A New Theoretical Result for Quasi-Newton Formulae for Unconstrained Optimization
Basim A. Hassan
basimabas39@gmial.com
College of Computer Sciences and Mathematics
University of Mosul, Iraq

Received on: 15/03/2005
Accepted on: 09/05/2005
The recent measure function of Byrd and Nocedal [3] is considered and simple proofs of some its properties are given. It is then shown that the ALBayati (1991) formulae satisfy a least change property with respect to this new measure .The new formula has any extended positive definite matrix of Brouden Type-Updates.
Keywords: Quasi-Newton method, Some theoretical result for quasi-Newton formulae.

1.Introduction.

Recently Byrd and Nocedal [3] introduced the measure
function $\Psi: R^{n^{*} n} \rightarrow R$ defined by
$\Psi(A)=\operatorname{trace}(A)-f(A)$
where $f(A)$ denotes the function
$f(A)=\operatorname{In}(\operatorname{det} A)$
Byrd and Nocedal use this function to unify and extend certain convergence results for Quasi-Newton methods. In this paper, simple proofs of some of the properties of these functions are given. These properties give a new variaional result for the AL-Bayati updating formulae [1] .

Lemma1.1. $f(A)$ is a strictly concave function on the set of positive definite diagonal $n * n$ matrices.
Proof. Let $A=\operatorname{diag}\left(a_{i}\right)$. Then $\nabla^{2} f=\operatorname{diag}\left(-1 / a_{i}^{2}\right)$ and is negative definite since $a_{i} \succ 0$ for all i. Hence f is strictly concave [7].
Lemma1.2. $f(A)$ is a strictly concave function on the set of positive definite symmetric $n * n$ matrices.
Proof. Let $A \neq B$ be any two such matrices. Then there exist $n * n$ matrices X and $\Lambda\left(X\right.$ is nonsingular, $\left.\Lambda=\operatorname{diag}\left(\lambda_{i}\right)\right)$ such that $X^{T} A X=\Lambda$ and $X^{T} B X=I$.
Denote $C=(1-\theta) A+\theta B, \theta \in(0,1)$.
Then
$X^{T} C X=(1-\theta) X^{T} A X+\theta X^{T} B X=(1-\theta) \Lambda+\theta I$
Also
$f\left(X^{T} A X\right)=\operatorname{In} \operatorname{det}\left(X^{T} A X\right)=\operatorname{In}\left(\operatorname{det}^{2} X \operatorname{det} A\right)=f(A)+\operatorname{In} \operatorname{det}^{2} X$
and likewise
$f\left(X^{T} B X\right)=f(B)+I n \operatorname{det}^{2} X$
$f\left(X^{T} C X\right)=f(C)+\operatorname{In} \operatorname{det}^{2} X$
Now $A \neq B \Leftrightarrow \Lambda \neq I$, so by Lemma 1.1 and Eq.(1.3) it follows for $\theta \in(0,1)$ that
$f\left(X^{T} C X\right)=f\left((1-\theta) \Lambda+\theta I \succ(1-\theta) f(A)+\theta f(I)=(1-\theta) f\left(X^{T} A X\right)+\theta f\left(X^{T} B X\right)\right.$.
Hence form (1.4) - (1.6),

$$
f(C) \succ(1-\theta) f(A)+\theta f(B),
$$

and so the Lemma is established [5].
Lemma.3. $\Psi(A)$ is a strictly convex function on the set positive definite symmetric $n * n$ matrices.
Proof. This follows from Lemma 1.2 and linearity of trace (A) [5].
Lemma1.4. For nonsingular A the derivative of $\operatorname{det}(A)$ is given by $d(\operatorname{det} A) / d a_{i j}=\left[A^{-T}\right]_{i l} \operatorname{det} A$.
Proof. From the the well-known identity $\operatorname{det}\left(I+u v^{T}\right)=1+v^{T} u$ it follows that
$\operatorname{det}\left(\rho A+\varepsilon e_{i} e_{j}^{T}\right)=\operatorname{det}\left(I+\varepsilon \rho e_{i} e_{j}^{T} A^{-1}\right) \operatorname{det} \rho A=\left(1+\varepsilon \rho\left(A^{-1}\right)_{j i}\right) \operatorname{det} \rho A$.
Hence
$\frac{d \operatorname{det} A}{d a_{i j}}=\lim _{\varepsilon \rightarrow 0} \frac{\operatorname{det}\left(\rho A+\varepsilon e_{i} e_{j}^{T}\right)-\operatorname{det} \rho A}{\varepsilon}=\left(\rho A^{-1}\right)_{j i} \operatorname{det} A$.
Theorem1.1. $\psi(A)$ is globally and uniquely minimized by $A=I$ over the set of positive definite symmetric $n^{*} n$ matrices .
Proof. Because A is nonsingular, ψ is continuously differentiable and so
$\frac{d \psi}{d a_{i j}}=I_{i j}-\frac{1}{\operatorname{det} \rho A} \frac{d}{d a_{i j}} \operatorname{det} \rho A=\left(I-\rho A^{-T}\right)_{i j}$,
using Lemma 1.4. Hence ψ is stationary when $A=I$ and the theorem follows by virtue of Lemma 1.3.

Remark. It is also shown in [3] that $A=I$ is a global minimizer of $\psi(A)$. 2.A variational result . The Al-Bayati updating formula
$H^{k+1}=H^{k}+\left[\frac{2 \gamma^{T} H^{k} \gamma}{\left(\delta^{T} \gamma\right)^{2}}\right] \delta \delta^{T}-\frac{H^{k} \gamma \delta^{T}+\delta \gamma^{T} H}{\delta^{T} \gamma}$,
Occupies a central role in unconstrained optimization . (Here δ and γ denoted certain difference vectors occurring on iteration k of a QuasiNewton method, with $\delta^{T} \gamma \succ 0 . B^{(k)}$ denotes the current Hessian approximation, and $H^{(k)}$ its inverse : see, for example , [4]) A significant result due to Goldfarb [6] is that the correction in the Al-Bayati formula satisfies a minimum property with respect to a function of the form $\|E\|_{w}^{2}=\operatorname{trace}(E W E W)$ (its corollary in [4]).

The main result of this paper is to show that these formulae also satisfy a minimum property with respect to the measure function ψ of Byrd and Nocedal defined in (1.1) .

Theorem2.1: if $H^{(k)}$ is positive definite and $\delta^{T} \gamma \succ 0$, the variation problem

$$
\begin{gather*}
\underset{B>0}{\operatorname{minimize}} \Psi\left(H^{(K) 1 / 2} \rho B H^{(\mathrm{K}) 1 / 2}\right) \tag{2.2}\\
\text { subject to } \quad B^{T}=B \tag{2.3}\\
B \delta=\gamma \tag{2.4}
\end{gather*}
$$

is solved uniquely by the matrix $B^{(k+1)}$ given by the formula (2.1).
proof: the matrix product that forms the argument of Ψ can be cyclically permuted so that

$$
\Psi\left(H^{(K) 1 / 2} \rho B \mathrm{H}^{(K) 1 / 2}\right)=\operatorname{trace}\left(H^{(K)} \rho B\right)-\ln \left(\operatorname{det} H^{(K)} \operatorname{det} \rho B\right)
$$

$$
\begin{equation*}
=\Psi\left(H^{(K)} \rho B\right)=\Psi\left(\rho B H^{(K)}\right) \tag{2.5}
\end{equation*}
$$

A constrained stationary point of the variational problem can be obtained by the method of lagrange multipliers.

A suitable lagrangian function is

$$
\begin{aligned}
& L(B, \wedge, \lambda)=\frac{1}{2} \psi\left(H^{(K) 1 / 2} \rho B H^{(K) 1 / 2}+\operatorname{trace}\left(\wedge^{T}\left(B^{T}-B\right)\right)+\lambda^{T}(B \delta-\gamma)\right. \\
& =\frac{1}{2}\left(\operatorname{trace}\left(H^{(K)} \rho B\right)-\ln \operatorname{det} H^{(K)}-\ln \operatorname{det} \rho B\right)+\operatorname{trace}\left(\Lambda^{T}\left(B^{T}-B\right)\right)+\lambda^{T}(B \delta-\gamma)
\end{aligned}
$$

Where \wedge and λ are lagrange multipliers for (2.3) and (2.4), respectively. To solve the first order conditions, it is necessary to find B, \wedge and λ to satisfy (2.3), (2.4), and the equations $\partial L / \partial B_{i j}=0$. Using the identity $\partial B / \partial B_{i j}=e_{i} e_{j}^{T}$ and Lemma (1.4), it follows that

$$
\begin{aligned}
\partial L / \partial B_{i j}=0= & \frac{1}{2}\left(\operatorname{trace}\left(H^{(K)} \rho e_{i} e_{j}^{T}\right)-\left(\rho B^{-1}\right)_{j i}\right)+\operatorname{trace}\left(\Lambda^{T}\left(e_{j} e_{i}^{T}-e_{i} e_{j}^{T}\right)\right)+\lambda^{T} e_{i} e_{j}^{T} \delta \\
& =\frac{1}{2}\left(\left(\rho H^{(K)}\right)_{j i}-\left(\rho B^{-1}\right)_{j i}\right)+\Lambda_{j i}-\Lambda_{i j}+\left(\lambda \delta^{T}\right)_{i j} .
\end{aligned}
$$

Transposing and adding, using the symmetry of $H^{(k)}$ and B , gives

$$
\begin{align*}
& H^{(K)}-\rho B^{-1}+\lambda \delta^{T}+\delta \lambda^{T}=0 \\
& \text { or } \\
& \rho B^{-1}=H^{(K)}+\lambda \delta^{T}+\delta \lambda^{T}=0, \tag{2.6}\\
& B^{-1}=H / \rho+\lambda \delta^{T} / \rho+\delta \lambda^{T} / \rho
\end{align*}
$$

which shows that the optimum matrix inverse involves a rank-2 correction of $H^{(k)}$. to determine λ, (2.6) is post-multiplied by γ. It then follows, using the equation $B^{-1} \gamma=\delta$ derived from (2.4), that

$$
\delta=H \gamma / \rho+\lambda \delta^{T} \gamma / \rho+\delta \lambda^{T} \gamma / \rho
$$

and hence

$$
\gamma^{T} \delta=\gamma^{T} H \gamma / \rho+\gamma^{T} \lambda \delta^{T} \gamma / \rho+\gamma^{T} \delta \lambda^{T} \gamma / \rho .
$$

$\gamma^{T} \delta=\gamma^{T} H \gamma / \rho+2 \gamma^{T} \lambda \delta^{T} \gamma / \rho$
$\rho \gamma^{T} \delta=\gamma^{T} H \gamma+2 \gamma^{T} \lambda \delta^{T} \gamma$
$\rho \gamma^{T} \delta-\gamma^{T} H \gamma=2 \gamma^{T} \lambda \delta^{T} \gamma$
$\rho-\gamma^{T} H \gamma / \delta^{T} \gamma=2 \gamma^{T} \lambda$
Rearranging this gives $\quad \gamma^{T} \lambda=\frac{1}{2}\left(\rho-\gamma^{T} H \gamma / \delta^{T} \gamma\right)$
and so

$$
\begin{gather*}
\delta=H \gamma / \rho+\lambda \delta^{T} \gamma / \rho+\delta \lambda^{T} \gamma / \rho \\
\delta=H \gamma / \rho+\lambda \delta^{T} \gamma / \rho+\delta \gamma^{T} \lambda / \rho \\
\lambda \delta^{T} \gamma / \rho=\delta-H \gamma / \rho-\delta \gamma^{T} \lambda / \rho \\
\lambda \delta^{T} \gamma=\rho \delta-H \gamma-\delta \gamma^{T} \lambda \\
\lambda \delta^{T} \gamma=\rho \delta-H \gamma-\frac{\delta}{2}\left[\rho-\gamma^{T} H \gamma / \delta^{T} \gamma\right] \\
\lambda=\left(\rho \delta-H \gamma-\frac{\delta}{2}\left[\rho-\gamma^{T} H \gamma / \delta^{T} \gamma\right] / \delta^{T} \gamma,\right. \tag{2.7}
\end{gather*}
$$

from (2.7) we have
$\lambda \delta^{T}=-\frac{H \gamma \delta^{T}}{\delta^{T} \gamma}+\frac{\delta \delta^{T}}{2 \delta^{T} \gamma}\left[\rho+\gamma^{T} H \gamma / \delta^{T} \gamma\right]$
$\lambda^{T}=-\frac{\gamma^{T} H}{\delta^{T} \gamma}+\frac{\delta^{T}}{2 \delta^{T} \gamma}\left[\rho+\gamma^{T} H \gamma / \delta^{T} \gamma\right]$
$\delta \lambda^{T}=-\frac{\delta \gamma^{T} H}{\delta^{T} \gamma}+\frac{\delta \delta^{T}}{2 \delta^{T} \gamma}\left[\rho+\gamma^{T} H \gamma / \delta^{T} \gamma\right]$
substituting this expression into (2.6) gives the equation
$\rho B^{-1}=H-\frac{H \gamma \delta^{T}+\delta \gamma^{T} H}{\delta^{T} \gamma}+\frac{\delta \delta^{T}}{\delta^{T} \gamma}\left[\rho+\gamma^{T} H \gamma / \delta^{T} \gamma\right]$
where
$\rho=\gamma^{T} H \gamma / \delta^{T} \gamma$
and hence the proof.

3.Conclusions:

It is a well-known consequence of the sherman-Morrison formula [4] that there exists a corresponding rank-2 update for B, which is given by the right - hand side of (2.1). Moreover the conditions of the theorem (2.1) ensure that the resulting updated matrix B is positive definite (as in [4]).

This establishes that the AL-Bayati formula satisfies first order conditions (including feasibility) for the variational problem. Finally, $\Psi\left(H^{(K) / 1 / 2} \rho B H^{(\mathrm{K}) / / 2}\right)$ is seen to be a strictly convex function on $B \succ 0$ by virtue of (2.5) and Lemma (1.2), so it follows that the AL-Bayati formula gives the unique solution of the variational problem. This idea may be extended for any positive definite matrices of Broyden class.

FERENRECES

[1] Al-Bayati, A. (1991)," A new family of self Scaling Variable Metric Algorithm for unconstrained Optimization". Journal of Euc. And Sci.,25,12.
[2] Bellman, R. (1960) Introduction to Matrix Analysis , New York: McGraw-Hill .
[3] Byrd, R.H. and Nocedal, J. (1989), "A tool for the analysis of quasiNewton methods with application to unconstrained minimization", SIAM J. Numer. Anal., 26, pp. 727-739.
[4] Fletcher, R. (1987) Practical Methods of Optimization, Second Edition. Chichester: Jonhn Wiley
[5] Fletcher R. (1991) A New variational Result for Quasi-Newton formula, SIAM Journal on Optimization, Vol. 1,pp. 18-21.
[6] Goldfarb D. (1970) , "A family of variable metric methods derived by variational means", Math. Comp., 24, pp. 23-26.
[7] Hu Y.F. and Storey C. ,(1994), "family of Optimally conditioned QN Updates for Unconstrained Optimization", Journal of Optimization theory and applications, Vol. 83 , No. 2 ,pp. 421431 .

