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ABSTRACT 

 The aim of this paper is to use some concepts of nonstandard 

analysis given by Robinson, A. and axiomataized by Nelson, E. to prove 

some theorems concerning the approximation of integrals and the 

convergence of sequences and series. 
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 الملخص
إن الهددددن مددددن الاحددددم بددددو اسددددتحدام غعددددق مسددداذي  التحل ددددل   ددددر ال ياسدددد  الدددد    وجددددد  

Robinson, A.  ووضعهNelson, E.  بتكامدل  غأسلوب منطقد  لرربدان غعدق المرربندات المتعلقدة
 سلاسل.الدوال المتقاربة وتقارب المتتاغعات وال

 تكامل، سلسلة.  تقارب، تقريب   ر قياس ، الكلمات المفتاحية:
 
INTRODUCTION: 

Through this paper we consider properties of a quite general nature, 

which unify certain number of processes used to establish approximate 

expression of numbers and functions. 

Finally, we shall explain our nonstandard works and we treat the 

following problems. 

a) How to approximate certain functions to other functions? 

b) How to calculate the proper and improper integrals for  

approximate functions? 
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c) What is the method to transform an unlimited integrand to 

another, everywhere limited? 

d) How to find an appreciable length for functions which are 

infinitesimal? 

e) How to calculate the sum of integral sequences under certain 

nonstandard conditions? 

 

Throughout this paper the following definitions and notations will be 

used: 

A real number x is called infinitesimal if and only if rx   for all rR. 

If x and y  are real numbers, then x and y  are said to be infinitely near, 

(denoted by yx  ), if yx −  is infinitesimal. 

A real number x  is called limited if rx   for some rR + . 

A real number x  is called appreciable (denoted by +A ), if x  is limited 

but not infinitesimal. 

A real number x  is called unlimited if rx  for all rR
+
. 

The collection of limited, unlimited real numbers of infinitesimals 

are called external sets [3], [5]. 

The external set of infinitesimal real numbers is called the monad of 

0 (denoted by m (0)). In general, the set of all real numbers, which are 

infinitely near to a standard real number a , is called the monad of a , 

(denoted by m(a)) [6], [7]. 

The set of all limited real numbers is called principal galaxy, 

(denoted by G). 

For any real numbera , the set of all real numbers x  such that ax −  

limited is called the galaxy of  a  (denoted by G (a)) [2]. 

Let )0(   and Rx  ,we define the )(xgalaxy− as follows: 




xy
Ryxgalaxy

−
=− :{)( is limited} and denoted by )(xG−  [2].   

THE MAIN RESULTS: 
 

I. Asymptotic Approximation of Integrals 

 

Theorem (I,1): If f  and g  are two measurable internal functions such that 

)()( xgxf  for all x  ],[ ba  of limited length, then   

b

a

b

a

xgxf )()(  



On Some Nonstandard Asymptotic… 
 

 

 35 

Proof: Define the function Rbah →],[:  by )()()( xgxfxh −=  then 

0)( xh for every ],[ bax  .  Let )(sup
],[

xhS
bax

= .  Then 0S .  Hence 

 0)()()()( −−  abSdxxhdxxgdxxf
b

a

b

a

b

a

 therefore  

b

a

b

a

xgxf )()(    

 

In the following theorem, we form a condition in order that the approximate 

equality of Theorem (I.1) holds for unbounded intervals. 

  

Theorem(I,2): Let f  and g  be two measurable internal functions such that 

)()( xgxf  for every limited x . Let h  be an integrable standard function 

such that )(xf , )()( xhxg   for every Rx  . Then   dxxgdxxf 


−



−

 )()(  

 

Proof: By Theorem (I.1) for every limited Nn   we have 

                 dxxgdxxf
n

n

n

n


−−

− )()(  

By Robinson Lemma [2] there exist a non-limited N such that 

                      dxxgdxxf 
−−

−









)()(   

Since )(xh  is integrable standard function, we have 



x

dxxh 0)( . 

Hence           



x

dxxf 0)( ,and   



x

dxxg 0)( . 

Therefore    dxxfdxxf 


−−

= )()(





 and dxxgdxxg 


−−

= )()(





. 

We conclude that dxxgdxxf 


−



−

 )()(  

The above properties (Theorem (I,1) and (I,2)) permit, particularly 

to give an approximate value to the integral of a function which is near a 

function with known primitive. Notice that in the proof of Theorem (I.2), 

the major function h  interferes only in the justification, and did not interfere 

in the approximation's quality. 
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Theorem (I, 3): Let f  and g  be two measurable internal functions such 

that )()( xgxf  for + Ax (the set of appreciable numbers). Let h  be an 

integrable standard function such that )(xf , )()( xhxg   for every +Rx . 

Then   dxxgdxxf 



00

)()(  

 

Example (I.4): Let 0t and p  be standard, and   be unlimited positive 

integer, define )(vf  and )(tJ  as follows: 

 












+

−

= +

−

tvif

tvif
v

vt

vf p

0

0
)1(

)(

)(

1





  and =
t

vftJ
0

)()( . 

 The maximum of the integrand attains for 0=v , putting this 

maximum as a factor, we obtain   

dvvgtdv
v

ttJ
t t

p

t
v

 
−

+

−

− =
+

−
=

0 0

1

1

1 )(
)1(

)1(
)( 





  

The new integrand is limited everywhere. By using the Euler 

formula yy
e−− 


)1(  we see that the passage from the appreciable to the 

infinitesimal for the integrand effected when leaving the galaxy
t
−


. We 

obtain an approximately standard integrand, by setting


tu
v = . Then 

 +

−

+

−
=













0

1

)1(

)1(
du

t
J

ptu

u

.  

 Let











+

−

= +

−












uif

uif
uI ptu

u

0

0
)1(

)1(

)(

1

.  

Then for every limited 0u , uteuI )1()( +=     and for every   0u , 

2
)

1
()1log()1(

1)1()(

u
u

u

eee
u

uI
−

−
−−

− =− 









  

Hence, by Theorem (I.2)   
t

dueduuI ut

+
=



+−



1

1
)(

0

)1(

0
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Consequently
)1(

)1()(
t

t
atJ

+
+=





, )0( a  

Comments on the strategy which comes out from example (I.4): 
 

The above example is an illustration of the situation for which 

Theorem (I.2) is applied particularly, and of the procedure to follow. First 

of all we observe that Theorem (I.2) is mainly concerned with the 

functions f , which are: i) Limited every where, ii) noninfinitesimals on a 

subset of R , which contains at least one interval of appreciable length, and 

does not exceed the principal galaxy[2]. In fact, if   Gxfx  0)(: , we 

can not find a standard majoration of f , and for example if 

  )0(0)(: mxfx  , we get 



0

0)( dxxf which implies that 





0

0)( dxxg . Now such approximation of an infinitesimal number by 

another infinitesimal number is not meaningful  

In order to be able to treat the case of an integrand, which does not 

satisfy the conditions (i) and (ii), we examine the reason in the Example 

(I.4). The departure function )(vf  is not necessarily limited everywhere, 

and   )0(0)(: mvfv  .  

1) We obtain the integrand )(vg  which is limited everywhere by 

putting maximum of  )(vf  in factor.  

2) We know that  0)(: =vfv  is equal to the positive part of 

galaxy
t
−


  

This observation guides us to the choice of the variable changement  



tu
v = , after which we obtain the integrand )(uI   which satisfies the 

conditions (i) and (ii). 

II. Asymptotic Approximation of Series 
  

The following theorem links the series and integrals. 

 Theorem (II.1): Let f be a positive, decreasing function such that 0)0( f   

then for every Nk    

  i)  
=


k

n

k

dxxfnf
0 0

)()(      
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 ii) 


=0

)(
n

nf  is convergent if and only if 


0

)( dxxf  is convergent .In the case 

of convergence we have    


=0

)(
n

nf  


0

)( dxxf . 

Proof: 

i)  Since  
=

+

=


k

n

k

n

k

nfdxxfnf
0

1

10

)()()( .   Therefore    

 
=

+

=

−
k

n

k

n

nfnf
0

1

1

)()( = 0)1()0( +− kff .Hence     
=


k

n

k

dxxfnf
0 0

)()( . 

ii)   Since  


=



=




0 10

)()()(
n n

nfdxxfnf , 


= 0

)(
n

nf  is convergent if and only 

if 


0

)( dxxf  is convergent. In the case of convergence, we have   




=0

)(
n

nf  


0

)( dxxf . 

Finally we give some asymptotic theorems on the series. Theorem 

(II.2) is a version of Theorem (I.3). 

  

 Theorem (II.2):  Let Nnnu }{  and Nnnv }{  be two internal sequences such 

that 

nn vu   for every Nn  . Let 


=0n

nw  be a convergent standard series such 

that nnn wvu ,  for every n N, then 


=



=


00 n

n

n

n vu . 

The following theorems are special cases for the above theorem; they 

facilitate the calculations of the theoretical characterization concerning the 

shadow developments. 

Theorem (II.3): Let  
Nnnu  be an internal sequence of nonzero terms such 

that 
n

n

u

u 1+ 0  for every Nn  , then    )1(
0

 +=


=

uu
n

n        )0(   

Proof:  

Since =


=0n

nu 


=0n

n

u

u
u



 .  Set 
u

u
v n

n =    



On Some Nonstandard Asymptotic… 
 

 

 39 

Then v =1 and 0nv  for every Nn  .Moreover for every Nn   we 

have      s
u

u

u

u

u

u
v

n

n

n

n
n =

−

−

− 

1

2

1

1

... , where s is a standard number greater than 

zero. 

Since   1
0




=n

nv ,     hence


=0n

nu )1(  += u ,  ( 0 )  

 

Theorem (II.4): Let  
Nnnu  be an internal sequence such that u  is 

limited, 0nu  for every 1n , and such that the ratio of two nonzero 

successive terms is infinitesimally zero. Then   


=0n

nu  u  

Proof: Let p  be the minimal index such that 0up  . By using Theorem 

(II.3),   we get =


=0n

nu pu)1( +  .If 0p = , then  

pu)1( + = )1(  +u  u  .If 0p , since 0nu  for every 1n  then 

0)1( + pu , but 0u , so   uup + )1( .  Thus  


=


0n

n uu    

Remark (II.5):  

The statement of the Theorems (II.3) and (II.4) remains true if the sum is 

taken only up to certain index or if we mitigate the conditions on the 

ratio
n

n

u

u 1+ .    Thus we have, for example, the following theorem  

Theorem (II.6): Let  
Nnnu  be an internal sequence and Nk  . Suppose 

that u  is limited, 0
u

up
, when 0p  is the smallest index for which 

0pu , and that the ratio of two nonzero successive terms of indexes 

included between p and k is    1)( . Then  
=


k

n

n uu
0

 . 
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