On Rings whose Simple Singular R-Modules are GP-Injective

Zubayda M. Ibraheem

z.mohammed@uomosul.edu.iq College of Computers Sciences and Mathematics University of Mosul, Iraq

Received on: 25/04/2004

Accepted on: 13/12/2004

ABSTRACT

In this work we give a characterization of rings whose simple singular right R-modules are Gp-injective. We prove that if R is a quasi-duo ring whose simple singular right R-modules are Gp-injective, then any reduced right ideal of R is a direct summand. We also consider that a zero commutative ring with every simple singular left R-module is Gp-injective **Keywords:** Gp-injective, R-modules, Quasi-duo ring, ZC-Ring

> حول الحلقات التي مقاساتها البسيطة المنفردة تكون غامرة من النمط-GP زبيدة محمد أبراهيم كلية علوم الحاسوب والرياضيات جامعة الموصل

تاريخ قبول البحث: 2004/12/14

تاريخ استلام البحث: 204/04/25

الملخص

في هذا البحث ندرس الحلقات التي تكون مقاساتها اليمنى البسيطة المنفردة غامرة من النمط – GP . برهنا أنه في حلقة كوازي – ديو التي تكون مقاساتها اليمنى البسيطة المنفردة غامرة من من النمط – GP فأن كل مثالي أيمن مختزل يكون قابلا للجمع المباشر . كما بينا أن الحلقة شبه ألا بدالية تكون حلقة منتظمة ضعيفة مختزلة إذا كانت مقاساتها اليمنى البسيطة المنفردة غامرة من النمط – GP .

الكلمات المفتاحية : غامر من النمط-Gp, مقاسات, حلقات Quasi-duo, حلقات من النمط ZC

1. Introduction:

Throughout this paper, R denotes an associative ring with identity, and all modules are unitary right R- modules. Recall that: (1) A right Rmodule M is called general right principally injective (briefly right Gpinjective) if for any $0\neq a\in R$ there exists a positive integer n, such that $a^n\neq 0$ and any right R-homomorphism of a^nR into M extends to one of R into M;(2) R is called reduced if R has no non-zero nilpotent elements; (3) R is right (left) quasi-duo ring if every maximal right (left) ideal of R is an ideal of R; (4) A ring R is called semi-prime if 0 is the only nilpotent ideal ; (5) for any element a in R we define a right annihilator of a by r(a)={x \in R:ax=0} and a left annihilator of a, l(a) is similarly defined.

2. Rings whose simple singular modules are GP-Injective:

In this section, we study rings whose simple singular right R-modules are Gp-injective.

We begin this section with the following result.

Proposition 2-1:

Let R be a qusi-duo ring, with every simple singular right R-modules is Gpinjective. Then any reduced right ideal of R is a direct summand.

Proof: Let I=aR be a reduced principal right ideal of R. We shall show that aR+r(a)=R. if not, there exists a maximal right ideal M of R such that $aR+r(a)\subseteq M$. Now, M is essential right ideal of R, if not, then there exists a non-zero right ideal L of R such that $M \cap L=0$. Then $aRL\subseteq ML \subseteq M \cap L=0$, implies that $L \subseteq r(a) \subseteq M$, so $M \cap L=L=0$, and this is a contradiction.

So M must be essential right ideal of R. Therefore R/M is Gpinjective. Then there exists a positive integer n such that any Rhomomorphism of aⁿR into R/M extends to one of R into R/M. let f:aⁿR \rightarrow R/M be defined by f(aⁿr)=r+M. f is a well-defined Rhomomorphism. Indeed, let r₁,r₂ \in R such that aⁿr₁=aⁿr₂. Then aⁿr₁-aⁿr₂=0, implies that aⁿ(r₁-r₂)=0, so r₁-r₂ \in r(aⁿ), since I is reduced. Therefore r(aⁿ)=r(a) ,this implies that r₁-r₂ \in r(a) \subseteq M. Hence, r₁+M=r₂+M. Now R/M is Gp-injective,so there exists c \in R such that 1+M=f(aⁿ) =caⁿ+M. Hence, 1caⁿ \in M, since aⁿ \in M and R is a quasi-duo ring , then caⁿ \in M and so 1 \in M. This contradicts M \neq R.

Therefore aR+r(a)=R. In particular ar+c=1, for some $r \in R$ and $c \in r(a)$, whence $a^2r=a$. if we set $d=ar^2 \in I$, then $a=a^2d$. clearly $(a-ada)^2=0$, since I is reduced, thus a =ada, and hence I=eR, where e=ad is an idempotent element. Thus I is a direct summand.

Proposition 2-2:

Let R be a semi-prime ring with every simple singular right R-module is Gp-injective . Then every right ideal of R is an idempotent .

<u>Proof:</u>For any right ideal I of R, suppose there exists an element b in I, such that $b \notin I^2$. Then $bR \neq (bR)^2$. Since R is a semi-prime ring, then $(bR)^2$ is essential in bR. By zorn's lemma, the set of right ideals J such that $(bR)^2 \subseteq J \subset bR$ has a maximal member L. Then bR/L is a simple singular, and therefore is Gp-injective. Now, let f:bR \rightarrow bR/L is the canonical homomorphism defined by f(br)=br+L for all ring R, since bR/L is Gp-injective, so there exists $c \in R$, such that f(br)=(bc+L)br. Then f(b)=(bc+L)b=b+L, which implies that b+L=bcb+L. Hence; $b-bcb \in L$, whence it follows that $b \in L$. Thus $bR \subset L$ and this is a contradiction. Therefore I=I².

3-Zero Commutative Rings

In this section we introduce the notion of a zero commutative ring in order to study the connection between rings whose simple singular right R-modules are Gp-injective and other rings.

Definition3-1:

A ring R is called zero commutative (briefly ZC) if for a,b \in R , ab=0 if ba=0.

We shall begin this section with the following result.

Lemma 3-2:

Let R be a ZC ring. Then RaR+l(a) is an essential left ideal of R. **Proof:**Given a \in R, assume that [RaR+l(a)] \cap I=0, where I is a right ideal of R. Then aI \subseteq I \cap RaR=0, so I \subseteq r(a) \subseteq l(a). Hence, I=0; where RaR+l(a)is an essential left ideal of R

Lemma 3-3:

Let R be a ZC ring with every simple singular left R-module is Gp-injective, then R is reduced.

<u>Proof:</u>Let $a^2=0$. suppose that $a\neq 0$. By lemma (3-2), l(a) is an essential left ideal of R. since $a\neq 0$, l(a) \neq R. Thus, there exists a maximal essential left ideal M of R containing L(a), therefore R/M is Gp-injective. So any R-homomorphism of Ra intoR/M extends to one of R into R/M. Let f:Ra \rightarrow R/M be defined by f(ra)=r+M. Clearly, f is a well-defined R-

homomorphism . Thus 1+M=f(a)=ac+M. Hence, $1-ac\in M$ and so $1\in M$, which is a contradiction. Hence a=0, and so R is reduced.

Definition3-4:

A ring R is said to be right weakly regular if for all a in R, there exists b in RaR such that a=ab. Now, we give the main result.

Proposition 3-5:

If R is ZC and every simple singular left R-module is Gp-injective, then R is a reduced weakly regular ring.

Proof:By Lemma (3-3), R is a reduced ring. We shall show that RaR+l(a)=R for any $a \in R$. Suppose that there exists $b \in R$ such that RbR+l(b) $\neq R$. Then there exists a maximal left ideal M of R containing RbR+l(b). By Lemma (3-2), M must be essential in R. Therefore R/M is Gp-injective. So there exists a positive integer n such that any R-homomrphism of Rbⁿ into R/M extends to one of R into R/M. let f:Rbⁿ \rightarrow R/M be defined by f(rbⁿ)=r+M. Since R is a reduced ring, f is a well- R-homomorphism. Now, R/M is Gp-injective , so there exists $c \in R$ such that $1+M=f(b^n)=b^nc+M$. Hence $1-b^nc\in M$ and so $1\in M$, which is a contradiction. Therefore RaR+l(a)=R for any $a \in R$. Hence R is a left weakly regular ring. Since R is reduced, then RaR+r(a)=R, implies that R is a right weakly regular ring. Therefore R is a weakly regular ring.

Kimand Nam in [2] proved that. Rings whose simple right R-modules are Gp-injective are always semi-prime. But in general rings whose simple singular right R-modules are Gp-injective need not be semi-prime.

Proposition 3-6:

Let R be a ZC ring, and every simple singular left R-module is Gpinjective, then R is a semi-prime ring .

<u>Proof:</u> From Lemma (3-3), R is a reduced ring and then R is a semi-prime ring

<u>REFERENCES</u>

- [1] Kim N.K., Nam S.B. and Kim J.Y. (1999), "On simple Singular Gpinjective modules", *Comm. In Algebra*, 27(5), 2087-2096.
- [2] N.K.kim, Nam S.B. and Kim J.Y. (1995), "On simple Gp-injective modules", *Comm. In Algabera*, 23(14),5437-5444.
- [3] SANG Bok NAM (1999), "A Note on Simple singular Gp-injective Modules" *kangweon-kyungki Math. Jour.7, No.2*, pp.215-218.
- [4] Ming R.Y.C. (1986) "On Semi-Prime and reduced ring" *Riv. Mat.Univ.Parma* (4) 12,167-175..
- [5] Ming R.Y.C. (1994) "A not on regular rings,II", Bull.Math. Soc. Sc.38.
- [6] Ramamurthi V.S. (1973) "Weakly regular rings", *Canad. Math.Bull.16*,317-321.