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ABSTRACT 

The rings of differential operators have been studied by many 

mathematicians like Musson [5], Smith and Stafford [7]. Jones in [2] and [3] 

introduced new ideas for such kind of rings and he found a new line.  

In this work, we generalize many of the relations of Jones in the first 

part, and we found a new proof for some relations of Jones. 
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 التفاضليالنوع حلقات من حول ال
 محمود ديقعمار ص

 جامعة الموصل ، كلية التربية
 26/12/2005قبول: تاريخ ال                                06/06/2005تاريخ الاستلام: 

 الملخص
سُن م  اال  ااي درسَ الحلقاا  ماال ال ااوف الت الالي الممثااُ ال اثاار  مال ال ااا حاثل ولعاال مال زهاار

[ قام  جاو أ ز  اارا زولياة لماا افتمار عيماا بعام 3[و]2[ بع اية بالغة. و ي ]7[ وسمثث وستا ورد  ي]5]
بأ ا  هماياة ل اد جممام مال ساوا ال اوف مال الحلقاا . حاول اا  اي ساوا ال حاث معماين ال اثار مال ف قااا  

ايجااد هاراسثل م تل اة لق ان مال ساوق الع قاا  جو أ  ي الجا ب الأول و ي الجا ب الاا ي ممك ا مل 
 [.3[ و]2التي زوجمسا جو أ  ي ]

 .الحلقا  مل ال وف الت الليالكلمات المفتاحية: 
1. Introduction:  

Let k be an algebraically closed field of characteristic zero. For a 

commutative k-algebra A, we defined ( ) ( )


=

=
0i

i AD:AD  where 

( ) ( )AEndAD A
0 =  and ( ) ( )   ( ) Aa,ADa,AEndAD 1i

k
i = − . 

Then ( )AD  is a sub ring of ( )AEndk , called the ring of differential 

operators on A. For an irreducible affine variety , we define D1(x):= 

D(O(x)) where O(x) is a ring of regular functions of  and call this ring 

D(O(x)) of differential operators on . 

Let N be a free Z-module of rank r and ( )Z,NHomM z=  its Z-

module dual. Then we have a bilinear pairing ZNM:, → which 
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extends to QNM:, QQ →  where QMM zQ = and QNN zQ = . 

Let ( ) QMf  be a subset of the form  0)(f:MH Qf = , defined is a 

half space of 
QM . Let V be a finite dimensional vector space over Q. 

A subset  0)v(:Vv   where QV: → is a non-zero linear 

function called a half space of V. A cone , in V is the intersection of a 

finite number of half spaces. It can be written in the form:  

Vv,.......,v,v  for     v Q s21

s

1i

i0 = 
=


. 

A subset of  of the form ( ) 0v:Vv =  where QV: → is a 

linear functional positive on  is called a face of . The dimension of the 

cone  is the dimension of the vector space - over Q. 

Consider a cone  in QN . Let  0Q

v

Q,p:Mp = . Then 
v

  is 

an r-dimensional cone in M andM
v

Q  is finitely generated additive 

semi-group containing 0, (see [6, 1.1]). Let ==
 M

v

v]M[kR , be the 

semi-group algebra.  

Here 
  is a formal monomial and the multiplication is given by 

the semi-group addition. Choose once and for all a Z-basis of M, say 

 .m,.........m,m r21
 Then set ii

m
i x/and Xx i == . 

Jones in [3] starts with a single relation. In this paper, we use that 

relation to obtain a new general basis. 

 

2. The semi-groups  and 
~

 

In this section, we repeat in the first part the definition of the  

semi-group  , we give many of its features. Jones in [3] used these 

features to define another semi-group, denoted by 
~

. 

Consider a finite set F1 of hyper-planes such that each is parallel but 

not equal to some iH . We also suppose that 






 







=


MF\M :

1FF

v

 

is a semi-group. We call such a semi-group a hyper-plane deleted sub semi-

group of 








 M 

v . For any hyper-plane F in QM , let e(F) be the polynomial 
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of )M(S *
Q

 which defines F. Note that for )F(e,FF 1 are the polynomials of 

degree 1, with rational coefficients. 

Definition 2.1: A semi-group   is said to be normal if one of the following 

equivalents conditions holds: 

(1) For Nnforncnbaif cb,a, =+ , then a=na1 for some 

1a . 

(2) For  athen,naif,Nn0andZa . 

For an arbitrary finitely generated semi-group the normalization of 


~
 ,  is defined as:  Nn0somefor,na: Za

~
= . 

Musson in [4,1.3] introduced the following proposition: 

Proposition 2.2: For a semi-group  , the following are equivalents:  

(1)   is normal; 

(2) For any field k, k  is an integrally closed Noetherian domain; 

(3) For some    ,st0 is isomorphic to a semi-group of the 

form ( ) VZZ tst
0  −


, where V is a subspace of  MQ and dim 

Q r= ; 

(4) For some    ,0n,t  is isomorphic to a semi-group of the form 

t1 H...HM   where iH  are half spaces in MZandMQ = . 
 

      In the following lemma, Jones in [3] defined another semi-group 
~

:- 

Lemma 2.3: 

(1) M :
~ v

= ; 

(2) =







=

~
kM kk

v

. 

Proof:  

(1) For all M 
v

 and Na , we have a  because    is 

a semi-group of M 
v

  such that  
v

0 =  and MZ = , 

then ==
~

ZZM  and )M (M
v

= , therefore 

=
~

M 
v

. 

(2) The second result is true by the proposition (2.2) in the second 

part ■ 
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Now, For   an arbitrary semi-group such that = k let ,MZ be 

the associated semi-group algebra of   and )k(D   the ring of differential 

operators. Then )kM(D)k(D   

 )x,........,xk(D 1
r

1
1

=  

 r1
1

r
1

1 ,.......,,x,......,xk = 
. 

Clearly )k(Dinisx ii  . Now for  
 = xxx    ,Z iii , 

where ),....,,( r21 = . 

)k(DWthenk]x,.......x[QWLet Qrr11 = . Thus the 

elements of W define polynomial functions from 
QMZ   to k by the rule 

= Zfor)(x iii
.  

Thus for  ZandWf , 
 = x)(fx)x,....,x(f rr11 .  

 

Definition 2.4: For MandMB,A  , define  

 BA)(B,A +=   

Also let 

)()( A,AA = . For M define   to be the Zariski closure 

in QM  and let  == ,0)(fWf)(I  . Also )(I)(I = . 

 

Lemma 2.5: [Musson] 

Let  be a semi-group of M with 
QMQ = . For *

Q )M(g  and 

Qb  set  b)(gb ==  . Suppose that: 

(1) b ; 

(2) 1rQdim 0Q −= . Then  b)(gMQb ==   

 

Now, we decompose )(~ 


 into pieces,  

 MH
~

)( i
i
~ +=


 . 

Observer that )()( i
~~ =


. 
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Proposition2.6:

 )(h)(h0 & )M(h)(hM)( iiiiQ
i
~ −=


 , for i=1,2,…,r. 

Hence )(i
~ 


is a finite union of hyper-planes  parallel  

to iH . 

Proof: ih  is linear, then the left side is included in the right-hand side. 

Also, the right-hand side is Zariski closure in QM . By the Lemma 2.5,we 

suppose that )(h)(h0with)M(hb)(h iiii −= . Let 

 b)(h ib ==   with b . iH  is a face of , then 

1rQdim 0Q −= . Therefore, by the Lemma 2.5, 

  )(andb)(hM i
~iQb ==


 . 

 

Proposition 2.7: 

(1) )x(DW 1 ; 

(2) ))((I X)x(D ~
M

1 =





; 

(3) )(~ 


 is a finite union of hyper-planes each parallel to some  

iH ; 

(4) =


~
)()( ~~ . 

Proof: Clearly the first and the second properties are satisfied by [2]. For 

the third property, we have )()( i = . By the proposition 2.6, 

)(i
~ 


 is a finite union of hyper-planes parallel to iH , then 

)()()( ii == , 

and )(  is a finite union of hyper-planes parallel to  iH . For the fourth 

property, it’s clear that 


~
)()( ~~ .  

Now we suppose that )(F ~ 


is a finite union of hyper-planes 

parallel to some iH . By [3, lemma 3.5] we have 

c
i

c
i H)

~
F(HF ++  
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 )(
~

F  . 

and =


~
)F(

~
~  

).(

)
~

F(

~ 

=



 

Then =


~
)()( ~~ . 

 

3. The new relations: 

In this section, we start with a single relation of Jones and we use 

this relation to obtain a new general basis. 

 

Proposition 3.1: For ==
~

ZZM , the following holds: 

(1) ( )  )(F:FFYwhereF)()( ~1
YF

~
,

~ ==





. 

(2) 

 −=−=




~
)F(:FFwhere)F()()( 1

F
~

,
~ . 

 

Proof:  

(1) Let   be the set of hyper-plane, then 

FFF)(
Y\FYFF

~




==  . 

Now, by the definition  +=


~
:)(~

,
, then 

=


)()( ~~
,

.  

Also  =


)()( ~~
,

 

F  

F 

)F()F( 

)F( 

)
~

(  ;)(

)4.7.2(by;
~

)(

Y\F

Y\F

Y\FY\F

YFY\F

~

~













=

=

=

=

=

=




 

Thus F)()(
YF

~
,

~



= . 
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(2) See [3, Proposition  3.11.2] ■ 

 

Jones in [3] gave the following lemma, which is given here with a new  

proof. 

 

Lemma 3.2: For )F()()(,M
'F

~
,

−=


   where 

 −= )F(:FF' 1
 

 

Proof: We have, =


)()(
,

~~ . By proposition (3.1): 








 −=


 )F()()(
F

~   

( ) 






 −=



)F()(  

'F

~   

)F()(
'F

~
,

−=



 

 

From Proposition (2.7) and (3.1) and Lemma 3.2, we can write and 

prove the following: 

Theorem 3.3: 

(1) )()()( ~
,

~ =
 ; 

(2) )(
~

)( =  ; 

(3) )(
~

)(
,

~
,

~ =


; 

(4) )(
~

)( ~
,

~
,

=


; 

(5) = )\
~

()( ; 

(6) =


)\
~

()(~
,

; 

(7) )(\)()\
~

()(
,

~
,

~ = 
. 

 

Proof: 

(1) Since  ==
 )()()()( ~~

,,
~  and  , 

then by Proposition 3.1 and Lemma 3.2, we have 
)()()(

,
~~

,



 

)()()(
,

~~~
,




 

Then  )())(()()( ~
,

~~ =
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).(

)()(

))(()(

~
,

~
,,

~

~
,

~

=

=

=







 

(2) =


~
)(

~
)(

,
~  

).()(
,

~ == 
 

(3) 
















−=






~
)(

~
)F(

~
)( ~

FF
,

~

1

  

)
~

)(()
~

)F(( ~

FF 1

−=




  

)()
~

)F(( ~

FF 1

−=




  

).(
,

~ =


 

(4) ,
~

))()((
~

)( ~~
,

=


 by (1) 

 

).(

)2(by      ,)()(

)()
~

)((

~
,

~

~

=

=

=







 

(5) ))(()
~

)(()\
~

()( −=   

    
.

)2(by,)()(

=

−=   

(6) ))(()
~

)(()\
~

()( ~
,

~
,

~
,

−=


 

   )4(by        ,    .=  

(7) ))(()
~

)(()\
~

()(
,

~
,

~
,

~ −=


 

       )()(
,

~ −= 
,  by (3) 

       )(\)(
,

~ = 
 . 

 

We conclude the following theorem: 
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Theorem 3.4: 

(1) )F())F(()(
FF

−=−


  . 

(2) ))F(()())F(()(
F

~

F

~
,

−=−






  

Proof: 

(1) ))F(())F()(())F(()(
FF

~
,

F

−−=−





   

)))F()F(()))F(()((
FFF

~
,

−−−=





 

))F(()))F(()((
FF

~
,

−−=



  

))F(()))F(()((
FF

~ −−=



  

))F(()))F(()((
FF

~ −−=





 
).F(

F

−=



 

 

(2) )
~

)F(()())F(()(
1FF

~
,

F

~
,

−=−






  

)4.3.3(by        )),F(()(
1FF

~
,

−=





 

))F(())((
1FF

~ −=



  

))F(()(
F

~ −=
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