L

ij
++=+L

ij
w (12)

Where α is a momentum coefficient that can have a value

between zero and one, s is the cycle number.

A similar method based on exponential smoothing that may

prove superior in some applications is .
L

pi

1L

ij

L

ij
out) - (1 (s) w 1)(s w

++=+ L

pj
 (13)

Then the weight change is computed:

1)(s w (s) w 1)(s
L

ij

L

ij
++=+ L

ij
w (14)

Improvement The Backpropagation Technique

 137

Where α is a smoothing coefficient in the range of 0.0 to

1.0. If α is 0.0 then the smoothing is minimum; the entire weight

adjustment comes from the newly calculated change. If α is 1.0,

the new adjustment is ignored and the previous one is repeated.

 Between 0 and 1 is a region where the weight adjustment

is smoothed by an a mount proportional to α. again η is the

training rate coefficient, serving to adjust the size of the average

weight change .[7][9]

Bp with Expected Source Values Method (ESV)

Bp is a gradient descent learning rule that minimizes the

sum-squared error over the output layer of a feed forward neural

network. Weights wij from a unit (i) to a unit (j) are updated

according to eq. (6) and L

pj
 is an associated error term for unit

(j), defined as eq. (3) for output units and according to eq. (4) for

hidden units.

The backpropagation learning rule converges significantly

faster if the expected values of source units are used for updating

weights. The expected value of a unit can be approximated as the

sum of the output of the unit and its error term .

 The decrease in
j

 applied only for the current training

input, say x, and it is in effect only as long as other network

parameters remain unchanged. In particular, the effectiveness of

the weight update will be reduced if, as learning proceeds, the

output of unit i to x deviates from the outi value used for the

weight update. If i is an input unit, x will always lead to this outi

value for unit i, If i is a hidden unit, however, there are weights

whi that are also subject to modification. These modifications will

affect the output of unit i to the input x. Thus the weight changes

are dictated by eq. (6).

We can exploit the analogy between
i

 and the error

attributed to unit i to compensate for future changes to weights in

earlier layers. Instead of using the current value of the source unit

i for update, we can use the expected value for unit i. The

Nidhal H. AL-Assady , Bayda I. Khaleel & Shahba I.Khaleel

 138

expected value can be formulated simply as the sum of the

current value and the error term. This leads to the following

modified backpropagation learning rule:
1L

pj

L

pi

L

pi

L

ij
) Beta out (w ++=  (15)

Where Beta is a constant. This eq. reverts to the original

rule when Beta equals 0.0. Beta can usually be set to 1.0, and

superior results over eq. (3) are consistently obtained. In many

cases, however, higher values of Beta can further accelerate

learning. As with  , further increases in Beta beyond some

problem of specific value result in oscillations and non-

convergence. [8]

The Bold Driver Method (B_D)

In the previous method we found that the momentum

coefficient implicitly adjusts the effective learning rate

coefficient dynamically, depending on the nature of the energy

surface. The improvement in the learning time comes from this

dynamic behavior of the effective learning coefficient. There are

methods where the learning coefficient is explicitly adjusted to

obtain an improved convergence speed, one of them is the bold

driver method.

This method makes two trivial changes to the original EBP

algorithm, it monitors the value of the energy function E given

by equation (8), and it dynamically adjusts the value of the

learning rate coefficient η.

The training starts with some arbitrary value of the

learning rate coefficient η. If the value of E decreases, the

learning rate is increased by a factor  ( >1). This helps to take

a longer step in the next iteration. The value of the learning rate

also grows exponentially in a constant gradient region of the

energy function. On the other hand, if the value of the energy

function E increases, it is assumed that the last stepsize was too

large and firstly the last weight correction to every weight is

canceled. Secondly, the value of the learning rate coefficient is

Improvement The Backpropagation Technique

 139

decreased by a factor  ( <1), and thirdly, a new trial is

performed. If the new trial shows a reduction in the value of the

energy function, the deceased learning rate coefficient is

accepted as the next learning rate; otherwise, the learning rate

coefficient is repeatedly reduced until it gives a step size that

reduces the value of the energy function.

The bold driver method is non-local because it keeps only

one learning rate coefficient for all the weights, whereas the

momentum strategy adjusts the effective learning coefficient

locally for each weight through the momentum term. This

method controls the oscillation of the value of the energy

function. [10]

Self Adaptive Backpropagation Method (SAB)

This method is a local acceleration strategy, and it is

supported by the following observations: firstly every weight

should have its own learning rate coefficient, because the partial

derivative of the energy function E with respect to each weight

gives the gradient for that weight only. Also, the learning rate

coefficient for one weight need not be appropriate for other

weights. Secondly, the learning rate coefficient should be

allowed to vary depending on the nature of the surface of the

energy function a long the dimension under consideration.

 Thirdly, the learning rate coefficient for a weight should

be increased if consecutive steps have the same sign. Fourthly,

the learning rate coefficient should be small when the derivative

of the energy function with respect to a weight changes sign.

Let the learning rate coefficient for the weight L

ij
w at time

step s be [s]
L

ij
 . The algorithm is as follows:

Step 1: Choose an initial learning rate coefficient η.

Step 2: Set the learning rate coefficient  [0]
L

ij
= for all weights

in the neural network.

Step 3: Do a backpropagation step without momentum term.

Nidhal H. AL-Assady , Bayda I. Khaleel & Shahba I.Khaleel

 140

Step 4: If [s]
L

ij
G , the negative of the partial derivative of the

energy function E, has the same sign,

 set [s] 1][s
L

ij

L

ij
 =+ (16)

For weight [s]
L

ij
w ; we used the increment factor  >1 .

Step 5 : If [s]
L

ij
G , changes sign then

Set  1][s =+L

ij
 (17)

 weight [s]
L

ij
w .

Estimate a good weight 1][s +L

ij
w by interpolation(based

on previous L

ij
w  values.

Do a number of backpropagation steps with momentum

term.

Step 6: Restart the algorithm from step (3).

The SAB method functions mentally different from all other

methods. In this method, one learning rate coefficient is kept for

each weight.

This algorithm performs better than the original EBP,

because it can adjust the learning rate coefficient over a wide

range if the initial learning rate coefficient is small. One problem

inherent in the original EBP algorithm, the selection of a good

learning rate coefficient by the user, remains unchanged in this

algorithm. In addition, this algorithm starts with the initial

learning rate coefficient if a change in the sign of the gradient

occurs. [7]

Super Self Adaptive Backpropagation Method (S_SAB)

This method is new and different from all other methods.

Let  be the factor by which the learning rate coefficient is

increased, and let  be the factor by which the learning rate is

decreased, if necessary. Experimental studies suggest that the

learning rate coefficient decrease should be faster than the

Improvement The Backpropagation Technique

 141

increase, Recall that the learning rate coefficient at time steps for

weight L

ij
w is denoted by [s] L

ij
 . The algorithm is as follows:

Step 1: Choose an initial learning rate coefficient η.

Step 2: Set the learning rate coefficient  [0] L

ij
= ; for all

weights in the neural network.

Step 3: Do a number of backpropagation steps with momentum

term.

Step 4: If [s] G L

ij
, the negative of the partial derivative of the

energy function E has the same sign, set [s] 1][s L

ij

L

ij
 =+ for

weight L

ij
w [s] in neural network; we assume the value of

increment factor 1. 

Step 5: If [s] G L

ij
, changes sign then

Set [s] 1][s L

ij

L

ij
 =+ (18)

For weight L

ij
w [s] in the neural network; we assume the

value of the decrement factor 1. 

Undo the previous weight update; and

Set 0; 1][s w L

ij
=+

Step 6: Restart the algorithm from step (3).

In the SAB learning method, the learning rate coefficient is

set to the initial value, but in the S_SAB learning method the

value of the learning rate coefficient is reduced by a constant

factor.

This method speeds up learning considerably. Also,

because the learning rate coefficient is never set to its initial

value (as in SAB), the choice of initial learning rate coefficient

would not have much influence on learning time and hence can

be made arbitrarily.

Nidhal H. AL-Assady , Bayda I. Khaleel & Shahba I.Khaleel

 142

5. The Applications of the BP Learning Algorithm

Backpropagation neural network has been designed for

pattern recognition, encoding, compression, and also

improvements of the standard backpropagation neural networks

are applied in all the applications we said above. We described

here the practical implementation of the BPNN in all application

we used here, figure (3) shows an outline of this implementation.

Figure (3) Outline of system

Compressi

on
Recognitio

n
Encoding

EBP algorithm and all improvement
methods of this algorithm

On-

Line
Batch

Pattern

Arabic

alphabet

 "أ"…"ي"

English
alphabet
A…Z

Digits in
Arabic

0 …9

Digits in
English
0…9

Improvement The Backpropagation Technique

 143

5.1 Multilayer Feed Forward Network for Pattern

Recognition

In this research, a backpropagation neural network

algorithm and all the methods that improved this algorithm are

used to recognition uppercase letters in English "A"…"Z", letters in

Arabic"ي"…" " , digits "0" … " 9" in English and digits "0"…"9" in

Arabic, by using online and batch backpropagation algorithm.

The representation of characters and digits in both languages,

English and Arabic is shown in black and white pixels.

To recognize the uppercase letters in English, the letters

"A"…"Z" are encoded as 35 binary-valued input vectors

representing black and white pixels. and the output pattern has

been a single output bit that has been set to 1 for each character

pattern to be recognized (local representation). The total output

neurons that has been required is 26 neurons. Figure (4) shows

the process of character recognition (alphabetic in English).

Nidhal H. AL-Assady , Bayda I. Khaleel & Shahba I.Khaleel

 144

To recognize the characters in Arabic "ي" … " " the input vector

represented by 56 binary valued, and the output pattern has been

a single output bit that has been set to 1 for each character to be

recognized and the total output units that has been required is 28

units.

When we recognize the digits "0" through "9" the input

vector is represented by 35 binary value and 10 units in the

output, and finally to recognize Arabic digits "0" … "9" we use the

same architecture of English digits.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 Target

 Output

 26 Output

 Units

 5 Hidden

 Units

 7*5= 35 Units

 Input Vector

Figure (4) The Process of character recognition

Improvement The Backpropagation Technique

 145

5.2 Multi-layer Feedforward Network for Encoding of the

Pattern

Here, a backpropagation neural network algorithm and all

the methods that improved this algorithm are used to encode

English and Arabic alphabets and digits.

The representation of these patterns is the same as the

representation of pattern recognition. Now, we need to name

each of the output categories and we can assign a simple 4 or 5

bit binary code. Figure (5) shows the architecture of the Arabic

alphabet encoding.

 1 2 3 4 5 Target

 Output

 5 Output

 Units

6 Hidden
 Units

 8*7 = 56 Unit

 Input Vector

Figure (5) Architecture of Arabic alphabet encoding

Nidhal H. AL-Assady , Bayda I. Khaleel & Shahba I.Khaleel

 146

5.3 Multi-layer Feedforward Network for Pattern

Compression

A backpropagation neural network algorithm and all the

methods of speeding up this algorithm are used to compress the

English, Arabic alphabet and also English, Arabic digits.The

representation of the pattern is the same as the representation in

pattern recognition and encoding, but the output pattern has the

same dimension of input.

By converting the original data that are represented by

conventional code into a different code, compression algorithm

may provide a level of security illicit monitoring. Figure (6)

illustrates the architecture of the English alphabet compression.

Improvement The Backpropagation Technique

 147

 Decompressed 7*5 = 35 Units

 Pattern Output Vector

 35 Output

 Units

Compressed 6

Hidden

 Pattern Units

 Original 7*5 = 35 Units

 Pattern Input Vector

Figure(6) Architecture of English alphabet compression

Nidhal H. AL-Assady , Bayda I. Khaleel & Shahba I.Khaleel

 148

6. Results of methods to speed up EBP algorithm

In this section, the methods to speed up EBP algorithm

described in section 4 are compared to the EBP algorithm

described in section 1 on the basis of the number of adaptation

cycles required by each algorithm to achieve the same small

value of the total error.

The five algorithms are used individually to train the same

BPNN architecture, and with the same initial set of synaptic

weights that were provided by a random number generator

producing numbers between –0.01 and 0.01, for each application

individually [i.e. when we take Arabic alphabetic character

recognition the same architecture is used for EBP and five

modification methods, and so on).

This research, applied the EBP algorithm and all five

modification methods of this algorithm for English, Arabic

character and English, Arabic digits to recognition, compression

and encoding of these. Here we take a sample from each type of

this application, and show the difference between these methods

and original BP. The SBP is aslow method where MOM method

is faster than the original EBP, ESV is very fast (this method

train the pattern with few iteration), B_D is faster than ESV and

converge to optimal solution with very few iteration and with

minimum error , SAB is faster than other methods and finally

S_SAB is faster than all previous methods, this can be clearly

noticed in the following tables.

Improvement The Backpropagation Technique

 149

Table (1) The Difference between methods for pattern

compression of English digit

Method Input

Units
Hidden

Units
Out
put

Units

  Beta   Iteration

no.
Error

SBP 35 10 35 0.9 0.0 0.0 0.0 0.0 2271 0.099987
MOM 35 10 35 0.9 0.5 0.0 0.0 0.0 1121 0.099987
ESV 35 10 35 0.9 0.0 4.0 0.0 0.0 545 0.099992
B_D 35 10 35 0.7 0.0 0.0 1.1 0.5 110 0.009619
SAB 35 10 35 0.9 0.5 0.0 1.1 0.0 43 0.009515

S_SAB 35 10 35 0.9 0.3 0.0 1.1 0.5 32 0.035117

Figure (7) The Difference between methods for pattern

compression of English digit

1

10

100

1000

10000

SBP MOM ESV B-D SAB S-SAB

methods to speed up SBP

It
e

ra
ti

o
n

 n
u

m
b

e
r

Nidhal H. AL-Assady , Bayda I. Khaleel & Shahba I.Khaleel

 150

Table (2) The Difference between methods for pattern encoding

of Arabic digits

Method Input

Units

Hidden

Units

Output

Units


 Beta  

Iteration

no.

Error

SBP 35 5 4 0.9 0.0 0.0 0.0 0.0 3796 0.009999

MOM 35 5 4 0.7 0.7 0.0 0.0 0.0 1389 0.009997

ESV 35 5 4 0.9 0.0 6.0 0.0 0.0 421 0.009990

B_D 35 5 4 0.9 0.0 0.0 1.1 0.5 64 0.009916

SAB 35 5 4 0.9 0.5 0.0 1.1 0.0 38 0.009914

S_SAB 35 5 4 0.9 0.3 0.0 1.1 0.5 20 0.033850

Table (3) The Difference between methods for pattern

recognition of Arabic alphabet

Method Input

Units

Hidden

Units

Output

Units
  Beta   Iteration

no.
Error

SBP 56 6 28 0.9 0.0 0.0 0.0 0.0 357 0.399824

MOM 56 6 28 0.9 0.5 0.0 0.0 0.0 174 0.399503

ESV 56 6 28 0.9 0.0 6.0 0.0 0.0 23 0.398148

B_D 56 6 28 0.9 0.0 0.0 1.1 0.5 14 0.392830

SAB 56 6 28 0.9 0.5 0.0 1.1 0.0 12 0.278834

S_SAB 56 6 28 0.9 0.1 0.0 1.1 0.5 8 0.023967

Improvement The Backpropagation Technique

 151

REFERENCES

[1] Abod L.K., (1998) classification of satellite image using

Neural Network, Ph.D. Thesis, Department of physics,

College of Sciences, University of Baghdad .

[2] Baluja S., (June 1996) Evolution of an Artificial Neural

Network Based Autonomous Land Vehicle controller,

IEEE transaction or system, MAN, And Cybernetics-part

Bi Cybernetics, Vol. 26, No. 3, PP.450-463.

[3] Chitra, S.P.(April 1993) use of Neural Networks for

problem Solving, Chemical Engineering progress, PP. 44-

52.

[4] Fukuoka Y. Matsuki H., Minamitani H., Ishida A., (June

1998) A modified back-propagation method to avoid false

local minma, Neural Networks, Japan, PP. 1059-1072.

[5] Jones W.P. and Hoskins J., (october 1987) Back-

propagation Ageneralized delta learning rule, BYTE, PP.

155-162.

[6] Lippmann R.P., (April 1987) Introduction to Computing

with Neural Nets, IEEE Assp Magazine, Vol. 4, No. 2, PP.

4-22.

[7] Rzempoluck E.J., (1998) Neural Network Data Analysis

Using Simulnet, Springer – Verlag NewYork.

[8] Samad T.,(April 1991) Backpropagation with Expected

Source Values , Neural Network,Vol. 4,pp. 615-618.

[9] Wasserman, P. D., (1989) Neural Computing Theory and

Practice, Van Nostrand Reinhold, NewYork.

[10] Zurada J. M., (1994) Introduction to Artificial Neural

Systems, Jaico publishing House, Mumbai.

