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ABSTRACT

The main objective of this paper is to develop and
construct numerical algorithms for solving stiff system of
ordinary differential equations (ODEs) which are suitable for
running on parallel computers (MIMD computers).Semi-parallel
implicit Runge-Kutta methods have been derived and parallel
predictor - corrector methods are developed.

Keywords: stiff ordinary differential equations (ODES), Runge-
Kutta methods, parallel implicit methods, predictor - corrector
methods.
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1- Arithmetic Mean and Geometric Mean Runge-Kutta
Methods:

The general form of an r-step arithmetic mean (AM) Runge-
Kutta method is:

i—1
Kl = f(yn)' Ki = (yn + hnzbinj (1a)b)
j=1
and
yn+1 = yn+ZWiKi’ Z\Nl =1 (1C)
i=1 i=1

with appropriate values of the b’s and w’s . If instead of
the weighted arithmetic mean in eqg. (1) we use the geometric
mean, then the geometric mean (GM) Runge-Kutta formula is

[2]:
yn+1 = yn + H KPl ! Z I:)i - 1 (1d)
i=1 i=1

An example of the AM- Runge-Kutta formula is the 4" -
order formula generated by the symbol matrix [2]
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And an example of the GM-Runge-Kutta formula is the
4"-order formula generated by the symbol matrix

0 0 0

% 0 0
Do % 0
b %y %%

RO T S Y

If, while maintaining the order of accuracy of the formula,
we can choose some of the w's , e.g. w, , to vanish and the
subsequent k's do not depend on k;, then an economical formula
is obtained. An example of such formula is the 4""-order formula
generated by the symbol matrix

o O o o

0 0 0 0
%1 0 0 0
—o0 0 0 0

1 0 0 0
Y6 % 0 Kolau

We can get the formula:

ki = f (Xn,Yn), Ko=f(Xn+h/2,yn+h/2k;), ks=f(Xn+h, yn+hk;) (2a)
and

Vi1 = Yo + 1/60 (K1 + 4k; + ky) (2b)

In this formula, we notice that while it is effectively a 3-
stage formula generated by the symbol matrix.
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0 0 0
% 0 0
—o0 0 0
1 0 0
4
ESE AN

The quantity K4 does not depend on k, and thus allows us
to compute k, and k4 simultaneously on a parallel computer. By
replacing h by - h in the formula (2) we obtain the corresponding
implicit formula as:

L1 =f(Xn+1 ,Yn+1),

Lo=f(Xn+1-1/2h,yn41-h/2 Ly),

Ls = f(Xnez - D, Yner- N, Yo - h L) (3)
And

Y*ne1 == Yo+ h/6 (L1 + 4L, + Ly)

Now we will try to find other RK formulas of the type
given by egs (2) and (3) and other forms:

2- Semi-Parallel Implicit 3-Stage AM-Runge-Kutta Method:
The 3-stage AM-Runge-Kutta formula is of the form:

ki=f(Xn, Yn) (4a)
k2=f(Xn+a1h,yn+a1hk1), (4b)
ks=f (Xn, +h, Ynt aohky + aghkz), (4C)
and

Yot = Yn + h (Wiky + Woka + Wsks) (4d)

By setting a; +as= 1 and by comparing the r.h.s. of
equation (4d) with the Taylor series expansion for y(X,.1), the
following equations of conditions were obtained :

h? f.fy :wyB1 +ws (a2 + a3) =2,
h® f2fyy : 1/2 W2ai2 + 1/2 W3 (a2 + a3)2 = 1/6 , (5)
h3 ff2y : wsaa3 = 1/6
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For the purpose of parallel computation we require that
as =0, therefore, by solving this system, for w, and w3
in terms of a; and a, we get:

-3a,+2

B —3a, -2
i 6a1(a1 _az)

- 6a21(a1 o az)

and .

Since Wi+w2+W3=l and by setting a; = Vi, we find that
the solution is:
31:1/2,8.2:1,W1:l/6,W2:2/3,W3::1/6

The resulting formula is thus;
k1= f(Xn,Yn),
ko=f(xn+%2h, yn+¥2hk)),
ks=f(Xn+h,yn+hki)
and
Y+1=Yn++1/6 h(ki+4ky+k3) (6)

which is a semi-parallel 3-stage AM-Runge-Kutta method,
because evaluations of k, and k, are independent, so they can be
computed simultaneously, but sequentially to k; , so that the
formula is semiparallel explicit Runge-Kutta (SPERK) method .

Since we are solving stiff ODEs[8], we require implicit
forms. By replacing h by- h (i.e.backward integration) in the
formula (6) we obtain the corresponding implicit formula as:

1 1
lef(xn+1’yn+l)’ L2 :f(xn+1_5h’yn+l _Ehl—l)’

L, =f(X,..—h.y,. —hLy) (7)
And

Yo=Y, +%(Ll +4h, +L,),
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In formula (7) we see that computing yy.+1 is depending on
itself so that the method is Implicit Runge-Kutta (IRK). Also, we
note that L, does not depend on L,, so they can be computed in
parallel (i.e. simultaneously) using two different processors. But
simultaneous evaluation of L, and L4 is sequential to evaluation
of L,, therefore, the method is a semi-parallel IRK (SPIRK)
method.

The parallel predictor-corrector form of (6) and (7) is:

C h C C c
yg+1:yn+g(Kl+K2+K4) \
Vra= Vit o L L)
Where
Ki=f0¢.y0), L5 =f(X0¥0) > (8)
. 1. . h, . h h
K2:f(xn+§h,yn+§Kl), L%:f(Xnﬂ—E,yEH—ELﬁ)
KZ:f(Xn+h'yE+hK§)’ La:f(xnﬂ_h’ygﬂ_hl—ﬁ/

J
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The computation diagram is:

Compute k;

/ N\

Compute K Compute K,

N\ /

p
Compute Yn+

A 4

Compute k”

Compute L% Compute

v N
|

Computer
yr?+l

Fig. (1) The computation diagram of (8).
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3- Semi-Parallel Implicit Geometric Mean Runge-Kutta
(SPIGMRK) Method:
Now we repeat the analysis of equations (4) with (4d)
replaced by
Yn+l=yn+hK{P?  KPKY, 0<p, g<l (9)
to get a 2-stae SPIGMRK formula .
The Taylor series for y(xn+1) are :
h2ffy : pal + q(a,+az) = 1/2 (10a)
heffyy: I12pa? + 1/2q(a; + as)? =1/6 (10b)
h3ff2y:Pgay (a2 + as) + 1/2p(p - 1) a7 + qar as
+1/12q(q - 1)(az + a3)® = 1/6
By Putting as = 0, we get:

Pa;+ga,=1/2 (11a)
Pai? +q a;®>=1/3 (11b)
Pgaia; I/2P(P-1)as? = 1/12q(g-1)a;% = I/6

(11c)

Unlike the linear case, (10c) is not immediately violated
with the choice az =0 Solving this system for p and g from (11a)
and (11b) in terms of a; and a, we have:

P —-3a,+2 and q= 3a,; —2 (12)
6a,(a; —a,) 6a,(a; —a,)

Therefore with a; and a, chosen to satisfy (11a) and (11b)
result in (11c) is not being satisfied. The resulting formula is thus
order 2. As an example of the solution, setting a; = 2/3 and a,= 1
we obtain p=3/4 and g=0. The resulting formula is given by:

Ki=f (Xn, Yn), ko=f(Xn+2/3/h, y,+2/3hk1), ks=f (X, +h, yn + hki)
and
Yne1=Ynt hk, v Ko #

This is a parallel 2-stage formula since ks dose not need to
be evaluated. The corresponding implicit formula is:
lef(Xn+1,yn+1), L2=f(Xn+1-2/3h,yn+1-2/3h|_1), L3:f(Xn+1-h,yn+1-hL1)
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and
y:+1 =Y, t+ h|—11/4|—32/4

4. Another semi—parallel implicit 2-stage GM—Runge-Kutta
Formula:

Now, we try to find the solution to satisfy equations (11a)
and (11c) but not (11b), we have :
ga; =% -pa;
and substituting into (11c) we get :
Payi(1/2-pay)+1/2p(p-1)as®+v2(1/2-pa;s)(1/2-pas-a)=1/6  (15)
Putting Pa; =0
-eq.n. (11a) becomes q a,=1/2, -eqgn (15) becomes a,=-1/6
an example of the solution is:
P=0,a;=0,a,=-1/6,q=-3
which leads to the following formula:
K; = f (Xn+1/6h , y, — 1/6hk;)
And
Ynt1=Yn T hk14 k3_3 (16)
which is a semi-parallel 2-stage GM-Runge-Kutta method. The
corresponding implicit formula for this method is:
L,=f(Xn,Yn), Ls=f(X,-1/6h, y,+1/6hL;),
And

Yoa =Y, +hLLS (17)

Form (17) is considered as a parallel mode because the
calculation of L is not needed.

5-semi-parallel implicit 3" order Runge-Kutta method:
In similar way as described previously, we can obtain
another (SPIRK) of order three in the following form:
Ki= f(Xn, Yn), k2= (Xa+1/4h, ynia-1/4hL,) ,
Ls=f (Xn+1'h, Yn+1'h|—1)
And
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h
yn+1 = yn + E (3K1 + 4K2 + 5K1) (18)

The corresponding implicit formula is:
L1=(Xn+1,Yn+1), Lo=(Xn+1-1/4N,Yn+1-1/40L1), Ls=(Xn+1-h,Yn+1-hL1),

And
h
You =Y T E (3|—1 + 4L2 + 5'—1) (19)

6-Fourth order parallel predictor- corrector RK (PPCRK)
method:
The general form of fourth order Runge-kutta method is:
ki = f(Xn, Yn),
ko = f(Xatc2h, yntcohky),
ks = f(xnt+Csh, ynth(asika+(cz-as1)k1)),
ks = f(Xn+Cah, ynth(asikot+ asoks+(Cs-a41-a42)Ky)),
Y1 = Yt h(WiKi+Wokao+Wska+waks)

By using series expansion , one obtains after rather
complicated calculations , the following system [35]

W1+ Wo+ W3+ Ws=1  WsCoaz1+Wa(Csdaz + Coa41)=1/6,
W5Cp + W3C3+WaCs = 1/2, W3Cpaz1+WaCa(C384 + C2841)=1/8,

WZCZ2 + W3C32'|‘W4C42 =1/3, W3C228.31+W4(C323.42 +
CoPau1)=1/12,
WZCZ3 + W3(;33‘|'W4C43 = 1/4, WiCrauo= 1/24,

We have eight equation in ten unknowns , and hence we
can choose two quantities arbitrarily. If we assume that c,=cs,
which seems rather natural, we find:

Cr,=C3=%, c4=1, W1:W4:1/6 JWotW3 = 2/3, agtan =1, W3a31:1/6

If we further choose w,=ws3 and for the purpose of parallel
computation we require as; = 0 we get:
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Wo=W3=1/3, a4 =1, +a3;=1/2

Thus we have the final formula:
ki = f(Xn, yn)1
ko = f(x,+1/2h, yn+1/2hk;),
ks = f(x,+1/2h, yn+1/2hky), (20)
k4 = f(Xyt+h, ynthky),
Yie1 = Yt N6 (K1 + 2Kz + 2k3 + Ka)

This is a (SPERK) method of order four:
From (20) we can get a semi-parallel implicit RK (SPIRK)
method of order four by backward integration process a follows:

Ll = f(Xn+1’ yn+1)l

1
Lz = f(Xn+1 _Eh’ Yo — hL1)1

1
2
L, =f(X,, —%h,yn+l —%hLz),
L, =f(x,—hy, —hL), (21)
Y. =Y —%(L1 +2L,+2L,+L)),
Rearranging this formula we get:
You=Y, +%(L1 +2L,+2L,+L,)

In this implicit method L; and L, are independent and can be
computed in parallel. To get a parallel predictor-corrector RK

(PPCRK) mode of the methods (20) and (21) , we can write them
in the following form:

yh,=Yh, +%(Kf + 2K} + 2K} + K?), predictor from
Yo, =Y.+ % (L% +2L° + 2L% + L) ,corrector from

89



Bashir M. Khalaf & Abdulhabib A. Murshid

Where
Kf - f(Xn+1’ yE+l)’ Lli - f(Xn+l’ yg+1)l

K =F Xy 450, YA 2 PD),

1 1
Lpz — f(Xn+1 _E h, y2+1 _E hL'i),

K = (x +%h,yg+l+%hr<g),

n+l

Lp3:f(x %hsygﬂ_%hl_g)s

nel
Kz :f(xn+1 + h’ yE+1 + th)’
Lel = f (Xn+l - h’ ygﬂ - thZ)’

Where Y7 is computed in advance

...... | Computation Front

-
ey
-" - é:

\’,\n
e

i e I 1 C
n - n+l | n+2
Fig. (2): Information flow in the PPCRK scheme.

The problem with this PPCRK mode is that: the predictor
formula always compute yPn., depending on predicted values and
because we are solving stiff ODEs this means that the predictor
formula will be unstable Hence, we require a modification of the
PPCRK mode , so that the predictor formula depends on
corrected values ,we can develop a formula which repeats the
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correction twice: (y1 , Y. and ys can be computed first
sequentially).
First calculation stage:

h
Via =Y+ g (L +2l + 2L +15)
Second calculation stage:

Voo =Y (KE+2KE 4 2KE + K)

Vo=V L 2L 2L+ L)

| - P? P
/—\) c C
. |

v cc /_\4) -

1 n+l n+2 1 n+1 n+2

Fig.(3): Diagram of the first Fig.(4): Diagram of the
calculation stage. second calculation stage.

7-PPCRK Method for a system of first order ODEs:
Runge-Kutta method can be applied directly to differential
equations of higher order, taking , for example , the equation
y"'=f(x,y,y’), we put y'=z and obtain the following system of
first-order equation:
y'=z, 7'=f(x,y,2)
This is a special case of:
y'=F(xy,2),
z'= G(x,y,2),
(22)
which can be integrated (using method 6):
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Ki= F(Xn,¥Yn,Zn),  L1= G(Xn,Yn,Zn),

1 1 1

K2 - F(Xn +Eh,yn +EhK1’Zn +§hLl)’
1 1 1

L, =G(x, +=h,y, +=hK ,z_+=hL)),

( 2 yn 2 1 n 2 1)

1 1 1
,=F(x,+=hy +=hK,,z +=hL)),

( 2 yn 2 2 n 2 2)
L,=G(x, += h y, + 1hK2, Z, +%hL2),
K, =F(X, +h Y, +hK2, ~+hL,),

L, =G(X, +h Y, +hK,,z_+hL,),
yn+1 = yn +E(K1 + 2I‘<2 + 2K3 + K4)’
z2.=2 +%(L1 +2L,+2L,+L,),
The corresponding implicit formula is:
mle(Xn+1, VYn+1, Zn+1), SI—G(Xn+1, Yn+1, Zn+1)
1 1
m, = F(Xn+1_§h’yn+l 2hm1’2n+1 zhsl)’
Sz = G(Xn+1 _l hv You _%hml’zm-l _%hsl)’
1 1 1
m, = F(Xn+1 5 —h, You— 5 hm2’2n+1 _E hSz)v
1 1 1
Ss :G(Xn+l 2h Yo — EhmZ’znﬂ_EhSZ)’
1 1 1
m, = F(Xn+1 _Eh’ Yiou _Ehmw Zoa _Ehsz)’

1 1 1

S4 - G(Xm-l _Eh’ynﬂ _Ehmziznu _Ehsz)1

92
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y:+1 =Y. +%(m1 + 2mz + 2m3 + m4)’

Z ., =2 +%(S1 +2S,+2S, +8S,),

We can modify the algorithms (23) and (24) to parallel predictor-
corrector RK (PPCRK) version as follows:

We compute y; and z; by using (13) in advance, then

We compute the following in parallel:

Vo =Yha+ (K + 2K +2K3 +K2),

Zp

n+1

h
=z! +E(L‘; +2L% + 2L + 1Y),
Vi =Yi+ £ (mE +2m2 +2m + ), @5)

n+1

2 =z +%(Sf +2S0 4250 +SY),

Where p means using predicted values and ¢ denotes the using of
corrected values.

LULE WL 7 e -

Y
+
] 2 n I+ ne2

n

Fig. (5): Information flow in the PPCRK scheme (25).

Processor yP compute values of yP.,, n=0,1,...

Processor z° compute values of zP,+,, n=0,1,...

Processor y° compute values of y¢n.2, n=0,1,...

Processor z¢ compute values of z%.,, n=0,1,...
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The message passing between the processors will be as

follows:
Processor yP computes values of yP.., , where the values of yPn.;
and zP.; are ready at processor yP from last step, at the same time
processor zP computes the value of zP., as the values of yP.:; and
ZPn+1 are ready from last step. At the same time, processor y°
computes the value of y%.1, as the values of y%,, z% , yP»s1 and
zPh+1 ready from last step . At the same time, processor z°
computes values of z%.; as the values of y,, z% , YPn+1 and yPns
are known from last step , now ,

Processor yP sends the values of yP... to the
processors zP , y© and z°and they wait antil the message
will be received.

Processor zP sends the values of zP,, to the
processors yP , y¢ and z° and they wait antil the message
will be received.

Processor y°¢ sends the values of y%.; to the other
processors and the process will wait for the receiving the
value.

Processor z° sends the values of z%.; to the other
processors.

Now all processors yP , zP , y¢ and z° have the necessary
values to start the calculation of the next step.Since we are
dealing with only stiff ODEs , the predictor mode of the method
should depend on the corrector mode , hence the formula can be
adapted to the following form:

First stage calculation:

Vo= i+ g (M +2mE + 2m? +m)
z: ., =27 +%(Sf +2S) +2SE +SF)
Where
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p_ p p
ml - I:(Xn+1’ yn+1’ Zn+1)’
p _ p p
Sl - G(Xn+1’ yn+1’ Zn+1)’

h h h

mg - F(Xn+l _E 1 yg+1 _E hmf’ Z2+1 - ESE)’

h h h

Sg = G(Xn+1 _E’ygﬂ _Ehmf’zgﬂ _ESE)’

h h h

mg = F(Xn+1 _Eiyﬁu _Ehmg’ Zﬁﬂ _ESE)’
h h h

Sg = G(Xn+1 _E’ygﬂ _Ehmgizgﬂ _Esg)’

mzpt = I:(Xn+1 —h, yﬁ+1 - hhmg’ Zﬁ+1 - hSS),
SZ - G(Xn+1 - h’ yE+1 - hmg’ ZE+1 - hsg)’
Second stage calculation:

Vho = Vi + o (KE+2KE 4 2K2 4K0)

n+2 -~ “n#l

zh , =12; +%(L‘1+2LC2+2L°3+LC4)
Vs = Y+ (S +2mS + 2ms )

2 =70+ (42554250 +5))

n+1
Where
K; - F(Xn+1’ y(r:1+1’ Z(r:1+1)’ Lcl - C;(Xn+1’ y(r:1+1’ Z::Hl)’
c 1 c 1 c 5C 1 c
KZ - I:(Xn+1 - E h’ Youa — E hKl 1 Lna E hL1)1

c 1 1 ¢ _c 1
Lz = G(Xn+1 _5 h, yg+1 _E hKl v L _Ehl—q%
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C 1 C 1 C l C
Kz - F(Xn+1 _E h, Yo — 2 hKl’ nel 2 hL1)1
i 1 1. . 1
Lz =G(Xn+1_§h1yg+1_§hK1’ n+l Zhl—q)’
c 1 Cc 1 c 1 c
K3 = F(Xn+1_§h1yn+1 2hK2’ n+1 2hL2)’
1 1 1

LCS - G(X h yn+1 __hK;7 n+l thZ)’

n+l
KZ :F(Xn+1_h’yn+l hK;’ n+l thz)’
LC4 :G(Xn+1_h7yn+1_hK;’ n+1 thZ)’
m(1: = F(Xn+1’y(r:1+1’zn+l)’ Sf _G(Xn+1’y(r:1+1’zfl+l)’

¢ h h e h .
m, = F(Xn+l 'yn+1 E 1 n+1 5 =S )
c h h me h
Sz :G(Xn+l 2’yn+l 2 m,, n+1_§S )
c h h e h .
m, = F(Xn+1 5 ’yn+1 2 m, n+1 5 =S ),

h h h

Sg - G(Xn+1 _E’yfm 2 ml’Zn+1 _ES;)’

m; =F(x,,,—h,y;,—hm;,z°  —hS)),

SZ = G(Xn+1 - h’ y(r:1+1 hml ! Zn+1 hsg)'

In two processors computer, we can assign the calculations
of first stage as follows: y¢,.1 to first processor and z¢.1 to second
processor, and the calculation of second stage as follows: y©.,
and z% first processor and y®,.; and z%,+; to second processor.

n+1
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Fig.(6): The mapping of the calculations for the two
processors is given below:

P, P>
1™ stage calculations: 1¥ stage calculations:
Calculates Calculates
1. mf _ _ 1. 8P
P : P
sends my | _ |receives m
receive ST | <— | sends ST
p P
2. mj} 2. 83
P : P
sends mj | _, |receives m}
receive S) | < | sends S§
p p
3. mj 3. 55
P ; P
sends my { _, |receives mj
receive S§ [ <— | sends S§
4. m§ 4. s}
D - P
sends my { _, [receives mj
receive S§ [ <= | sends S}
[+ <
5. ¥n+t 5. Zpy
sends y§ . _, |receives Vo &
receive z;,, | <. |sends z},,
2" stage calculations: 2™ stage calculations:
Calculates Calculates
Cc (4 < [ [+
I'I<l, ks 24 2,K3’ ~ c [+ [ [+ c
c c 1e %= mp,oy,M3,07,M3,
32 M < < <
3,M ’Sd
cc ce
2. yIr:-;-z and Zﬁ+2, 2. Y and z7,
P P
sends y; ., and z} ., | co e
<« |[sends y,3, and z 7,
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8.PPCGMRK Method of Order Four:

A new fourth order GM-Runge-Kutta method is of the form [81]:
Ky =1(Xn, Yn)

K, = f(Xn+C2h, yn+C2hk1),

Ks = f(Xa+Csh, yath(asiki+ asokz)),

Ka = f(Xa+Csh, yath(asiki+ asoko+ assks)),

And

h
Yo = Yn +§(\/k1k2 +\/k2k3 +\/k3k4) (27)

We know that cs=asi+as; and cs=ay;tas+ays , in particular
by setting as;+as;=1/2, as1+as+ass=1 and by comparing the r.h.s.
of equation (27) with the Taylor series expansion for y(Xn+1) , the
following six equation of conditions were obtained:

h2ffy: -192¢,+96=0 (28a)
h3ff2y: -108-48a43- 24C,-96C,a42-192¢C2a3,+48C,2=0 (28b)
h3ff2y: 24-96¢,2=0 (28c)
h4ff3y:18+123.43+3Cz+2402a42-96023.323.43
+6022-48C228.32-246C23:O (28d)
h4f2fyfyy:108-60&43-602-9602&32-12C22
-48C22342-96C22832+48C23:0 (286)
and

h*ffyyy: 4-32,°=0 (28f)

Now we shall combine equation (28) with the arithmetic
mean (AM) formula of the form:
Y1 = Yath (Wi K+ wo ko + w3 ks + wy ke ) (29)

where wi+wy+ws+w,=1 , which uses the similar function
evaluation k; (i = 1,2,3,4) as given by equation (26)

It can be established that the equation of condition for the
fourth order terms are given as follows:

h*ffy :w,c, + w,c, + w,c, =1/2 (30a)
h*ff*y : w,c,a,, +w,(a,,C, +a,C,) =1/6 (30D)
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2 2 2

h*ff 2yy: Wi,  Wibs | Wi /6 (30c)
2 2 2
3 3 3

h*ffyyy : Wécz + Wéc3 + W 1794 (300)
h*ff’y:w,a,c,a,, =1/24 (30e)
and

h*ffyfyy:

2 2 2

W,C, 85 +W,C,a,C, +W4a242C2 +W4agsc3 (30)

+w,C, (a,,C, +a,C;)=1/6

In obtaining equations (28a) — (28f) we have previously set
as1tasz= Y2 and as+astass=1 , thus we still have one degree of
freedom for the nine unknown variables , if we choose equation
(30c) to be the ninth equation , then the resulting AM and GM
formulae will be of third order when applied to a general problem
of the form:
y'(x)= f(x,y(x)) (31)

Thus, by substituting cs= 1/2 and c,=1 where appropriate,
the remaining seven equations of conditions for the AM and GM
formulae are given as follows:

AM:

h2ffy: 1/2w, + 1/2w3 + Wy = 1/2 (32a)
h3ff2y: 1/3waas; + Wa(1/2a42 + 1/2a43)= 1/6 (32b)
h*ffly: 1/2waassas, = 1/24 (32¢)
and

GM:

h2ffy: -192¢, = 96 (32¢)
thny: 8az +4as +4ai3=9 (32f)
and

h4ff3yZ 283y — 284y - 2843 + Bazauz = 3 (329)
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For the purpose pf parallel computation we shall assume that
a43=0, So these equations are then solved simultaneuously, we
get:

C2=1/2, a31=—3/4, daso 25/4, a42=—1/4, a43=0,W1=1/11,
w,=17/33, w3=10/33, w,=1/11

Thus the method is given in its final form by:

ki = f(Xn, yn);

ko = f(Xn+1/2h, yn+1/2hky),

ks = f(xn+1/2h, ynth(-3/4k; + 5/4k>)),

(33)

Ky = f(Xnth, ynth(5/4k;-1/4ky)),

and

Y . =Y, +%(3kl +17k, +10k, +3k,) (AM-mode) (34)

" h
Yo =Y. +§(\/k1k2 + kK, +./k,k,) (GM-mode) (35)

Again k3 and k, are independent tasks , hence they acan be
computed in parallel . Anyhow , evaluation of K;,K; and (parallel
evaluation of K3 and K, ) are sequential processes which means
that speed-up factor S, of the solution will remain small (1<
Sp<2) we have called these type of methods as semi-parallel
explicit methods.

Since we are dealing with stiff differential equations, we
need that the integration method to be implicit , so we can conert
formula (34) and (35) to implicit forms by backward integration
(i.e. using —h,h>0).

Again we see in the implicit forms that K; and K, are
defined independently , so that they can be evaluated at the same
time using two different processors but their parallel evaluation
should be done sequentially with evaluation of K; and K, , which
means that the new implicit methods are semi-parallel. We can
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produce parallel versions of the methods by arranging them in
parallel PCRK forms.

9-Numerical Example:
Consider the second order stiff equation:

2
9Y _1001% +1000y=0,  xe(0)
dx dx
(40)
The general solution of (40) is
Y(X) = Ae* + Be-lOOOX
If we impose the initial conditions Y(0) =1, y’(0)=-1, the
exact solution is:
Y(X) =e™
We now try to solve (40) with this initial condition using the
4" order Runge-Kutta method. The ystem can be rewritten as a
first-order system[23]

d
%:yzi yl(o):l

O('jyz — 1001y, ~1000y,, y,(0)=-1
X

(41)

Results of applications of the methods of section (2), (4),
(6) and (8) for the above problem are given in tables (1), (2), (3)
and (4) respectively (h=0.1).
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Table (1) Results of method of section (2)

Corr.Y1

Corr.Y2

Exact Y1

Exact Y2

Errorl

Error 2

0.90502
26

-0.9050226

0.9048374

-0.9048374

1.852x10*

-1.852x10*

081904
55

-08190455

0.8187308

-0.8187308

3.147x10*

-3.147x10*

0.74123
62

-0.7412362

0.74087182

-0.7408182

4.18x10*

-4.18x10*

0.67081
87

-0.6708187

0.6703200

-0.6703200

4.987x10*

-4.987x10*

0.60709
09

-0.6070909

0.6065307

-0.6005307

5.602x10*

-5.602x10*

0.54941
73

-0.5494173

0.4588116

-0.4588116

6.057x10*

-6.057x10*

0.49722
27

-0.4972227

0.4965853

-0.4965853

6.374x10*

-6.374x10*

0.44998
65

-0.4499865

0.4493290

-0.4493290

6.575x10*

-6.575x10*

0.40723
78

-0.4072378

0.4065697

-0.4065697

6.681x10*

-6.681x10*

0.36855
02

-0.3685502

0.3678794
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TABLE (2), Result of method of section (4)

Corr.Y1 Corr.Y2 Exact Y1 Exact Y2 Error 1 Error 2

0.90483 | -0.9048387 | 0.9048374 | -0.9048374 -1.3x10°® 1.3x10°®
08187§Z -08187323 | 0.8187308 | -0.8187308 -1.5x10°® 1.5x10®
0.74:13082 -0.7408200 | 0.7408182 | -0.7408182 -1.8x10°® 1.8x10®
0.63%32 -0.6703219 | 0.6703200 | -0.6703200 -1.9x10°® 1.9x10®
0.6%)%53 -0.6065327 | 0.6065307 | -0.6005307 -2x10°® 2x10®
0.531;81 -0.5488137 | 0.5488116 | -0.4588116 -2.1x10°® 2.1x10®
0.4%3558 -0.4965874 | 0.9465853 | -0.4965853 -2.1x10°® 2.1x10®
0.414!;33 -0.4493311 | 0.449390 -0.4493290 -2.1x10°® 2.1x10®
0.4%51571 -0.465718 | 0.4065697 | -0.4065697 -2.1x10°® 2.1x10®
0.368788 -0.3678815 | 0.3678794 | -0.3678794 -2.1x10°® 2.1x10®

15
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TABLE (3) Results of method of section (6

X Corr.Y, Corr.Y> Exact Y1 Exact Y» Error 1 Error 2
0.1 | 0.9048258 | -0.9048258 | 0.9048374 | -0.9048374 | -1.16x10° | 1.16x10°
0.2 | 08187165 | -08187165 | 0.8187308 | -0.8187308 | -1.43x10° | 1.43x10°
0.3 | 0.7408020 | -0.7408020 | 0.74087182 | -0.7408182 | -1.62x10° | 1.62x10°
| 0.4 | 0.6703023 | -0.6703023 | 0.6703200 | -0.6703200 | -1.77x10° | 1.77x10°
| 0.5 | 0.6065119 | -0.6065119 | 0.6065307 | -0.6005307 | -1.88x10° | 1.88x10°
0.6 | 0.5487922 | -0.5487922 | 0.4588116 | -0.4588116 | -1.94x10° | 1.94x10°
0.7 | 0.4965655 | -0.4965655 | 0.4965853 | -0.4965853 | -1.98x10° | 1.98x10°
0.8 | 0.4493090 | -0.4493090 | 0.4493290 | -0.4493290 -2x10 2x10°
| 0.9 | 0.4065497 | -0.4065497 | 0.4065697 | -0.4065697 -2x10% 2x10°
I 1 0.3678598 | -0.3678598 | 0.3678794 | -0.3678794 | -1.96x10° | 1.96x107

1
I
!
|

Table (4) Results of method of section (8

Corr.Y1

Corr.Y;

Exact Y1

Exact Y

Error 1

Error 2

0.9048123

-0.9048123

0.9048374

-0.9048374

-2.51x10°

2.51x10%

0.816941

-0.816941

0.8187308

-0.8187308

-3.67x10°°

3.67x10°

0.7407724

-0.7407724

0.74087182

-0.7408182

-4.58x10%°

4.58x10%°

0.6702671

-0.6702671

0.6703200

-0.6703200

-5.29x105

5.29x10°®

0.6064724

-0.6064724

0.6065307

-0.6005307

-5.83x10°°

5.83x10°

0.5487496

-0.5487496

0.4588116

-0.4588116

-6.2x10°°

6.2x10°

0.4965207

-0.4965207

0.4965853

-0.4965853

-6.46x105

6.46x10°

0.4492628

-0.4492628

0.4493290

-0.4493290

-6.62x10°

6.62x10°

0.4065029

-0.4065029

0.4065697

-0.4065697

-6.68x10°

6.68x10°

0.3678127

-0.3678127

0.3678794

-0.3678794

Corr. = Corrected, Error;= Corr. Y1-Exact Y1,

Error,=Corr. Y,-Exact Y
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In each table, the first column gives values of the
independent variable X, the second and the third columns give the
corresponding corrected values of y; and Yy, respectively
computed by implicit mode of the method being used, the fourth
and the fifth columns give the corresponding values y; and vy,
computed from the exact solution of the problem, the sixth and
seventh columns give the corresponding errors of the numerical
solutions of y; and y, respectively. The two last columns of each
table make clear the effectiveness of the newly developed
methods in solving stiff ODEs since we are using fixed large
stepsize and the integration method is of fixed order.

11- Conclusion

We have developed several semi-parallel explicit Rung-
Kutta method for solving ODEs using AM and GM
techniques. Then we converted these methods into SPIRK
methods by converting the direction of integration. SPIRK
methods are suitable for integrating stiff ODEs. Also we have
developed PPCRK methods by advancing the predictor mode
one-step, and we have modified the PPCRK methods for a
system of stiff ODEs.

105



Bashir M. Khalaf & Abdulhabib A. Murshid

[1]

[2]

[3]

[4]
[5]
[6]

[7]
[8]

[9]

REFERENCES

S. D. Contc and C. de Boor, "Elementary numerical
analysis a algorithm approach”; International Student
Edition, London, 1981.

D.J. Evans and B. V. Sanugi, "A parallel Runge-Kutta
integration method", Parallel computing 11 (1989), 245-
251.

M.A. Franklin, "Parallel solution of ordinary differential
equations”, IEEE Trans. On Computers Vol. C-27,
No0.5(1978), 413-420.

C.E. Froberg, "Introduction to numerical analysis",
Addison-Wesley, 1969.

C.W. Gear, "Rubg-Kutta started for multistep methods",
ACM Trans. Math. Software, Vol. 6 (1980) 263-279.

S.K. Goshal, M. Gupta and V. Rajarman, "A parallel
multisrep  predictor-corrector algorithm for solving
ordinary differential equations”, J. of Parallel and
Distributed Computing, 6 (1989), 636-648.

W. L. Miranker, "A survey of parallelism in numerical
analysis", SIAM Review, Vol. 13, No.4 (1971), 547.

Murshid A.A.A. (2000); An Investigation of Numerical
Algorithms for solcing stiff ODEs suitable for parallel
computers, Ph. D. Thesis, Mosul University.

A. Sandu et al, "Benchmarking stiff ODEs solvers for
atmospheric chemistry problems-I: implicit vs explicit",
Atmospheric environment, Vol. 31, No. 12 (1988), 991-
995.

106



