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ABSTRACT 

 The mechanism of thin liquid films on solid surfaces is fundamental 

to a wide variety of phenomena such as surface coatings in paint. A 

mathematical model is constructed to describe the two dimensions of steady 

thin liquid films flow on an inclined plane with  the use of lubrication 

approximation, we have applied Navier-Stokes equations in two 

dimensional coordinates for  flow of incompressible fluid with the specified 

boundary conditions, and the solution of the film thickness equation  has 

been drawn for flow for several inclination angles which modify  the shape  

of the emerging patterns and also we derived the third order differential 

equations 
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flow.  Finally the equations have been solved analytically. 
Keywords: Navier-Stokes equations, continuity equation, Lubrication 

approximation, Integral momentum balance, Differential equations. 
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 الملخص
سااللة القييةاة ىلال السااوص ال ال ة اا  اخااف ا الكبااة ال   اق  إن ميكانيكية الأغشية ال 

لظوااق ىديد  كالل الساوص با لوان, وقد تم انشاء نموذج رياض  لوصا  جقياان ا غشاية السااللة 
خاالوكذ ذاة ال عاادي  -ط ةنااا معااان ة ناااب ق اذىلاال خاااا  مالاا  مريااُ تةقي ااا   القييةااة  الباةلااة ,

سااال  غ ااق الم,ااكوح, وكااالا رخاامنا المعانلااة اللاا  تمباا  خااما الكشاااء وبشااقوح ودون ااة لنقيااان ال
وتمكناا ي ,اا ما   القق ق ىند جقيان السال  الل ا خف  و زوا ا ىديد  واللا  تدادن لناا  اك  النماوذج

 ا ااااااااااااااااااااااااااااااااااااااااااااااالةا  المعاااااااااااااااااااااااااااااااااااااااااااااااان ة اللفاضااااااااااااااااااااااااااااااااااااااااااااااالية ذاة القت اااااااااااااااااااااااااااااااااااااااااااااااة البالباااااااااااااااااااااااااااااااااااااااااااااااة
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اللاا   تاالدكم  باا  مباا  ااااا  النقيااان,  +−+=−

 قد تم و  ااه المعان ة باقيةة تدل لية. و 
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، تااااوازن الاااارام ، معانلااااة ا خاااالمقارية، مريااااُ تةقي اااااخاااالوكذ-معااااان ة ناااااب قالكلمااااام الميتاحيااااة: 
 الل امل ، معان ة تفاضلية.

1. Introduction: 

 Curtain coating, in its precision model is a parameter coating process 

that has been  used to manufacture single layer and hot fuel element surfaces 

in nuclear reactors thin films form a crucial element in many other 

applications such as industrial coating processes. A thin sheet of viscous 

liquid flowing between two vertical guide wires is an integral process called 

curtain coating. Experimentally the general behavior of liquid sheets in the 

context of curtain coating studied by Brown (1961) [1]. In the model curtain 

coating that would be investigated in this study is the thin liquid  films flow 

at region  on the inclined slide lip where the liquid changes its direction, 

curtain flow region beyond the lip where the falling liquid experiences 

uniaxial extensional  deformation by gravity force, and take away region 

where liquid attains fully  developed plug flow with the substrate speed 

(2004) [5]. The dynamic of the thin layer which flows steadily between two 

vertical guide wires was investigated but with  zero shear stress at their 

bounding surfaces where the gravity has no significant  effect on the liquid 

film Faraidun (2005) [4]. Cryse (1987) [2] obtained an analytic solution to a 

falling liquid curtain but with negligible effect of surface curvature, Diez 

(2002) [3] studied the linear stability analysis for flow of two 

incompressible viscous flow on an   inclined channel. The objective of the 

present analysis is to apply the Navier-Stokes equation to a falling liquid 

curtain coating and present the derivation of the differential equation that 

governs the flow of the liquid curtain flow on an inclined solid and to obtain 

a solution of this equation which is valid for thin liquid film. 
 

2. The Mathematical model : 

2.1 Governing Equations:  

 To consider the two- dimensional inclined thin liquid films describe 

the flow  of a slide flow, the Cartesian coordinates x  and y , and the flow is 

predominantly in the two directions. Figure (2.1.1) shows the model to flow 

geometries of the  slide flow and the curtain flow  .  

 Let ),( yxu , ),( yxv  be the corresponding velocity vector component 

in  x and y directions, respectively . 

 

 

 

 

 



Curtain Coating flow… 
 

 

 101 

 
            

Figure (2.1.1): Flow geometries of a free surface- liquid film curtain 

flow 
 

 Normally in thin liquid films, the film thickness is much smaller 

than the width, and therefore we assume two-dimensional incompressible 

flow. 

 The steady two dimensional incompressible fluid flows governed by 

the following equations of motion and dimensionless in the slide flow of the 

curtain coating flow: 
 

Equation of continuity: 

 The continuity equation for the flow of an incompressible fluid in 

two dimensions has the form  

0=
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Navier-Stoke’s equations [6]  have  the following form: 
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where is the coefficient of viscosity of liquid, and u  is component  

velocity, the density   is assumed to be constant throughout the process 

and g is a gravity. 
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Let )(xhy = represent the thickness of the liquid film at a point x  

The body force vector  

          jif )cos()sin(  −=  

The stress boundary condition at free surface, the Cartesian 

components of the unit normal vector  n  are given by:  
                  

  yx jninn +=
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The curvature of the liquid film is given by:  
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and since we restrict attention to the case when    
x

h




 is very small, then the 

curvature (2.1.5) can be simplified since the term )(2 xh  is very small over 

the domain x under consideration, the curvature  becomes:   
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The no slip boundary condition is when  00,0 === yatvu  

 The dimensionless parameters are as follows: 

for continuity equation 0. = U  where vjuiU +=  ,  
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=  , the Reynolds 

number is  


q
=Re  and calculate forces in term of stress and substitute into 

the equations )cos()sin(  jif −=  where force is normal to the thin film 

and shear component are acting on the inclined plane, with a thin films, h is 

film thickness and 0h  fully developed film thickness flowing down the slide 
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[5],   is a liquid viscosity,   is a liquid density, q volumetric flow, i and j 

tangentional and normal stress at the slide respectively and   is slide 

inclination  angle from the horizontal line.  

 Thus results in the following boundary conditions: 

From Material derivative, when   )(),( xhytxF −=  we have 

0=



+
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y
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      ....…… (2.1.7) 

which gives
dx

dh
uv =  at )(xhy =      ……… (2.1.8) 

 

 The continuity equation (2.1.1) can be integrated over the film 

thickness, have hy 0  and the liquid film is symmetric, we have: 
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since the liquid film is symmetric, so  0)0,( =xv  

→ 0))(,( =+



xhxvh
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u
   →   0)( =uhd  

Integrate with respect to x, obtain uhV =     .……… (2.1.9) 

 From [4] where V is a constant representing the volumetric mass 

flow, it can be assumed that: 

V=1→ 1=uh       …….…(2.1.10) 

The governing equations in the slide and curtain flow of (2.1.2) and (2.1.3) 

can be simplified by satisfying all boundary conditions and dimensionless 

parameters so the Naviers equations of momentum becomes  

 x-direction  
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y-direction     

0)cos( =−
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y
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      ……....(2.1.12) 

from the normal stress [ 5], we have  

hyat
Ca

K
p ==+ 0     ……... (2.1.13) 

 Integrate the y-direction momentum equation over the film thickness 

hy 0  , we have                                     
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 Also integrate the x-direction momentum equation over the film 

thickness, have hy 0   and substitute (2.1.14),  the normal stress 

boundary condition and by the lubrication approximation  to expand  h in 

power series assuming Lh =0  is so small and L is a length decompose the 

velocity  u  and the unknown h as              

.........),(),()(),( 2

2

10 +++= yxuyxuxuyxu     .….… (2.1.15)                                                            

and 

.........),(),(),,( 2

2

10 +++== yxhyxhhyxhh    ….…. (2.1.16) 

here   is related to .h  The functions  )(0 xu  and h  are unknown at  this 

point and will be derived later in the analysis 
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 Now we integrate the momentum equation over the film thickness in 

the same manners. The integrals of the non-linear inertia terms in the x-

component of the momentum equation (2.1.11) are 
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 To the first order, we get  
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 Omitting the subscripts, we have   
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 Since thin liquid films are symmetric so the second term of (2.1.11) 

can be written as  
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 Also after some simplifications we obtain  
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Now substitute all equations (2.1.10), (2.1.13), 2.1.14), (2.1.19) and (2.1.20) 

in the equation (2.1.17)  to obtain 
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 This is the third order differential equations and solving (2.1.21) 

analytically, the solution of this linearzed equation is the combination of 

three exponential functions obtains from the algebraic cubic characteristic 

equation, by comparing  the equation (2.1.21) we see that it is  more general 

than [5]. Equation (2.1.21) has a fundamental solution of the form 

         
mxexh =)(1   

substitute in (2.1.21) to obtain, for the homogenous part 
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 it has been proved that exponents have three roots of  m  one negative real 

and one complex conjugate pair whose real part is positive, changes by the 

value of Capillary numbers and  the inclinations angle for any liquid to be 

used. 

 The roots m in (2.1.22) represents a balance among viscosity, 

density, inertia, Capillary numbers and inclination angle. 

Some time the solution curves of equation (2.1.21) in ),( 1hx  plane effects of 

process conditions on the curtain profile. The following figures how inertia 

or Capillary numbers affects the film profile by the different value of the 

inclination angles and Capillary numbers. In the case gravity force is 

comparable to viscous shear in slide flow region and viscous tensile force 

and inertia force in the curtain flow region, and some of the solution curves 

are drown and it shows that, thickness of the liquid film increases when the 

inclination angle decreases while the velocity of liquid increases as the 

inclination angle increases. 

 We can depict how to find the roots of equation (2.1.22) also find 

particular solution of (2.1.21) after that we can found the solutions by using 

the Brown’s experiment [1], and drown the solution curves by maltab 

program [7] for difference liquid, we consider the values of 

001.01,980,01.0,72 =====  andg , in the following figure. 

 

 

 
 



Curtain Coating flow… 
 

 

 107 

 

 

Figure (2.1.2) solution curve in ),( 1hx plane for 45,05.0 == Ca  

 

 

 

 

 

 

 

 

  

 

Figure (2.1.3) solution curve in ),( 1hx plane for 60,05.0 == Ca  
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Figure (2.1.4) solution curve in ),( 1hx plane for 30,05.0 == Ca  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure (2.1.5) solution curve in ),( 1hx plane for 45,001.0 == Ca  
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Figure (2.1.6) solution curve in ),( 1hx plane for 60,001.0 == Ca  

 

 

 

 
 

 

 

 

 

 

 

 

Figure (2.1.7) solution curve in ),( 1hx plane for 30,001.0 == Ca  

 

Conclusion: 
 The theoretical and Mathematical models for curtain coating flow 

developed in this paper reproduces many of the features of this process that 

have been observed in experiments. The approximate governing equations 

for both slide and curtain flow have been successfully derived by thin film 

and integral the Navier’s stocks equations, the equation has been solved                   
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analytically and used the Brown’s experiment to obtain a solution of third 

order differential equation and the results by using the simplified models 

qualitatively agreeing with full theory and  experimental observations. We 

show that how process conditions such as inertia, surface tension, density 

and inclination angle of the slide  and some solutions curves are drawn and 

it shows that the thickness of the liquid film increases when the inclination 

angle decreases.   
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