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Abstract 

Error backpropagation neural network (EBP)  used training 

algorithm for feedforward artificial neural networks (FFANNs). The main 

problem with the EBP algorithm that it is very slow and the converge to the 

optimal solution is not guaranteed. This problem leads to search for 

improvements to speed up this algorithm. In this research we use several 

methods to speed up the EBP algorithm. A many layer neural network was 

designed for building pattern compression system, encoding and 

recognition. We also used many methods to speed up this algorithm (EBP) 

and comparison between them. 
Keywords: Artificial neural networks, backpropagation, image recognition, 

pattern compression. 

 تحسين تقنية انتشار الخطأ خلفا  
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 كلية علوم الحاسوب والرياضيات
 جامعة الموصل 
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ي الختتتت ات العةتتتصية ايصتتتف الية يات الم   تتتة تستتتم خم روايةميتتتة اامختتتاي ال فتتت  رل تتتا   تتت 
الأماميتتتةا والمختتت لة الموجتتتورز  تتتي روايةميتتتة الختتتت ة العةتتتصية يات ايامختتتاي الع ستتتي  تتتي     تتت   
ايقمتتراب والوصتتوى التت  الحتتل الأمكتتل لتتيأ  كهخا وقتتخ  رت  تت ب المختت لة التت  التحتت  عتت  تحستته ات 

خيتتتخ متتت  الفرارتتتخ لمستتتريذ روايةميتتتة الختتتت ة لمستتتريذ  تتت ب ال وايةميتتتةا استتتم خم  تتتي  تتت ا التحتتت  الع
العةتتتصية يات ايامختتتاي الع ستتتي للموصتتتل التتت  اسستتت  روايةميتتتة لمستتتريذ عمتتتل الختتتت ة وتتتت  تةتتتمي  
شتت ات عةتصية يات اامختتاي ع ستي ومحمويتتة علت  عتتخر مت  الفتاتتات لممههتف ال متتاي   وت  هت  جميتتذ 

 به هاا الفرق المحس ة للخت ة عل    ب المفصياات وإجرا  المااياة
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  الةتتويتمههتتف    شتتت ة اامختتاي ال فتت  رل تتا  ايصتتف الية : الختتت ات العةتتصيةالكلماااا المفتاحيااة
 اكتأ ال ماي 

INTRODUCTION 

The EBP learning rule for multilayer FFANNs known as 

the backpropagation algorithm, is generalization of the delta 

learning rule for single layer artificial neural networks. EBP is 

now the most popular learning algorithm for multilayer FFANNs 

because of its simplicity, its power to extract useful information 

from examples, and its capability of storing information 

implicitly in the connecting links in the form of weights. 

The original version of the EBP learning algorithm has 

been of great concern to practical users for many reasons: it is 

extremely slow if it does converge ,it may get stuck in local 

minima bsefore learning all the examples, it is sensitive to initial 

conditions , it may start oscillating, and so on. Several methods 

have been proposed to improve the performance of the EBP 

algorithm. [9] 

The most important suggested modifications to the original 

EBP algorithm are presented in this research.  

 

1.  An Overview of Training 

The objective of training network is to adjust the weights. 

The input–output sets can be referred to as vectors. Training 

assumes that each input vector is paired with a target vector 

representing the desired output; together these are called a 

training pair. Usually, a network is trained over a number of 

training pairs. This group of training pairs is called a training set. 

Before starting the training process, all of the weights must be 

initialized to small random numbers. This ensures that the 

network is not saturated by large values of the weights, and 

prevents certain other pattologies. For example, if the weights all 

start at equal values and the desired performance requires 

unequal values, the network will not learn. 



Improvement The Backpropagation Technique 
 

 

 129 

Each training pattern is propagated forward layer by layer 

until an output pattern is computed. This output is then compared 

to a desired or target output and an error value is determined. The 

errors are used as inputs to feedback connections from which 

adjustments are made to the synaptic weights layer by layer in a 

backward direction. The backward linkages are used only for the 

learning phases, as where the forward connections are used for 

both the learning and operational phases. After training is 

stopped, the performance of the network is tested [10] 

 

Error Backpropagation Training Algorithm 

The training process of a FFANN is an iterative process. 

Each iteration consists of the following steps: - 

 

Step 1: Initialize all the network weights W to small random 

values. 

Step 2: Select the next training pair from the training set [Xp , Tp] 

(input, target), and compute in a forward direction the output 

values for each unit j of each layer L, thus  
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Where 1L

pj

+
net  is the weighted sum of inputs to unit j , and 

1+L

pj
out  is the output of jth unit in layer L+1, p is the pattern ,bias 

is bias unit. 

Note that the inputs to layer one (input layer) are indexed 

with subscript 0, and hence, 0

pj
out =xj (i .e xj represent the input of 

the pattern). 

Step 3: Calculate the error between the actual output of the 

network (outpj) and the desired output (t) the target vector from 

the training pair, and then, use the values o

pj
out  computed by the 
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final layer units and the corresponding values tpj to compute the 

delta quantities (δ). 

)(net f )out - (t  
o

pj

o

pjpj
=o

pj
                                           (3) 

For all j using pattern p. 

Where tpj is the target value for unit j , outpj is the output 

value for unit j , )(
pj

netf   is the derivative of the sigmoid 

function (f(net)). 

Step 4: Compute the deltas (δ) for each of the proceeding layers 

(hidden layers) by backpropagating the errors using: 
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Where m is the number of units in layer L . 

Step 5: Adjust all weights wij using 
L
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w        (5) 
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Step 6: Return to step 2 and repeat for each pattern p in the 

training set until the total error has reached an acceptable value. 

 

From the training steps, we can see that the 

backpropagation learning algorithm involves a forward 

propagation pass followed by a backward propagation pass. Both 

two passes are done for each pattern presentation during the 

training. [9] 

 

Forward Pass 

Step 2 can be expressed in vector form as follows an input 

vector X is applied and an output vector Y is produced. The 

input-target vector pair X and T comes from the training set. The 

calculation is performed on X to produce the output vector Y. 

As we have seen, calculation in multilayer networks is done layer 

by layer, starting at the layer nearest to the inputs. The net value 

of each neuron in the first layer is calculated as the weighted sum 

of its neuron’s inputs. The activation function f then “squashes” 
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net to produce the out value for each neuron in that layer. Once 

the set of outputs for a layer is found, it serves as an input to the 

next layer. The process is repeated, layer by layer, until the final 

set of network outputs is produced. [3] [9] 

2.2 Backward Pass (Reverse Pass) 

Adjusting the Weights of the Output Layer 

Because a target value is available for each neuron in the 

output layer, adjusting the associated weights is easily 

accomplished using a modification of the delta rule. Interior 

layers are referred to as “hidden layers”, whose outputs have no 

target values for comparison; hence, training is more 

complicated.  

The EBP algorithm for FFANNs proceeds by representing 

an input pattern to the input (or the 0th) layer, after which the 

network produces an output. This output is compared to a desired 

or target output. The difference between the target output and 

actual network is called error. 

Formally, the error Epj for the jth unit of the output layer O for 

the input training pair (Xp , Tp) is computed as : 
o

pjpj
out - t =

pj
E                (7) 

An objective of a learning algorithm is to use this error to 

adjust the weights in such a way that the error gradually reduces. 

The training process stops when the error of every neuron for 

every training pair is reduced to an acceptable level, or when no 

further improvement is obtained. In the latter case, the network is 

a gain initializes with small weights and the training process 

starts a fresh. 

Figure (1) shows the training process for a single weight 

from unit i in the hidden layer L+1 to unit j in the output layer L. 

The output of a unit in layer L+2 is subtracted from its target 

value to produce an error signal as shown above. This is 

multiplied by the derivative of the squashing )] out -(1 [
o

pj

o

pj
out  
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calculated for that layer’s neuron L, there by producing the δ 

value: )out - (t )out - (1out  
o

pjpj

o

pj

o

pj
=  

Then δ is multiplied by out from a neuron I, the source 

neuron for the weight in question. This product is in turn 

multiplied by a training rate coefficient η (typically 0.01 to 1.0) 

and the result is added to the weight, an identical process is 

performed for each weight proceeding from a neuron in the 

hidden layer to a neuron in the output layer. 

The following equations illustrate this calculation: 
1L
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w   w  

++=new

ij
w    

 out    w 
1L

pi

21L

ij

+++ = L

pj
    

Where: 
old

ij
w  is the value of a weight from neuron i in the hidden layer to 

a neuron j in the output layer (weight before adjustment). 
new

ij
w  is the value of the weight after adjustment. 

2L

pj

+  is the value of δ for neuron j in the output layer L+2. 
1+L

pi
out  is the value of out for neuron i in the hidden layer L+1. 

Note that subscripts i and j refer to a specific neuron, as where 

subscripts L+2 and L+1 refer to a layer.[5][9] 
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Figure (1) Training the weight in the output layer 
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2.2.2  Adjusting The Weights Of The Hidden Layers 

Hidden layers have no target vector, so the training process 

described above cannot be used. This lack of a training target 

Stymied efforts to train multilayer networks until 

backpropagation provided a workable algorithm.  

Backpropagation trains the hidden layers by propagating 

the output error back through the network layer by layer, 

adjusting weights at each layer. Equations 3 and 4 are used for all 

layers, both output and hidden; however, for hidden layers δ must 

be generated without benefit of a target vector. Figure (1) shows 

how this is accomplished. First, δ is calculated for each neuron in 

the output layers, as in equation (3). It is used to adjust the 

weights feeding into the output layers, then it is propagated back 

through the same weights to generate a value for δ for each 

neuron in the first hidden layer. These values of δ are used, in 

turn, to adjust the weights of this hidden layer and, in a similar 

way, they are propagated back to all preceding layers. 

Consider a single neuron in the hidden layer just before the 

output layer. In the forward pass, this neuron propagates its 

output value to neurons, in the output layer through the inter 

connecting weights. During training these weights operate in 

reverse, passing the value of δ from the output layer back to the 

hidden layer. Each of these weights is multiplied by the δ value 

of the neuron to which it connects in the output layer. The value 

of δ needed for the hidden layer neuron is produced by summing 

all such products and multiplying by the derivative of the 

squashing function by using eq. (4) as shown here: 


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See figure (2) with δ in hand, shows that the weights 

feeding the first hidden layer can be adjusted using equations 3 

and 4, modifying indices to indicate the correct layers. 
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For each neuron in a given hidden layer, δs must be calculated 

and all weights associated with that layer must be adjusted. This 

is repeated, moving back toward the input layer by layer, until all 

weights are adjusted. 

For measuring the performance of the learning algorithm, 

an objective function is defined in such a way that as the error 

reduces so does the value of the objective. Thus a training 

algorithm decides the change of weights using some procedure 

that guarantees no increase in the objective functions value. The 

objective functions are known as the energy functions (named 

after similar functions in physics). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In their original EBP algorithm used the sum of the 

squared error as the energy function.  
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There are two versions of the  EBP algorithm, online and 

batch. In the online EBP algorithm, the weights are updated 

using the error corresponding to every training pattern. This 

method uses energy function defined by equation (9). However, 

in the batch EBP algorithm, the weights are updated after 

accumulating errors corresponding to all input patterns, and thus 

making use of the energy function defined by equation (8). [4][9]  

 

3. Using β Variable 

The variable β can be used in the sigmoidal function 

during the backpropagation-training algorithm in order to 

determine the steepness of the shape of sigmoid function. When 

β is used in backpropagation training it lies, in the range [0.1 – 

1.0], a lower value of β gives a smoother transition from a lower 

to a higher activation level as the L

pj
net  changes its value; a 

higher value for β will cause a step-like transition in the 

activation level. (i. e when β has a value of 0.1 learning has slow 

converge, but when the value of β is 1 the learning is faster. Here 

(.)f   is the sigmoidal derivative which is calculated as : 
L

pj

L

pj
out )out-(1 )( = L

pj
netf      (10) 

The β variable is used in the standard backpropagation 

training algorithm. 

 

4.    Modification to Original EBP Algorithm 

It has been realized that the original EBP algorithm is too 

slow for most practical applications, and many modifications 

have been suggested to speed it up. These Modifications on the 

original EBP algorithm that have been suggested to speed up the 

training of FFANNs are: 

 

Momentum Method (MOM) 

The learning strategy used in the original EBP algorithm is 

actually a gradient descent on the multidimensional energy 

surface in the weight space. A closer look on the effect of the 
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value of the learning rate coefficient η reveals that in an area of 

the energy surface where the gradient is not changing sign, a 

large value of η reduces the energy function faster; on the other 

hand, near an area where the sign of the gradient is changing 

quickly, a smaller value of η keeps the descent a long the energy 

surface. This disparate need for the value of η suggests a method 

that a dapts the value of η dynamically depending on the 

characteristic of the energy surface. The momentum strategy 

implements such a variable learning rate coefficient implicitly by 

adding a fraction of the last weight change to the current 

direction of movement in the weight space, and it is a slight 

change to the weight updating rule of the original EBP .  

When derived the backpropagation algorithm, the mode 

statement the learning implements a gradient descent on the error 

surface if the weight change is determined after complete 

presentation of all training patterns. In practice, we can follow 

this statement to update the weights for each cycle rather than for 

each pattern presentation. 

Momentum method is enhancing the stability of the 

training process, and involves adding a term to the weight 

adjustment that is proportional to the amount of the previous 

weight change. Once an adjustment is made, it is remembered 

and serves to modify all subsequent weight adjustments. The 

adjustment equations are modified to the following: 

 (s) w    ) out (   1)(s w 
L

ij

L
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ij
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ij
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ij
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Where α is a momentum coefficient that can have a value 

between zero and one, s is the cycle number. 

A similar method based on exponential smoothing that may 

prove superior in some applications is . 
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Then the weight change is computed: 
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Where α is a smoothing coefficient in the range of 0.0 to 

1.0. If α is 0.0 then the smoothing is minimum; the entire weight 

adjustment comes from the newly calculated change. If α is 1.0,  

the new adjustment is ignored and the previous one is repeated. 

 Between 0 and 1 is a region where the weight adjustment 

is smoothed by an a mount proportional to α. again η is the 

training rate coefficient, serving to adjust the size of the average 

weight change .[7][9] 

 

Bp with Expected Source Values Method (ESV) 

Bp is a gradient descent learning rule that minimizes the 

sum-squared error over the output layer of a feed forward neural 

network. Weights wij from a unit (i) to a unit (j) are updated 

according to eq. (6) and L

pj
  is an associated error term for unit 

(j), defined as eq. (3) for output units and according to eq. (4) for 

hidden units.  

The backpropagation learning rule converges significantly 

faster if  the expected values of source units are used for updating 

weights. The expected value of a unit can be approximated as the 

sum of the output of the unit and its error term . 

  The decrease in 
j

  applied only for the current training 

input, say x, and it is in effect only as long as other network 

parameters remain unchanged. In particular, the effectiveness of 

the weight update will be reduced if, as learning proceeds, the 

output of unit i to x deviates from the outi value used for the 

weight update. If i is an input unit, x will always lead to this outi 

value for unit i, If i is a hidden unit, however, there are weights 

whi that are also subject to modification. These modifications will 

affect the output of unit i to the input x. Thus the weight changes 

are dictated by eq. (6). 

We can exploit the analogy between 
i

  and the error 

attributed to unit i to compensate for future changes to weights in 

earlier layers. Instead of using the current value of the source unit 

i for update, we can use the expected value for unit i. The 
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expected value can be formulated simply as the sum of the 

current value and the error term. This leads to the following 

modified backpropagation learning rule: 
1L

pj

L

pi

L

pi

L

ij
 )  Beta  out (    w ++=       (15) 

Where Beta is a constant. This eq. reverts to the original 

rule when Beta equals 0.0. Beta can usually be set to 1.0, and 

superior results over eq. (3) are consistently obtained. In many 

cases, however, higher values of Beta can further accelerate 

learning. As with  , further increases in Beta beyond some 

problem of specific value result in oscillations and non-

convergence. [8] 

 

The Bold Driver Method (B_D) 

In the previous method we found that the momentum 

coefficient implicitly adjusts the effective learning rate 

coefficient dynamically, depending on the nature of the energy 

surface. The improvement in  the learning time comes from this 

dynamic behavior of the effective learning coefficient. There are 

methods where the learning coefficient is explicitly adjusted to 

obtain an improved convergence speed, one of them is the bold 

driver method. 

This method makes two trivial changes to the original EBP 

algorithm, it monitors the value of the energy function E given 

by equation (8), and it dynamically adjusts the value of the 

learning rate coefficient η. 

The training starts with some arbitrary value of the 

learning rate coefficient η. If the value of E decreases, the 

learning rate is increased by a factor   (  >1). This helps to take 

a longer step in the next iteration. The value of the learning rate 

also grows exponentially in a constant gradient region of the 

energy function. On the other hand, if the value of the energy 

function E increases, it is assumed that the last stepsize was too 

large and firstly the last weight correction to every weight is 

canceled. Secondly, the value of the learning rate coefficient is 
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decreased by a factor   ( <1), and thirdly, a new trial is 

performed. If the new trial shows a reduction in the value of the 

energy function, the deceased learning rate coefficient is 

accepted as the next learning rate; otherwise, the learning rate 

coefficient is repeatedly reduced until it gives a step size that 

reduces the value of the energy function. 

The bold driver method is non-local because it keeps only 

one learning rate coefficient for all the weights, whereas the 

momentum strategy adjusts the effective learning coefficient 

locally for each weight through the momentum term. This 

method controls the oscillation of the value of the energy 

function. [10] 

 

Self Adaptive Backpropagation Method (SAB) 

This method is a local acceleration strategy, and it is 

supported by the following observations: firstly every weight 

should have its own learning rate coefficient, because the partial 

derivative of the energy function E with respect to each weight 

gives the gradient for that weight only. Also, the learning rate 

coefficient for one weight need not be appropriate for other 

weights. Secondly, the learning rate coefficient should be 

allowed to vary depending on the nature of the surface of the 

energy function a long the dimension under consideration. 

 Thirdly, the learning rate coefficient for a weight should 

be increased if consecutive steps have the same sign. Fourthly, 

the learning rate coefficient should be small when the derivative 

of the energy function with respect to a weight changes sign. 

Let the learning rate coefficient for the weight L

ij
w  at time 

step s be [s] 
L

ij
 . The algorithm is as follows: 

Step 1: Choose an initial learning rate coefficient η. 

Step 2: Set the learning rate coefficient    [0]  
L

ij
= for all weights 

in the neural network. 

Step 3: Do a backpropagation step without momentum term. 
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Step 4: If [s] 
L

ij
G , the negative of the partial derivative of the 

energy function E, has the same sign, 

 set [s]    1][s 
L

ij

L

ij
 =+   (16) 

For weight [s] 
L

ij
w ; we used the increment factor   >1 . 

Step 5 : If [s] 
L

ij
G , changes sign then  

Set    1][s =+L

ij
   (17)    

   weight [s] 
L

ij
w . 

Estimate a good weight 1][s +L

ij
w  by interpolation(based 

on previous L

ij
w   values. 

Do a number of backpropagation steps with momentum 

term. 

Step 6: Restart the algorithm from step (3). 

The SAB method functions mentally different from all other 

methods. In this method, one learning rate coefficient is kept for 

each weight. 

This algorithm performs better than the original EBP, 

because it can adjust the learning rate coefficient over a wide 

range if the initial learning rate coefficient is small. One problem 

inherent in the original EBP algorithm, the selection of a good 

learning rate coefficient by the user, remains unchanged in this 

algorithm. In addition, this algorithm starts with the initial 

learning rate coefficient if a change in the sign of the gradient 

occurs. [7] 

 

Super Self Adaptive Backpropagation Method (S_SAB) 

This method is  new and different from all other methods. 

Let   be the factor by which the learning rate coefficient is 

increased, and let   be the factor by which the learning rate is 

decreased, if necessary. Experimental studies suggest that the 

learning rate coefficient decrease should be faster than the 
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increase, Recall that the learning rate coefficient at time steps for 

weight L

ij
w  is denoted by [s]  L

ij
 . The algorithm is as follows: 

Step 1: Choose an initial learning rate coefficient η. 

Step 2: Set the learning rate coefficient    [0]  L

ij
= ; for all 

weights in the neural network. 

Step 3: Do a number of backpropagation steps with momentum 

term. 

Step 4: If [s] G L

ij
, the negative of the partial derivative of the 

energy function E has the same sign, set [s]    1][s  L

ij

L

ij
 =+  for 

weight L

ij
w [s] in neural network; we assume the value of 

increment factor 1.   

Step 5: If [s] G L

ij
, changes sign then  

Set [s]     1][s L

ij

L

ij
 =+      (18) 

For weight L

ij
w [s] in the neural network; we assume the 

value of the decrement factor 1.    

Undo the previous weight update; and  

Set 0;  1][s   w L

ij
=+  

Step 6: Restart the algorithm from step (3). 

 

In the SAB learning method, the learning rate coefficient is 

set to the initial value, but in the S_SAB learning method the 

value of the learning rate coefficient is reduced by a constant 

factor. 

This method speeds up learning considerably. Also, 

because the learning rate coefficient is never set to its initial 

value (as in SAB), the choice of initial learning rate coefficient 

would not have much influence on learning time and hence can 

be made arbitrarily. 
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5. The Applications of the BP Learning Algorithm 

Backpropagation neural network has been designed for 

pattern recognition, encoding, compression, and also 

improvements of the standard backpropagation neural networks 

are applied in all the applications we said above. We described 

here the practical implementation of the BPNN in all application 

we used here, figure (3) shows an outline of this implementation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (3) Outline of system 
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5.1 Multilayer Feed Forward Network for Pattern 

Recognition 

In this research, a backpropagation neural network 

algorithm and all the methods that improved this algorithm are 

used to recognition uppercase letters in English "A"…"Z", letters in 

Arabic"ي"…" " , digits "0" …  " 9" in English and digits "0"…"9"  in 

Arabic, by using online and batch backpropagation algorithm. 

The representation of characters and digits in both languages, 

English and Arabic is shown in black and white pixels.  

To recognize the uppercase letters in English, the letters  

"A"…"Z" are encoded as 35 binary-valued input vectors 

representing black and white pixels. and the output pattern has 

been a single output bit that has been set to 1 for each character 

pattern to be recognized (local representation). The total output 

neurons that has been required is 26 neurons. Figure (4) shows 

the process of character recognition (alphabetic in English). 
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To recognize the characters in Arabic "ي" … " " the input vector 

represented by 56 binary valued, and the output pattern has been 

a single output bit that has been set to 1 for each character to be 

recognized and the total output units that has been required is 28 

units. 

 

 

 

 

When we recognize the digits "0" through "9" the input 

vector is represented by 35 binary value and 10 units in the 

output, and finally to recognize Arabic digits "0"  … "9"  we use the 

same architecture of English digits. 
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Figure (4) The Process of character recognition 
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5.2 Multi-layer Feedforward Network for Encoding of the 

Pattern 

Here, a backpropagation neural network algorithm and all 

the methods that improved this algorithm are used to encode 

English and Arabic alphabets and digits. 

The representation of these patterns is the same as the 

representation of pattern recognition. Now, we need to name 

each of the output categories and we can assign a simple 4 or 5 

bit binary code. Figure (5) shows the architecture of the Arabic 

alphabet encoding. 
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Figure (5) Architecture of Arabic alphabet encoding 
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5.3 Multi-layer Feedforward Network for Pattern 

Compression 

A backpropagation neural network algorithm and all the 

methods of speeding up this algorithm are used to compress the 

English, Arabic alphabet and also English, Arabic digits.The 

representation of the pattern is the same as the representation in 

pattern recognition and encoding, but the output pattern has the 

same dimension of input. 

By converting the original data that are represented by 

conventional code into a different code, compression algorithm 

may provide a level of security illicit monitoring. Figure (6) 

illustrates the architecture of the English alphabet compression. 
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Figure(6) Architecture of English alphabet compression 
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6.  Results of methods to speed up EBP algorithm  

In this section, the methods to speed up EBP algorithm 

described in section 4 are compared to the EBP algorithm 

described in section 1 on the basis of the number of adaptation 

cycles required by each algorithm to achieve the same small 

value of the total error. 

The five algorithms are used individually to train the same 

BPNN architecture, and with the same initial set of synaptic 

weights that were provided by a random number generator 

producing numbers between –0.01 and 0.01, for each application 

individually [i.e. when we take Arabic alphabetic character 

recognition the same architecture is used for EBP and five 

modification methods, and so on ). 

This research, applied the EBP algorithm and all five 

modification methods of this algorithm for English, Arabic 

character and English, Arabic digits to recognition, compression 

and encoding of these. Here we take a sample from each type of 

this application, and show the difference between these methods 

and original BP. The SBP is aslow method where MOM method 

is faster than the original EBP, ESV is very fast (this method 

train the pattern with few iteration), B_D is faster than ESV and 

converge to optimal solution with very few iteration and with 

minimum error , SAB is faster than other methods and finally 

S_SAB is faster  than all previous methods, this can be clearly 

noticed in the following tables. 
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Table (1) The Difference between methods for pattern 

compression of English digit 

 

Method Input 

Units 
Hidden 

Units 
Out 
put 

Units 

  Beta   Iteration 

no. 
Error 

SBP 35 10 35 0.9 0.0 0.0 0.0 0.0 2271 0.099987 
MOM 35 10 35 0.9 0.5 0.0 0.0 0.0 1121 0.099987 
ESV 35 10 35 0.9 0.0 4.0 0.0 0.0 545 0.099992 
B_D 35 10 35 0.7 0.0 0.0 1.1 0.5 110 0.009619 
SAB 35 10 35 0.9 0.5 0.0 1.1 0.0 43 0.009515 

S_SAB 35 10 35 0.9 0.3 0.0 1.1 0.5 32 0.035117 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (7) The Difference between methods for pattern 

compression of English digit 

 

1

10

100

1000

10000

SBP MOM ESV B-D SAB S-SAB

methods to speed up SBP

It
e

ra
ti

o
n

 n
u

m
b

e
r

 



Nidhal H. AL-Assady , Bayda I. Khaleel  & Shahba I.Khaleel 
 

 

 150 

Table (2) The Difference between methods for pattern encoding 

of Arabic digits 

 
Method Input 

Units 

Hidden 

Units 

Output 

Units 


 

  Beta   
 

Iteration 

no. 

Error 

SBP 35 5 4 0.9 0.0 0.0 0.0 0.0 3796 0.009999 

MOM 35 5 4 0.7 0.7 0.0 0.0 0.0 1389 0.009997 

ESV 35 5 4 0.9 0.0 6.0 0.0 0.0 421 0.009990 

B_D 35 5 4 0.9 0.0 0.0 1.1 0.5 64 0.009916 

SAB 35 5 4 0.9 0.5 0.0 1.1 0.0 38 0.009914 

S_SAB 35 5 4 0.9 0.3 0.0 1.1 0.5 20 0.033850 

 

 

Table (3) The Difference between methods for pattern 

recognition of Arabic alphabet 

 

Method Input 

Units 

Hidden 

Units 

Output 

Units 
    Beta     Iteration 

no. 
Error 

SBP 56 6 28 0.9 0.0 0.0 0.0 0.0 357 0.399824 

MOM 56 6 28 0.9 0.5 0.0 0.0 0.0 174 0.399503 

ESV 56 6 28 0.9 0.0 6.0 0.0 0.0 23 0.398148 

B_D 56 6 28 0.9 0.0 0.0 1.1 0.5 14 0.392830 

SAB 56 6 28 0.9 0.5 0.0 1.1 0.0 12 0.278834 

S_SAB 56 6 28 0.9 0.1 0.0 1.1 0.5 8 0.023967 
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