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ABSTRACT 

The objective of this paper is to construct numerical schemes using 

finite difference methods for the one-dimensional general hyperbolic- 

parabolic- reaction problem.  

The finite difference method with the exponential transformation 

form is used to solve the problem, and employs difference approximation 

technique to obtain the numerical solutions. Computational examples are 

presented and compared with the exact solutions. We obtained that the 

Crank-Nicholson scheme is more accurate than Forward scheme. Therefore 

the form of exponential transformation for the problem yields a stable 

solution compared with exact solution.  

Keywords: Finite difference methods; Exponential transformation; Crank-
Nicholson scheme; Hyperbolic- parabolic- reaction problem. 

 

Hyperbolic – Parabolic  طرائق الفروقات المنتهية لمعادلات 

 اخلاص سعدالله الراوي                 سعد عبدالله مناع         عباس يونس البياتي
 والرياضيات/جامعة الموصل/العراق  كلية علوم الحاسوب

 30/05/2005تاريخ قبول البحث:               12/04/2005تاريخ استلام البحث: 
 الملخص

 

إن هدف هذا البحث يبنى على استخدام طرائق الفرو قات المنتهيةة لحةل ملة لة عامةة  ات   
الفةرو قةات المنتهيةة   ق , إ  تة  اسةتخدام طرائة    hyperbolic- parabolic- reactionبعةد وادةد 

مع التّحويلِ الأسّيِ لحل المل لة، وتطبيق تقنيةة  تقريةِ  الفةرو قةات ، لنحلةل علةى الحلةودِ العد  ةة  
نيكللون أكثر  قة مة   -وقد قورنت أمثلة دلابية بالحلودِ المضبوطةِ ودللنَا على أن طريقة كرانك

يِ لهةذا الملة لة تعطةي دةتق ملةتقراق مقارنةة  لذلك فإن صيغة التّحويةلِ  طريقة الفرو قات الأمامية  الأسةّ
  .بالحلِ المضبوطِ 

نيكللون، مل لة  -طرائق الفروقات المنتهية، التحويل الأسي، إسلوب كرانكالكلمات المفتاحية: 
hyperbolic- parabolic- reaction     
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1.Introduction: 

Various finite difference algorithms or schemes have been presented 

for the solution of hyperbolic- parabolic problem or its simpler derivatives, 

such as the classical diffusion equation .It is well-known that many of these 

schemes are partially unsatisfactory due to the formation of oscillations and 

numerical diffusion within the solutions (Smith et al.,1973). Solution by the 

finite difference method, although more general, will involve stability and 

convergence problems, may require special handling of boundary 

conditions, and may require large computer storage and execution time. The 

problem of numerical dispersion for finite difference solutions is also 

difficult to overcome (Guymon,1970). 
 

The hyperbolic-parabolic equation is a linear, nonsymmetrical 

partial differential equation of the parabolic type. The nonsymmetry arises 

from the so-called hyperbolic terms 
x

 )(  , which have been the principle 

source of difficulty in numerical solution of problems of this type. The 

mathematical literature relating to the solution of partial differential 

equations is concerned primarily with symmetrical problems and scant 

attention has been paid to nonsymmetrical equations, an increasingly 

important class of problems considering modern preoccupation with the 

quality of the environment (Riddaway, 2001 and Guymon et al.,1970). 
 

  Price et al.(1968) solved the one-dimensional diffusion-convection 

equation by several techniques including conventional finite differences, 

and the method of characteristics. The extension of this latter method to two 

dimensions was mentioned but no solutions were given. 

  Smith et al. (1973)  used Rayleigh-Ritz finite elements for diffusion-

convection problems and discussed the accuracy and stability of the 

techniques. 
 

Chen et al. (1998)  developed higher-order Godunov method for one 

hyperbolic- parabolic-reaction problems, derived an error estimation and 

presented computational examples. Garbey et al. (2001) presented a fast 

algorithm for numerical solution of systems of reaction-diffusion equations. 
 

Bindu (2002) investigated the integrability properties of the 

generalized Fisher type equation to obtain physically interesting solution 

using Lie symmetry analysis.  
 

In this paper, the authors, using the exponential transformation, treat 

the classical differential representation for one-dimensional hyperbolic- 

parabolic- reaction problems, and employ difference approximation 
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techniques to obtain  the numerical solutions. The comparison with the 

exact solutions shows good numerical approximations in the two examples. 

 

2.The Mathematical Model: 

The one-dimensional transport equation of a general hyperbolic- 

parabolic- reaction problem of the form (see Chen et al. ,1998)   
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where  )(S is a linear function of    , the boundary conditions are  
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and the initial condition is  

         Lxxfx = 0,)()0,(                                            (3) 

 

Equation (1) with its auxiliary conditions is an approximate 

mathematical model of some physical problem. They make use of the fact 

that although (1) is nonsymmetrical, any second-order partial differential 

equation can be rendered symmetrical by the use of a transformation. In this 

case of (1), the transformation is simply (see Smith et al. ,1973)  

 

           )2/exp( DH  =                                                                     (4) 

which after taking first and second derivatives and substituting into equation 

(1) yields the following transformed partial differential equation: 
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  The transformed geometric boundary condition becomes 

     0)(),0(
0

= tttH                                                          (6) 
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The transformed natural boundary condition is 

    0,0/)
2

()()2/exp(),( =+



−=

=
t

D

H

x
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ortDLtLH

LxL


                (7) 

Finally, the initial condition transforms to  

   LxDxxfxH −= 0,)2/exp()()0,(                             (8) 

 

3. Numerical Solution by the Finite Difference Methods: 

We consider the approximate solution of the problem and its 

transformation by using finite difference equations (FDE). That is we will 

use two methods: forward finite difference method (explicit method) and  

Crank-Nicholson method (implicit method) to solve these problems. 

We  introduce a uniform grid by defining the following discrete set 

of points in the x, t plane: 

          xi = ih ,       i=0,1,...,n-1,n  

and 

          tj = jk ,        j=0,1,...,m-1,m 

 

The grid functions   and H in our finite difference approximations 

are denoted by ),(),(
,, jijijiji

txHHandtx == , respectively. 

In order to solve equations (1) and (5) numerically, we replace the 

differential equations with an analogous difference equations. Firstly, we 

apply two finite difference methods for solving equation (1), and secondly, 

we also apply these methods for solving equation (5). 

 

3.1 Forward finite difference method (explicit method): 

We approximate the partial differential equation (1) by the finite  

difference quotients 
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Where  i=0,1,...,n-1,n and j=0,1,...,m-1,m , then we have 
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Also the difference equation of (5) is 
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and then 
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Where i=0,1,...,n-1,n   and   j=0,1,...,m-1,m  

And also 
2

,
h

kD
randtofsizestepaiskxofsizestepaish = . 

 

3.2 Crank-Nicholson method (implicit method): 

 

           We approximate the partial differential equation (1) by the finite  

difference quotients: 
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Where  i=0,1,...,n-1,n and j=0,1,...,m-1,m , then we have  
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 Also the difference equation of (5) is 
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Where  i=0,1,...,n-1,n   and   j=0,1,...,m-1,m  

2
, also And

h

kD
randtofsizestepiskxofsizestepish = . 
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4. Computational Examples: 

In this section, we have solved two different problems and we have 

compared between them using the transformation in (4). We compare the 

results with the exact solutions by using MATLAB language.  
 

4.1 Hyperbolic- parabolic problem: 

The first test problem is chosen from Peaceman (1977). It is a one-

dimensional linear unsteady hyperbolic- parabolic problem described by  

06.0,1,
2
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with the initial condition  

      ,0,0)0,( = xxu  

 

and the boundary conditions  

         0,0),(1),0( == ttuandtu    

The analytical solution of this problem is given by Karamouzis 

(1990)                                   
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where erfc  is the complementary error function, defined by: 

)(1)( xerfxerfc −=  
erf (x) is the error function and is defined as: 
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x
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The value of the error function could be expressed in a series form, 

Abramowitz (1965). 
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All Figures (1, 2, 3, 4) illustrate the numerical solutions of schemes 

(3.1) and (3.2) without and with transform of the problem (4.1), 

respectively. A comparison between the numerical approximations and the 

exact solution at t = 0.45 is given in figure (6) and table (1), which shows 

good numerical approximations by using exponential transformation for the 

problem. That is when we increase the value of time t we get a smooth 

curve by using exponential transformation method which means that it is 

more accurate than without this transform. 
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Fig.(1): Numerical approximation of the Forward F.D.M.   

for the first problem 

Fig.(2):  Numerical approximation of the Crank-Nicolson 

F.D.M. for the first problem 



Abbas Y. Al-Bayati _ Saad A. Manaa & Ekhlass S. Al-Rawi 
 

 

 64 

 

 

 

 

 

 
 

 
 

 

 

 

 

 

 

 

Fig.(3): Numerical approximation of the Forward F.D.M 

for the transformed first problem 

Fig.(4): Numerical approximation of the Crank-Nicolson F.D.M. 

for the transformed  first problem 
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Fig.(5): The  exact solution of the first problem 

Fig.(6): Comparison between these F.D.M and the  exact solution of 

the first  problem at  t = 0.45 
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Table (1): Numerical approximations of F.D.M. and exact solution of the 

                 first problem at t=0.45 , L=5 , h=0.1, and k=0.05 

 
X Forward 

F.D.M. 

Crank-Nicolson 

M. 

Trans. Forward 

F.D.M. 

Trans. Crank-

Nicolson M. 

Exact 

Solutio

n 

 

0 

.1 

.2 

.3 

.4 

.5 

.6 

.7 

.8 

.9 

1 

1.1 

1.2 

1.3 

1.4 

1.5 

1.6 

1.7 

1.8 

1.9 

2 

2.1 

2.2 

2.3 

2.4 

2.5 

2.6 

2.7 

2.8 

. 

. 

. 

4.5 

4.6 

4.7 

4.8 

4.9 

5 

 

1. 0000e+00 

1.067020 

1.228500 

1.023324 

.5532953 

.1948131 

.4467458e-1 

.6464772e-2 

.5380020e-3 

.1968300e-4 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000    

 0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000   

 0.0000 

0.0000 

. 

. 

. 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

 

1. 000000e+000 

1.126276     

 1.097644      

.8007645      

.4501546      

.2051848   

.7912419e-1   

.2666623e-1   

.8050579e-2   

.2218941e-2   

.5666747e-3   

.1356606e-3   

.3072918e-4   

.6635834e-5   

.1374550e-5   

.2745068e-6   

.5307784e-7   

.9972136e-8   

.1825954e-8   

.3266920e-9  

.5723982e-10  

.9840191e-11  

.1662575e-11  

.2764825e-12  

.4531306e-13  

.7327305e-14  

.1170229e-14  

.1847548e-15  

.2885836e-16 

. 

. 

. 

.1825783e-30  

.2545821e-31  

.3536487e-32  

.4894037e-33  

.6657015e-34 

0.0000 

 

1.0000000e+000    

1.0125566e+000    

1.0059737e+000 
9.63287341e-001    

8.66791942e-001    

7.09839004e-001 
5.06750795e-001    

2.98760643e-001    

1.30604734e-001 
3.55876988e-002 
0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

. 

. 

. 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

 

1.0000000e+000    

1.0099174e+000    

9.9777153e-001 
9.4969569e-001    

8.5756869e-001    

7.2575634e-001 
5.7143682e-001    

4.1757679e-001    

2.8360939e-001 
1.7974974e-001    

1.0688882e-001    

5.9990546e-002 
3.1963971e-002    

1.6257023e-002    

7.9318558e-003 
3.7288364e-003    

1.6955769e-003    

7.4830411e-004 
3.2146919e-004    

1.3477929e-004    

5.5272724e-005 
2.2215882e-005    

8.7667394e-006    

3.4017521e-006 
1.2997183e-006    

4.8955681e-007    

1.8198392e-007 
6.6827968e-008    

2.4263568e-008 

. 

. 

. 

2.4339438e-016    

7.8413028e-017    

2.5162744e-017 
8.0416387e-018    

2.5139569e-018                         

0.0000 

 

1.0264 

1.0290 

1.0035 

0.9260 

0.7851 

0.5957 

0.3965 

0.2281 

0.1122 

0.0469 

0.0166 

0.0049 

0.0012 

0.0003 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000 

0.0000    

0.0000 

0.0000 

0.0000 

0.0000 

. 

. 

. 

0.0000 

0.0000  

0.0000 

0.0000 

0.0000 

0.0000 
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4.2Hyperbolic- parabolic- reaction problem:  

The second test problem is an unsteady hyperbolic- parabolic- 

reaction problem described by (see Chen et al. (1998)). 

             

002.0,3.0,10,)193(
2

2

==−−=



−




+
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D
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with initial condition   

         ,10,)0,( 3 = xex x  

and boundary conditions  

         
tt etandet −− == 3),1(),0(      

The exact solution of this problem is 
txetx −= 3),(  

Figures (7, 8) show the numerical solutions of schemes (3.1) and  

(3.2) without transform of the problem (4.2). Also figures (9,10) illustrate 

the numerical solutions with transform equation (4) which reveal that good 

results have been obtained. That is when we increase the value of time t we 

get a smooth curve by using exponential transformation method which 

means that it is more accurate than without this transform. And we obtain 

that the Crank-Nicholson scheme is more accurate than Forward scheme.  
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            Fig.(7): Numerical approximation of the Forward  F.D.M.   

for the second  problem 

Fig.(8): Numerical approximation of the Crank-Nicolson F.D.M 

for the second problem 
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Fig.(9):Numerical approximation of the Forward F.D.M  

for the transformed second problem 

Fig.(10): Numerical approximation of the Crank-Nicolson F.D.M   

for the transformed second problem 
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5. Conclusions: 

The finite difference methods with the exponential transformation 

form are used to solve the classical differential representation for one-

dimensional hyperbolic- parabolic- reaction problems, and employed 

difference approximation techniques to obtain the numerical solutions.  
 

Two different types of problems, hyperbolic-parabolic, and 

hyperbolic- parabolic- reaction, have been tested. We have compared 

between them using the exponential transformation form in eq.(4), we 

compared the results with the exact solutions which shows good numerical 

approximations in both examples. We have also obtained that the Crank-

Nicholson scheme is more accurate than Forward scheme. Therefore the 

form of exponential transformation for the problem yields a stable solution 

compared with the exact solution. That is when we increase the value of 

time t we get a smooth curve by using exponential transformation method 

which means that it is more accurate than without this transform.  

 

 

 

 

 

 

 

 

 

Fig. (11): The exact solution of the second problem 
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