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ABSTRACT

The purpose of this paper is to introduce parallel algorithms based on
the Newton method for solving non-linear unconstrained optimization
problem in (MIMD) parallel computers by solving linear system in parallel
using Gaussian Elimination method rather than finding inverse Hessian
matrix to avoid the errors caused by evaluating the inverse matrix and also
to increase computing power and reduce run time.
Keywords: non-linear unconstrained optimization, Newton method, parallel
algorithm, Hessian matrix.
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1. Introduction:

This paper is concerned with finding a local minimum x* of the
unconstrained optimization problem
min f(x) 1)

where xe R" and the objective f:R"—>R is twice continuously
differentiable.

Methods for unconstrained optimization are generally iterative
methods in which the user typically provides an initial estimate of x™ , and
possibly some additional information. A sequence of iterates {xi} is then
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generated according to some algorithm. Usually the algorithm is such that
the sequence of function values fi is monotonically decreasing (fi denotes
f(xi)). Due to practical applications of the unconstrained optimization
problem, a considerable amount of effort has been expanded on the
development of efficient sequential algorithms for the solution of this
problems. Recent advances in parallel computing technology have made it
possible to solve the optimization problem more effectively and increasing
computing power for this reason it is natural that there is an increased
interest in designing parallel algorithms for various types of applications. In
this paper, we will discuss parallel numerical algorithm namely Newton
algorithm for the general unconstrained optimization problem using
multiprocessors or (MIMD) parallel machines which consist of a number of
fully programmable processors capable of simultaneously performing
entirely different operations on different data, where each processor has its
own local memory.

Concurrent computation can be done at different levels. Our focus is
on using (MIMD) computers where a number of processors communicate
and cooperate to solve a common computational problem. Multiprocessor
parallel computation involves three key ingredients hardware, software
(programming language, operating system and compiler) and parallel
algorithms (See [8] or [11]).

A popular class of methods for solving problem (1) is the Quasi-
Newton (QN) methods.

Assume that at the ith iteration, an approximation point x; and nxn
matrix Hiare available, then the methods proceed by generating a sequence
of approximation points via the equation

Xiq =X +od; (2)
where &, >0 is the step- size which is calculated to satisfy certain line

search conditions and di is an n-dimensional real vector representing the
search direction. For QN methods, d; is defined by :

di =-H,9; (3)
where §; = \%i (Xi) is the gradient vector of f(x) evaluated at point x=Xx;

and H; is an approximation of Gi_l( where G=V?*f(x)) which is
corrected or updated from iteration to iteration in general Hi is symmetric
and positive definite , there are different choices of Hi , we list here some
must popular forms (See [5],[6]or[4]).
(5, —H;r))(5, —H )" (4)

(5i _Hiri)T r;

Hi,=H;+
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Where O; =X;,; —X; and r,=g,,—g, is called rank- one
formula, the other forms are BFGS and DFP where

T T T T
(10 TH 200 o ©
il i s'r, o T S
DFP 507 H.rr"H.
. :H+ |T| _ |T|| i (6)
i+1 i o . r; lel

QN methods mentioned above have two disadvantages: one of which QN
algorithms require line search which is expensive in practice and The
second is the accumulation of error in evaluating the approximate Hussein
matrix H; at each iteration.

To overcome these disadvantages we use parallel Newton method
without approximating Hussein matrix and neglecting line search

2-Newton Method

Newton method uses first and second derivatives, the idea behind
this method is as follows:

Given a starting point Xo , we construct a quadratic approximation to
the objective function that matches the first and the second derivative
values at the point. We then minimize the approximate (quadratic) function
instead of the original objective function. We use the minimizer of the
objective function as the starting point in the next step and we repeat the
procedure iteratively. If the objective function is quadratic, then the
approximation is exact, and the method yields the true minimizer in one
step. If on the other hand, the objective function is not quadratic then the
approximation will provide only an estimate for the position of the true
minimizer.

We can obtain a quadratic approximation to the given twice
continuously differentiable function f(x) using the Taylor series expansion
of f about the current point xi, neglecting terms of order three and higher in

AX; for simplicity we let AX; =4,
(4 +0)~a(6) = F+6] +576,0 )
where 8., x. e R" and the matrix G usually positive definite when x; is in

some neighborhood of x”. A unique minimizer of Q(5i) exists if and only
if G is positive and Newton method is only well defined in this case. (See

[5]). Then () is obtained by finding the stationary point at CI(5i ), which
requires the solution of the linear system
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G;d; =-0; (8)
the next step is then defined by
Xia = X; +0; (9)

We then prove that the sequence {x} convergence and the order of
convergence is two (See [13]). These local convergence properties represent
the ideal local behavior which other algorithms aim be evaluated as far as
possible (See [6]). In fact, super linear convergence of any algorithm is

obtained if and only if the step AX;is asymptotically equal to the step given

by solving (8). This fundamental results due to Dennis and More (1974)
emphases the importance of the Newton step for local convergence.

Two quite different classes of methods for solving the linear system
(8) are at interest: direct methods and iterative methods. In direct method,
the system is transformed to a system of simpler form e.g. triangular or
diagonal form, which can be solved in an elementary way. The most
important direct method is the Gaussian elimination, we will use it to solve
the linear system (8).

3. Gaussian Elimination Method

A fundamental observation in Gauss elimination is the elementary
row operations, which can be performed on the system without changing the
set of solution. These operations are:

1- adding a multiple of the ith equation to the jth equation
2- Interchange two equations.

The idea behind Gaussian elimination is to use such elementary
operations to eliminate the unknowns in the system (8) in a symmetric way,
so that at the end an equivalent upper triangular system is produced, which
is then solved by back — substitution.

If a, #0. (where @; €G). Then in the first step we eliminate

51 from the last (n-1) equation by subtracting the multiple

L,=28 j=23..n

a11
of the first equation from the ith equation. This produces a reduces system
of (n-1) equations in the (n-1) unknowns o¢,,0s,......, 6,, Where the new

coefficients are given by :
a; =q; — L a;, 0;=0;— L,9, 1=23,,...,Nn
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If &, #0, we can eliminate 0, from the last (n-2) equations. After

m-1 steps, M < N of Gaussian elimination the matrix G has been reduced to
the form:

-
() (Y] ()

ap &y ... Ay g,

2

m |0 a? .. a| m [?

=| . . , g =|9%

0 :

(m) (m)

0 O an, g,

(m)
Where &;; is the reduced element produced from row operation at

steps m=1,2,...,n.
The elements fa{n) (i=1...,nyare called pivotal elements. There are
two difficulties in the Gaussian elimination method. The first if a zero

: : . (m
pivotal element is encountered i.e a, =0 for some M <N, then we cannot

proceed. But this case does not occur in our problem, which is stated in (8).
Since G is square matrix and positive definite, this means that all diagonal
elements of G are non-zero. Second a zero pivot in exact arithmetic will
almost invariably be polluted by rounding errors in such a way that it equals
some small non-zero number, unfortunately, there is no general rule which
can be used to decide when a pivot should be taken to be zero. What
tolerance to use in such a test should depend on the context. This question
and the stability (without these two difficulties) of Gaussian method treated
in [Laxxus, 2000]

Gaussian Elimination Algorithm

Given a matrix G=G® eR™ and a vector g=g® eR" the
following algorithm reduces the system Go&=g to upper triangular form
a; =0,i=1,2,..,n  since n(;;n is positive and symmetric)

For k=1:n-1
For i=k+1:n

for j=k+1:n

(k+1) _ (k) (k) .
aij _aij _Likakj ’
end
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(k+1)
|

end

end

4- Parallel algorithms for finding Newton direction:

In order for the algorithm to be as efficient as possible, we must be
able to exploit the memory hierarchy of the architecture we are running on.
The memory hierarchy refers to different kinds of memories inside a
computer. These range from very fast, expensive and therefore small
memory at the top of the hierarchy, down to slow. Cheap and very large
memory at the bottom (for more detail see [13]). Useful floating point
operations can only be done at the top of hierarchy, in the registers. Since an
entire large matrix cannot fit inside the registers, it must be moved up and
down through the hierarchy. This takes time and for maximum performance
should be optimized for each architecture.

The Basic linear Algebra Subprograms BLAS are high performance
routines for performing basic vector and matrix operations. The BLAS are
specifically machine optimized to exploit the memory hierarchy. Level 1
BLAS does vector-vector operation, Level 2 BLAS does matrix-vector
operations and Level 3 BLAS does matrix-matrix operations (see [7]).

In order to speed up Gaussian elimination, we wish to use as high a
level of BLAS as possible.

There are different ways to parallelize the Gaussian elimination
method. In this paper, we consider two types of parallel Gaussian
elimination, the first is based on the rows of the matrix G and the second
uses columns of G.

=9/ - L, 9"

4-1: Parallel Gaussian Elimination Based on Rows (PGER)

The most popular form of Gaussian elimination is defined by
subtracting multiple of row of the matrix G from other rows in order to
reduce (8) to an upper triangular system, which is then solved directly by
back substitution. We assume that the computing system consists of n
(where n is the dimension of the problem) identical independent processors
also assume that the ith row of G is assigned to processors i. At the first
stage, the first row of G is sent to all processors and then the elimination of
the first elements of rows 2 to n can be done in parallel in the processors

The computation is continued by sending the new second row of the

reduced matrix from processors Ps,......,Pn , then doing the calculations in
parallel ; and so on [see figure, 1]
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P1

P2

Pn

1-save xP, g® G®
2.find

®
a\
=3t o
=y o J=2en
ay

and send Ijlto Pj
: 1
s-send first R®to p,,..., p,
4.dofori=2,..,n
"~ L0 =97 andsend

(2

the vector J* to P,

5..recieve LJ-2 from PP, and repeat
@ for g@
6.receive the vector O o to find

x® =x® 4 5(1) and find new
g from x?
g(l) =g and G® =Gg®@

6.- if ”91” < & stop, otherwise

X(l) = X(z) ;Gotol

1- save second row R gl)
2- receive Ril)
and L, from p,

to find Réz) as follows

3- do fori=l,...,n

@) Q) _ 42
i _I-21 i — i

4. recieve
R®(i = 3,...,n)and find
_ a(z)il

2 = @)
a22

send itto Ps,......, P,

. 1 .
1-save Rr(] ) and receive

Rl(l) and L21
2- do for i=1,...,n to find the

reduced Réz) from
(€)) @ _ 42
ani - I—nlali - ani

3 -receive Réz) . Rr(i)l from

processors P2 e Pn—l
(2
G®@ = Rl
R®
n

4- If G upper triangular use back

substitution to find 5(1) from

a .
s =g -226,

a
i=(n-)-(n-2),..,1

()

and §O — 0
n a®

nn

5-send O @ 1o Pl

Figure (1) tasks of processors in PGER

This approach has two major drawbacks (See [9]) (i) there is a
considerable communication of data between the processors at each stage
(i) the number of active processors decreases by one at each stage.

4-2: Parallel Gaussian Elimination Based on Columns (PGEC)
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Let X¥,g® e R"and G =G® € R™" are given and assume that

the computing system consists of n+1 identical independent processors and
fully communicated processors, also assume that the jth column (Cj). of the

. . . : n_ .

matrix G® is assigned to processor j and column g( ) assigned to Pn+1 .
The first step is to find | :%; i=2
ay

sent to processor Pj (j=2,.....,n+1) , then the computation can be done in
parallel in all processors as follows :
for each processors j =1,...... Bil
1 1) 2 .t
a¥’ —L,af =al? i=2...,n

nin Py then the values of Lii can be

and processor n+1 compute the vector g® from
1 1 2 .
WL gP =g’ m=2,..,n

m

for next step (see figure (2) we can find
&)

1 . .
i =ﬁ ;1=3,...... N in p, and then send to processors Ps,...... ,Pn+1
a11

and the process is repeated until the matrix G is transformed to upper
triangular matrix, we denote it G latter k steps and then backsubstitution is

used to find the vector O .

The new point x*** is found from equation (9). Again in this
algorithm the number of active processors decreases by one at each stage.
The main advantage of this algorithm is that we optimized data transfer
between processors since we need only transfer elements instead of vectors,
this will reduce the time required to complete the computations.

1
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P, P, P, Prsa
Step(1) 1-save 1- save 1- save 5
(1) _ @ _
1.save [6.2] Ch = |:ain:| 2- receive Liy
xW, g®,Cc = I:ai(ll) 2- receive Li; from 2- receive Li; from Py i=1,2,......n-1from P,

2- find
@
_a
il @
1
and senditto Po,...... ,Pn
3- do fori=2,....,n

(1) 0 _ 5@ —

i Lll |l O
c?=[a? 0 o] ;a;a?
4.step (K):

1- receive

from

Cf(i=2,.....,n+1)

triangular?
2- use back substitution to
find &

x® =x® 1 5; 1o find
new g at stop otherwise
|g]| < &3

4-

x@ x® g® g:G® =G®
repeat from step (1)

P:
3-do

(1) L|1 M _

step(2)
1- find
)
a; .
L,=—2i=3..n

@'
8

and repeat the
process

2-send Li;to
Py ..., P

3- repeat (3) for

(2)
CZ
and L;, to find
L(S) 7[az1 a, 0 O]

Céz) to P,4- send

3-do fori=2,...,n
0 _

- Lilain -
Céz) = [al(nz):| send
itto Pra
step (2)
1- receive Lz, from P,
2- repeat (3) for Crsz)

and L,
3- the process repeated

until G® triangular

4- send Crsk) to P,

3-do fori=1.2,...,n-1
(l) -L g! o _ (2)

.step (k)

1-
ct=[o!]i=Lcn

2- send Cn+1 to Py

Figure (2) tasks of processors in PGEBC
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Numerical Example:

We give an example from [1] to illustrate the tasks of processors in
the algorithms PGER and PGEC

1-Minimize the function

f (X)X, X5) = X7 +2X5 + X2 —4X,X, +3X Xg + 2%, Xs. (10)

X; =[004]";g, = [2 11]" where

2% —4X, +6X, 2 —4 3
g(x)=|12x, - 4% +20x, | ; G=|-4 4
46X, + 6x, + 20X, 3 2
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Using PGER: We need 3 processors , see figure (3)

P1 P2 Ps
1 1 1 1- 1-
1- save X( ) , g( ) ,G( ) save save
o _ o _
o find RV =[-4 4 2] RP=[3 2 2]
(1) . ; (Y]
L, ai:—_4:_2 and 2- receive R;™ and La
a, 2 3-do fori=1,2,3
2- receive
@ 3-(3/2)(2)=0
T _ 2 send th W_[o _
L, =2 send these RY = [2 4 3] 2-(312)(-4)=8
value to Py, Ps and Ly=-2 2-(3/2)(3)=5/2
3- send 4 - receive R{? and find
RO=[2 -4 3]toP, 8
=l J o, 3-doi=1,2,3 L,, =— send Lz to
Ps 4 (-2)(2)=0
- = P
4-do fori=1,2,3 2-(-2)(3)=8 1
-1-(-2)(3/2)=-4 5- repeat step (3)
C21E2) ~RP=[0 -4 §]
-1-(-3/2)(3/2)=5/4 for R
g(z) _ [—_3 _4 E]T 8-(-2)(-4)=0
2 4 ) (5/2)-(-2)8=37/2
4—send R{? toPs s 4 3
5-recieve Lo, from P3 6co_|g _4 g
6- do (5/4)-(-2)(-4)=-27/4 0 0 27/2

-3/2
g = -4 |and
—27/4
send to P;
0 0 0

-l olsl o |20

1/2 -1/2] |0

8||g|| < & stop

7-receive g(z) from P,
8- use back substitution

to find & and send it to
P1

Figure (3) Tasks of processors using PGER algorithm
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2- Using PGEC:

We need 4 processors to solve the problem given (10) as shown in figure (4)

P P2 P3 I:)4
Step(1) 1- save 1-save 1- save
1-save cO=[-4 4 2 co=[3 2 2] —g=[-3/2 -1 ]
x®=[o o /2 2-receive L21
-g=[-3/2 -1 -1 2- receive L21=- L3l 2-receive 121,131
c=[2 -4 3 2,131=3/2 3-do 3-do
. 3-do 2- (-2)(3)=8 -1-(-2)(-3/2)=-4
4-(-2)(-4)=-4 2-(3/2)(3)=-5/2 -1-3/2(-3/2)=5/4
L= L 2-(312)(-4)=8 cofs 8 siaf| | 0 -lsiz 4 s
and send then to G =[4 8 step(2)
P2,P3,p4 step(2) step(@) 1- rpeceive L22
3-do 1- find L22=8/-4=-2 1- receive L22=2
4-2(2)=0 and send it to P3,,P4l 2-do 2-do

3-(312)(2)=0

step(2)
1- receive

@ cO 4O
C7.GMa
2 -4 3
G?={0 -4 8
2. 0 0 27/2
-3/2
9’ =| -4
-27/4

3- use back

substitution to find

L
3

c®=[2 o of

2-do
8-(-2)(-4)=0

“Cly =[ ¢ 0]

send it to P1

-5/2-(-2)(8)=27/2
CP¥=[3 8 2112]

send it to P1

5/4 -(-2)(-4)=-2714
~g9=[-312 4 -2114)

send it to P1

Figure (4): Tasks of processors for PGEC algorithm
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5-Numerical experiments:

Both the amount of time required to complete the calculations and
the subsequent round-off error depend on the number of floating arithmetic
operations needed to solve a routine problem. The a mount of time required
to perform multiplication or division on a computer is approximately the
same and is considerably greater than that required to perform an addition or
subtraction (see [3]). The total number of arithmetic operation depends on

the size n as follows:
3

n n
Multiplications / divisions: ?+ n? —?
Additions / subiractions: -+ T~ "
itions / subtractions: ——+————
3 2 6

For large n, the total number of Multiplications and divisions is
approximately n° as is the total number of additions and subtractions.
3

Hence if the all operations done on sequential computer then the
accumulation error will be large. On the other hand, dividing the operation
on different processors will reduce the amount of errors.

As for the amount of time, If we assume t; is time required to
complete the calculations in sequential computer, we expect the time
required to perform the same calculations in the parallel algorithms
proposed is t. where p number of processors.

p-1

In the algorithms PGER and PGEC, there is no need to line search
and matrix inversion, all operations are done using ordinary arithmetic
operations. Also, the number of function evaluations are only (2), since the
Gaussian method gives exact solutions shown in the given example.

Conclusion:

In this paper we proposed two parallel algorithms for solving
unconstrained optimization problem. These methods can be extended to any
non-homogenous linear system with positive definite matrix. These methods
do not require to vector multiplication and matrix inversion as shown in the
numerical example.
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