
Raf. J. of Comp. &  Math’s. , Vol. 2, No. 2, 2005 
 

 

 11 

Modified the CG-Algorithm for Unconstrained 

Non-Linear Optimization by Using Oren’s Update 

  

Abbas Y. Al-Bayati       Abdulghafor M. Al-Rozbayani 

abdulghafor_rozbayani@uomosul.edu.iq 
College of Computer Sciences and Mathematics,University of Mosul, Iraq 

Received on: 20/08/2002         Accepted on: 12/10/2002 

ABSTRACT 

  In this paper we have modified a new extended generalized 

conjugate gradient steps with self-scaling variable metric updates for 

unconstrained optimization. The new proposed algorithm is based on the 

inexact line searches and it is examined by using different non-linear test 

functions with various dimensions. 
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 الملخص
فييه اييلا التحييط يييخ يرييوير لوارجمييية القييلرع المقرافيي  المعمييخ الموسييعة   وارجمييية المقييير  
المقغيييير ياييييه اليييييال فيييه ايم.ليييية الالرييييةس ايييلط ال وارجميييية ي يييقعمل لريييو   حيييط  يييير يامييية  

اييلا والح ييا ات العلة يية  ينييل وا ال وارجمييية المرييورع وكمييا ميير عييلة ميير ال وارجميييات ايليير  فييه 
 المجال وباسق لام عشرع ةوال لا لرية معروفة فه الا الحقلس

  لوارجمية, ال رية  ير الام.لية, الامقيلع الام.لية, لوارجمية القلرع المقراف الكلمات المفتاحية: 
 .  حط يامة لرو , المقغير المقر  

1.Introduction: 

We try to solve the unconstrained minimization problem 

min f (x),  Rn
   ,                                                                        (1)  

when f is twice continuously differentiable function. This problem is usually 

solved iteratively. Starting with an initial estimate x1 of the minimum point 

x*, each subsequent point xk+1, k 1 , will be derived by search along a 

descent direction dk , such that  ,0k

T

k gd where gk= ),(xf  

such that  

1k ,1 +=+ kkkk dxx  ,                                                                (2) 
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where k is the step-length satisfying line search conditions such that                

     g )()( T

k1 kkkkk dcxfdxf  ++     (3) 

and 

k

T

kk

T

k dgcdg 21 −+                                                (4) 

where 0<c1<c2<1. 

We consider that  

vk=xk+1-xk                                                                                          (5) 

yk=gk+1-gk                                                                                              (6) 

Conjugate Gradient (CG) method is one of the few practical methods 

for solving large dimension problems because it does not require matrix 

storage and its iteration cost is very low. 

Now we begin from the initial direction d1 such that 

11 gd −= .                                                                                       (7) 

The search direction for the next iteration has the following form: 

 kkkk dgd +−= ++ 11              (8)           

Where k  is a constant parameter defined by either 

2

2

1

k

k

k

g

g +
=                                                                                  (9a) 

Or 

 
2

11 )(

k

kk

T

k

k

g

ggg −
= ++                                                        (9b) 

The definition of k  in (9a) is due to Fletcher and Reeves [6] and 

k  in (9b) is due to Polak Ribiere [12]. 

 

2. Generalized CG-Methods:   

CG-algorithm usually requires more function evaluations than the 

variable Metric (VM) method to solve small dimensionality problems. 

Therefore, many extensions and modifications have been proposed in this 

field .Liu and Storey [8] introduced a generalized PR algorithm. They 

studied the effect of the inexact line search on conjugacy in unconstrained 

optimization, and they showed that their algorithm has global convergence 

for twice continuously differentiable functions with a bounded level set. 

 

2.1 Generalized CG-algorithm (Liu and Storey, 1991) 

Step 1:let x1 be an initial point of the minimizer x* of f. 

Step 2:set the iteration k=1 and the search direction dk=-gk 
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Step 3:do a line search: set xk+1=xk+αkdk , set k=k+1, α is a line search   

           parameter. 

Step 4:if 1+kg < , where =510-5, take x* as xk+1 and stop;  

           Otherwise go to step 5. 

Step 5: if kngo to step 9; otherwise go to step 6. 

Step 6:let ,gGgs,dGdt 1k1k

T

1kkk1k

T

kk ++++ == and .dGgu k1k

T

1kk ++=  

Step7: if tk>0, sk>0, ),1/(4r)s/(tu1 kkk

2

k − and 

           ,r)d/d)/(tg/g(s kk

T

kk1k

T

1kk ++
rk then go to step 8; 

            Otherwise go to step 9. 

Step8: let              

kkk

T

1kk1k

T

1kk1k1k

T

1kkk

T

1kk1k ]/w)ddgs gg(u)gggtdg[(ud ++++++++ −+−= ,  

           Where wk= tksk-
2

ku , go to step 3. 

 Step 9:set xk+1 =x1  and go to step 2. 
   

This algorithm was compared with currently available standard 

routines and their results demonstrate a general efficient GPR algorithm. 
 

Usually CG-algorithms are implemented with restarts, in order to 

avoid the effects of an accumulation error. Fletcher [5] in his standard 

method suggested to restart his algorithm with the steepest descent direction 

every n or n+1 iteration, where n is a dimension of the problem, another 

restarting direction was suggested by Powell [13]. He developed a new 

procedure for starting CG-methods. Powell checked that the new search 

direction dk+1 will be sufficiently downhill if their inequalities  

 
1k

T

1kk

T

1k gg0.2gg +++   is satisfied. 

 

3.Self –Scaling VM methods: 

The practical and theoretical merits of the quasi Newton (QN) 

family of methods for unconstrained optimization have been systematically 

explored since the classic paper of Fletcher and Powell  [7] analyzing 

Davidon’s VM method. 
 

In the family of VM updating, it is useful to multiply each Hk by 

some scale factor k  0 before using the update formula. With exact line 

searches, this can be shown to present the conjugacy property in the 

quadratic case, although we may no longer have Hk+1
-1G . However, the 

focus here is to improve the single-step rather than the n-step convergence 

behavior of the algorithm. Methods that automatically prescript scale factor 

in a manner such that, if the function is quadratic then the eigenvalues of 
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T

kd HkGk+1 tend to be spread above and below are called self-scaling 

methods [3]. 
 

Thus in 1970’s the self-scaling VM algorithms were introduced 

showing significant improvement in efficiency over standard VM-

methods.In particular, in a series of papers by Oren [11], Al-Bayati [1], 

Nocedel [10] and Al-Bayati and Al-Salih [2] algorithms for minimizing an 

unconstrained nonlinear function f (x) were developed.  

 

Now we summarize the scaled BFGS algorithms due to Oren [11]. 

 

3.1 Oren’s algorithm (1974)    

Step 1: Start with an initial point x1, Set k=1 and choose H1=I, where I is 

the identity matrix. 

Step 2:Determine the step-size αk that minimizes f (xk+αkdk) where  

            dk=-Hkgk and obtain xk+1=xk+αkdk , αk  is determined by inexact  

            line search. 

Step 3: If 1+kg < , where =510-5, take x* as xk+1 and stop;  

           Otherwise continue. 

Step 4:Update Hk by HK+1 by using Oren’s update as follows 

           
k

T

k

T

kk
k

T

T

kk

kk

T

k

k

T

kkk
k

Oren

1k
yv

vv
ψww

yHy

HyyH
HH +








+−=+       (10) 

where  

=kψ
kk

T

k

k

T

k

yHy

yv
                                               (11a) 

and wk is vector defined by 









−=
kK

T

k

kk

k

T

k

k2/1

kk

T

kk
yHy

yH

yv

v
)yH(yw                                               (11b) 

              

Step 5: Set k=k+1 and go to step 1. 

4. Preconditioned CG-Methods:  

Any problem in an unconstrained optimization can be solved by CG 

or VM methods, each of these methods has particular advantages and 

disadvantages. In general, a CG-method normally requires more iterations 

than a QN or VM method to obtain an equally good minimum point but a 

CG-method requires less storage for implementation per iteration. CG-

methods have proved to be valuable where n is large because at each step a 
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few n vectors have to be stored and hence the computational costs and 

storage requirements are affordable, even for large problems. 
 

The new class of CG-methods has been developed, termed 

preconditioned conjugate gradient methods (PCG); the idea of the 

preconditioning has been extended directly to nonlinear problem [9]. 

4.1 New Modified Generalized CG-algorithm: 

Step 1:Let x1 be an initial point of the minimizer x* of f and H1=I where I  

           is the identity matrix. 

Step 2:Set k=1 and dk=-Hkgk. 

Step 3: Do a line search to compute αk that minimizes f (xk+αkdk) then  

            compute  xk+1=xk+αkdk . 

Step 4: If 1kg + <, where =510-5, take x* as xk+1 and stop; otherwise go   

            to step 5. 

Step 5: If k=n or 1k

T

1kk

T

1k gg0.2gg +++   go to step 2; otherwise continue. 

Step 6:Let ,gGgs,dGdt 1k1k

T

1kkk1k

T

kk ++++ == and .dGgu k1k

T

1kk ++=  

Step7: If tk>0,sk>0, ),1/(4r)s/(tu1 kkk

2

k − and 

,r)d/d)/(tg/g(s kk

T

kk1k

T

1kk ++ rk then go to step 8;otherwise go to step 

10. 

Step8: Let 

kkk

T

1kk1kk

T

1kk1kk1kk

T

1kkk

T

1kk1k ]/w)ddgsgHg(ug)HgHgtdg[(ud ++++++++ −+−=

          where wk= tksk-
2

ku . 

Step 9:Update Hk by Hk+1 using Oren’s [11] formula as given in (10). 

Step 10:Set xk+1 =x1, k=k+1and go to step 3. 

 

4.2 Derivation of the Modified Generalized CG Direction:   

Let H be any symmetric positive-definite preconditioned matrix, 

then by Nazareth [9] with Choleski Factorization H can be factorized as: 

H=LLT,                                                                                                  (12) 

where L is a real lower triangular matrix and non-singular matrix. Let f be 

the strictly quadratic function  

f(x)=xTGx/2+bTx+c,                                                                              (13)   
 

then the gradient is   

g(x)= (x)f  =Gx+bT.                                                                               (14) 

Let x=Lz,                                                                                               (15) 

where z defines a new vector spaces and is defined as: 

h(z)=f(Lz)=(Lz)TG(Lz)/2+(Lz)TbT+c,                                                   (16)  
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which implies that  

 

(Lz)f(z)h = =LTGLz+LTbT 

  = LT(GLz+bT) 

  =LTg(x).                                                                          (17)     

Eq.(17) gives a relationship between the gradients in x-space and z-

space, i.e. 

gLg T= ,                                                                                                  (18) 

where g  is the gradient in z-space while g is the gradient in x-space, so that 

if h (z*)=0, then g (Lz*)=0. 

Setzk+1=zk+ kk dα .                                                                                   (19) 

Multiplication of Eq. (19) by L we get,  

Lzk+1=Lzk+ kk dLα .                                                                                 (20)  

Using Eq. (15), then Eq. (20) becomes  

xk+1=xk+
kkdα ,                                                                                         (21) 

therefore,  

dk=L
kd ,                                                                                                   (22) 

which implies that  

kd =L-1dk.                                                                                                 (23) 

Set  

k1kk
ggy −= +                                                                                         (24) 

where ,gk 1kg +  are the gradients of h (z) at the point zk,zk+1 ,respectively. 

By using Eq. (18), then Eq. (24) becomes 

=
k

y LTgk+1-L
Tgk=LTyk.                                                                           (25) 

Now consider applying the conjugate gradient method, 

kkk

T

1kk1k

T

1kk1k1k

T

1kkk

T

1kk1k ]/wd)dgsgg(ug)ggtdg[(ud
++++++++ −+−=  

 

By using Eqs. (15), (18), (23) and (25) we get 

kk

1

k

1T

1kk

1k

TT

1kk1k

T

1k

TT

1kkk

1T

1kk1k

1

]/wd)LdLLgs                                                                      

gLLg(ug)LgLLgtdLLg[(udL

−−

+

+++++

−

++

− −+−=
,                (26) 

 

multiply (26) by L and using (12) and LL-1=I where I is the identity matrix 

we get: 
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kkk

T

1kk

1k

T

1kk1k1k

T

1kkk

T

1kk1k

]/w)ddgs                                                          

Hgg(u)HgHggtdg[(ud

+

+++++++ −+−=
.                     (27) 

 

Equation (27) is our proposed CG Method with Metric update H, 

where H is any positive-definite symmetric matrix, or the preconditioned 

CG Method (PCG). Thus the search direction defined in Eq. (27) is a new 

direction for the Generalized Polak-Ribiere CG-direction. 

 

5. Numerical Results: 

In this section we are going to employ the new proposed algorithm 

with a certain effective CG-method; namely Liu and Storey [8]. 
 

We will show that our algorithm is better than the Generalized CG-

of Liu and Storey’s [8] algorithm. Using Oren [11] self-scaling VM update 

Oren [11] as an acceleration tool to the Generalized CG-algorithm to 

decrease the number of iterations (NOI) and number of function evaluations 

(NOF). The comparison tests involve ten well-known test functions with 

different dimensions. All the results were obtained using double precision 

on the (Pentium II Computer) using programs written in Fortran Language.  

The terminate criteria is (510-5) with Powell’s restarting criterion 
2

1kk

T

1k g0.2gg ++   and the algorithms use the cubic line search strategy, 

with function and gradient values and it is an adaptation from that published 

by Bunday [4]. 
     

The comparative performances of the algorithms are evaluated by 

considering both the total numbers of iterations (NOI) and total number 

function evaluations (NOF). 
 

Thus all our numerical results are presented in table (1). In this table 

we have compared our modified proposed algorithm with Liu and Storey [8] 

algorithm by using (Ten) cases and for dimension 2 1000n  . 
 

It is clear that the modified algorithm outperformance the standard 

Liu and Sorey’s algorithm as results of this comparison. 
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Table (1) 

Comparative performance of all algorithms for test functions with 

(2 1000n  ). 

 

Test 

Functions 

 

 

N 

 

 

Liu and Storey’s algorithm 

 

 

Modified  GCG 

algorithm 

 

NOI NOF NOI NOF 

Sallow 2 9 24 9 24 

Cantrel 4 17 145 16 77 

Rosen 10 305 781 16 44 

Cubic 70 167 425 37 99 

Powell 100 239 1145 156 785 

Recip 120 9 24 5 17 

Sum 180 18 85 11 48 

Powell 200 201 1727 175 519 

Recip 600 7 20 7 18 

Sum 1000 20 79 13 57 

Total 992 4455 445 1688 

 

 We see from the above table that taking the cubic routine as 100 

NOI and NOF yields: 

 

Table (2) 

Tools Liu and Storey’s 

Algorithm 

Modified 

GCG algorithm 

NOI 100 44.8 

NOF 100 37.8 

 

It is clear from the above table that the modified algorithm is more 

efficient than Generalized Liu and Storey’s CG-algorithm. 

 

6. Conclusions: 

        In the field of unconstrained optimization, a new search direction is 

implemented for modified extended generalized CG-VM steps. The 

technique uses inexact line search with promising numerical results. 
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