The Numerical Range of 6×6 Irreducible Matrices
 Ahmed M. Sabir
 College of Sciences
 University of Salahaddin

Received on: 22/11/2006
Accepted on: 05/03/2007

ABASTRACT

In this paper, we consider the problem of characterizing the numerical range of 6 by 6 irreducible matrices which have line segments on their boundary.
Keywords: numerical range, irreducible matrices.

$$
\text { اللدى العددي للمصفوفات اللااختزالية من الرتبة } 6 \text { × } 6 \text { كلية العلوم، جامعة صلابح الدين }
$$

تاريخ القبول: 2007/03/05

1. Introduction

Let $\mathrm{M}_{\mathrm{n}}(\mathrm{C})$ be the algebra of $\mathrm{n} \times \mathrm{n}$ complex matrices. The numerical range of $\mathrm{A} \in \mathrm{M}_{\mathrm{n}}$ is defined by $\mathrm{W}(\mathrm{A})=\left\{\mathrm{x} * \mathrm{Ax}: \mathrm{x} \in \mathrm{C}^{\mathrm{n}}, \mathrm{x} * \mathrm{x}=1\right\}[4]$, where x^{*} the adjoint of $\boldsymbol{x} \in \mathrm{C}$ is defined by $\boldsymbol{x}^{*}=\bar{x}^{T}$ where \bar{x} is the component-wise conjugate, and $\boldsymbol{x}^{\mathbf{T}}$ is the transpose of x [4]. As pointed out by many authors, for 2×2 matrices A a complete description of the numerical range $\mathrm{W}(\mathrm{A})$ is well-Known. Namely, $\mathrm{W}(\mathrm{A})$ is an ellipse with foci at the eigenvalues λ_{1}, λ_{2} of A and a minor axis of the length $\mathrm{s}=\left(\operatorname{trace}(\mathrm{A} * \mathrm{~A})-\left|\lambda_{1}\right|^{2}-\left|\lambda_{2}\right|^{2}\right)^{\frac{1}{2}}$. In [4], of course, $s=0$ for normal A, and the ellipse in this case degenerates into a line segments connecting λ_{1} with λ_{2}. On the other hand ,for 2×2 matrices A with coinciding eigenvalues the ellipse $\mathrm{W}(\mathrm{A})$ degenerates into a disk. For 3×3 matrix A, this was first done by Kippenhahn. In[6] , his characterization is based on the factorability of the associated polynomial $\mathrm{P}_{\mathrm{A}}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\operatorname{det}\left(\mathrm{xRe} \mathrm{A}+\mathrm{yImA}+\mathrm{zI}_{3}\right)$. This was improved in[5] by expressing the condition in terms of entries of A, also for 4×4 and 5×5 matrices A, this was improved in [2] by expressing the conditions in terms of entries of A. The aim of this paper is to give a sufficient and necessary condition for numerical range of 6 by 6 matrix with a line segment on its boundary .

2. Preliminaries

In the following, we give some definitions and results on W(A) that are useful in this study.

Definition 2.1 [4] A matrix $A \in \mathrm{M}_{\mathrm{n}}(\mathrm{C})$ is said to be irreducible if either $\mathrm{n}=1$ or $\mathrm{n} \geq 2$ and there does not exist a permutation matrix $\mathrm{P} \in \mathrm{M}_{\mathrm{n}}(\mathrm{C})$ such that $P^{T} A P=\left[\begin{array}{ll}B & C \\ 0 & D\end{array}\right]$ where B, D are nonempty square matrices.

Definition 2.2 [4] A matrix $B \in \mathrm{M}_{\mathrm{n}}(\mathrm{c})$ such that $\mathrm{x} * \mathrm{Bx} \geq 0$ for all $\mathrm{x} \in \mathrm{C}^{\mathrm{n}}$, is said to be positive semidefinite .

Proposition 2.3 [4] The numerical range of $\mathrm{A} \in \mathrm{M}_{\mathrm{n}}$ is always a compact convex set in C . It contains the spectrum $\sigma(\mathrm{A})$ of A and is equal to the convex hull of $\sigma(\mathrm{A})$ if A is normal.

Proposition 2.4[4] Let $A \in \mathrm{M}_{\mathrm{n}}(\mathrm{C})$
(a) $\mathrm{W}(\mathrm{A})=\mathrm{W}\left(\mathrm{A}^{\mathrm{t}}\right)$
(b) $\mathrm{W}(\mathrm{A})=\mathrm{W}\left(\mathrm{U}^{*} \mathrm{AU}\right)$ for any unitary U .
(c) $W(\lambda A)=\lambda W(A)$ for any $\lambda \in C$.
(d) $\mathrm{W}(\lambda I+A)=\lambda+W(A)$ for any $\lambda \in \mathrm{C}$.
(e) $\mathrm{W}\left(\mathrm{A}^{*}\right)=\{\mathrm{z}: \mathrm{z} \in \mathrm{W}(\mathrm{A})$. $\}$
(f) $\mathrm{W}(\operatorname{ReA})=\operatorname{ReW}(\mathrm{A})$ and $\mathrm{W}(\operatorname{ImA})=\operatorname{ImW}(\mathrm{A})$. Here $\operatorname{ReA}=\left(\mathrm{A}^{*}+\mathrm{A}\right) / 2$ and $\operatorname{Im} A=\left(A^{*}-A\right) / 2 i$ are the real and imaginary part of A respectively.

Proposition 2.5 [4] Let $\mathrm{A} \in \mathrm{M}_{\mathrm{n}}(\mathrm{C})$ and a, b be scalars
(a) $\mathrm{W}(\mathrm{A})=\{\lambda\}$ if and only if $\mathrm{A}=\lambda \mathrm{I}$.
(b) W(A) is contained in a straight line of the plane if and only if $\mathrm{A}=a \mathrm{~B}+b \mathrm{I}$ for some Hermitian matrix B.In particular in this case A is normal.
(c) $\mathrm{W}(\mathrm{A}) \geq 0$ if and only if A is positive semidefinite.

Proposition 2.6 [4] Suppose that B is a principal submatrix of $A \in M_{n}(C)$. Then $\mathrm{W}(\mathrm{B}) \subseteq \mathrm{W}(\mathrm{A})$.

We now relate the numerical range of an $n \times n$ matrix to an algebraic curve of class n. The next proposition indicates how the characteristic polynomial of some pencil associated with the matrix arises in this connection.

Proposition 2.7 [7] Let $A \in M_{n}(C)$. If ax+by $+c=0$ is a supporting line of $W(A)$, then $\operatorname{det}\left(a R e A+b \operatorname{ImA}+c I_{n}\right)=0$

It follows from the above proposition that when studying the numerical range of A it is sensible to consider the algebric curve $C(A)$ which is dual to the one given by $\mathrm{P}_{\mathrm{A}}\left(\mathrm{xReA}+y \operatorname{ImA}+\mathrm{zI}_{\mathrm{n}}\right)=0$.

Note that $\mathrm{P}_{\mathrm{A}}(-\mathrm{x},-\mathrm{y}, \mathrm{z})=\operatorname{det}\left(\mathrm{zI}_{n}-\mathrm{xReA}-\mathrm{yImA}\right)$ is nothing, but the characteristic polynomial of the pencil xReA+yImA. It is easily to see that P_{A} is a homogenous polynomial of degree n with real coefficients. Thus, in particular, the curve $C(A)$ is of class n and has n real eigenvalues of A.

Proposition 2.8 [7] If the eigenvalues of the $n \times n$ matrix A are $a_{j}+i b_{j}$, $j=1, \ldots, n$ where the a_{j} and b_{j} are real, then the real foci of the algebraic curve $\mathrm{C}(\mathrm{A})$ are exactly the points $\left(\mathrm{a}_{\mathrm{j}}, \mathrm{b}_{\mathrm{j}}\right), \mathrm{j}=1, \ldots, \mathrm{n}$.

Note that the proposition (2.7 together with the duality, implied that any supporting line of $\mathrm{W}(\mathrm{A})$ is tangent to $\mathrm{C}(\mathrm{A})$. The following proposition gives a more precise relation between $\mathrm{W}(\mathrm{A})$ and $\mathrm{C}(\mathrm{A})$.

Proposition 2.9 [6] If A is a $n \times n$ matrix, then its numerical range $W(A)$ is the convex hull of the real points of the curve $\mathrm{C}(\mathrm{A})$.
The real part of the curve $C(A)$ in the complex plane namely the $\operatorname{set}\left\{a+i b \in C: a, b \in R\right.$ and $a x+b y+z=0$ is tangent to $\left.P_{A}(x, y, z)=0\right\}$, will be denoted by $\mathrm{C}_{\mathrm{R}}(\mathrm{A})$ and is called the Kippenhahn curve of A .

3. Line segments of the Boundary of Numerical Range

In the following we will restrict ourselves to the irreducible matrix The next theorem gives conditions for the numerical range to have a line segments on its boundary .

Theorem 3.1 Let A be an irreducible matrix. Then the following statements are equivalent:
(a) $\mathrm{W}(\mathrm{A})$ has a line segments on its boundary.
(b) $0<\operatorname{rank}\left(u \operatorname{ReA}+\mathrm{vImA}+\mathrm{wI}_{6}\right) \leq 4$ for some real numbers u, v and w.(u and v not both zero).
(c) uReA+vImA has a multiple eigenvalue for some real u and v which are not both zero.

Proof: $W(A)$ has a line segments on the boundary of $C_{R}(A)$ has a double or triple or quadripartite or tangent $u x+v y+w=0$ (u and v not both zero). This corresponds to a root w of the equation $\operatorname{det}\left(u \operatorname{ReA}+v \operatorname{ImA}+\mathrm{zI}_{6}\right)=0$ with multiplicity 2 or 3 or 4 or 5, which is the same as saying that uReA+vImA+zI ${ }_{6}$ has rank 4 or 3 or 2 or 1 . This proves the equivalence of (a) and (b).
(b) \Rightarrow (c) : Suppose (b) holds then $-w$ is an eigenvalue of uReA+vImA with multiplicity 5 , and we get double or triple or quadripartite or tangent .Thus (b) implies (c). To prove (c) \Rightarrow (b), assume that -w is a multiple eigenvalue of uReA+vImA.If $-w$ is of multiplicity 6 , then the Hermition uReA+vImA would be a scalar matrix. In this case, ReA and ImA would commute and hence A would be normal, contradicting the irreduciblity of A. Thus (c) impies (b).

Corollary 3.2 Le A be an irreducible matrix and unitary similar to real matrix. Then $\mathrm{W}(\mathrm{A})$ has a line segments on its boundary if and only if ReA has a multiple eigenvalue.

Proof: If A is a real matrix. Then $\mathrm{W}(\mathrm{A})$ is symmetric about the real axis. Hence the line segment of the boundary of W(A) must be a vertical line, by theorem(3.1) the matrix $1 . \operatorname{ReA}+0 . \operatorname{ImA}=\operatorname{ReA}$ has a multiple eigenvalue.

We begin by deriving a canonical form for an irreducible form for an irreducible 6×6 matrix with a line segment on the boundary of it is numerical range, if $\mathrm{W}(\mathrm{A})$ has a line segment on its boundary. After rotation,Shifting, and multiplication by a positive number, we may assume that a line segment stretches from 0 to i. Since $W(A)$ is convex, it must be contained entirely in the right or left half-plane. Applying yet another rotation and translation, if necessary we may assume that $\mathrm{W}(\mathrm{A})$ is in the right half-plane. By theorem(3.1) we have rankA=1 or 2 or 3 . Therefore we will discus these two cases, respectively.

Theorem 3.3 Let A be an irreducible matrix. Then W(A) has a line segment extending from 0 to i on its boundary and rankA=1 if and only if A may be written in the form $\mathrm{A}=\left[\begin{array}{cccccc}i & 0 & 0 & 0 & 0 & -c_{1} \\ 0 & 0 & 0 & 0 & 0 & -c_{2} \\ 0 & 0 & 0 & 0 & e_{1} & -e_{2} \\ 0 & 0 & 0 & e_{1} & e_{2} & -e_{3} \\ 0 & 0 & e_{1} & e_{2} & e_{3} & -e_{4} \\ c_{1} & c_{2} & e_{2} & e_{3} & e_{4} & -e_{6}\end{array}\right]$, where $c_{1}, \mathrm{c}_{2}, \mathrm{e}_{2}, \mathrm{e}_{3}, \mathrm{e}_{4}$, and real part of e_{6} are positive and $\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3} \in[0, i]$.

Proof: Since W(A) is contained in the closed right half -plane, ReA is positive semi definite. By assumption, kerReA is 5 -dimensional subspace, we may represent the line transformation of A restricted to kerReA, $A_{\text {lkerRe } A}=A^{\prime}$ by a 5×5 matrix. By choosing a proper basis for A, A^{\prime} is the
leading principal submatrix of A. since 0 and i are in $\mathrm{W}(\mathrm{A})$, there exists unit vectors $\mathrm{x}_{1}, \mathrm{x}_{2} \in \mathrm{C}^{6}$ such that $\left\langle\mathrm{Ax}_{1}, \mathrm{x}_{1}\right\rangle=\mathrm{i}$ and $\left\langle\mathrm{Ax}_{2}, \mathrm{x}_{2}\right\rangle=0$. It is clear that $\mathrm{x}_{1}, \mathrm{x}_{2} \in \operatorname{ker} \operatorname{Re} A$, since $\operatorname{Re} A \geq 0$ and $<(\operatorname{ReA}) \mathrm{x}_{\mathrm{j}}, \mathrm{x}_{\mathrm{j}}>=0, \mathrm{j}=1,2$. It follows that the line segment $[0, \mathrm{i}]$, is contained in $\mathrm{W}\left(A^{\prime}\right)$. Also $\mathrm{W}\left(A^{\prime}\right) \subseteq \mathrm{W}(\mathrm{A})$. since $A_{\text {kerRe } A}=A^{\prime}$, we have $\operatorname{Re} A^{\prime}=0$ and $\operatorname{ReW}\left(A^{\prime}\right)=\mathrm{W}\left(\operatorname{Re} A^{\prime}\right)=\{0\}$. We thus get $\mathrm{W}\left(A^{\prime}\right)=[0, \mathrm{i}]$. This implies that A^{\prime} is normal with eigenvalues 0 and i so
with proper basis $A^{\prime}=\left[\begin{array}{ccccc}i & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & e_{1} \\ 0 & 0 & 0 & e_{1} & e_{2} \\ 0 & 0 & e_{1} & e_{2} & e_{3}\end{array}\right]$ and $\mathrm{A}=\left[\begin{array}{cccccc}i & 0 & 0 & 0 & 0 & v_{1} \\ 0 & 0 & 0 & 0 & 0 & v_{2} \\ 0 & 0 & 0 & 0_{1} & e_{1} & e_{2} \\ 0 & 0 & 0 & e_{1} & e_{2} & e_{3} \\ 0 & 0 & e_{1} & e_{2} & e_{3} & e_{4} \\ c_{1} & c_{2} & e_{2} & e_{3} & e_{4} & e_{6}\end{array}\right]$ where $\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3} \in[0, \mathrm{i}]$ are pure imaginary.

Since ReA is positive semi definite, a calculation shows that:

$$
\text { 2ReA }=\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & v_{1}+\bar{c}_{1} \\
0 & 0 & 0 & 0 & 0 & v_{2}+\bar{c}_{2} \\
0 & 0 & 0 & 0 & e_{1}+\bar{e}_{2} & e_{2}+\bar{e}_{3} \\
0 & 0 & 0 & e_{1}+\bar{e}_{2} & e_{2}+\bar{e}_{3} & e_{3}+\bar{e}_{4} \\
0 & 0 & e_{1}+\bar{e}_{2} & e_{2}+\bar{e}_{3} & e_{3}+\bar{e}_{4} & e_{4}+\bar{e}_{5} \\
c_{1}+\bar{v}_{1} & c_{2}+\bar{v}_{2} & e_{2}+\bar{e}_{3} & e_{3}+\bar{e}_{4} & e_{4}+\bar{e}_{5} & 2 \operatorname{Re} e_{6}
\end{array}\right],
$$

And therefore $\operatorname{Ree}_{6} \geq 0, v_{1}=-\bar{c}_{1}, v_{2}=-\bar{c}_{2}, e_{2}=-\bar{e}_{3}, e_{3}=-\bar{e}_{4}$ and $e_{4}=-\bar{e}_{5}$
Moreover, Ree $_{6}$ must be positive, because rankReA=1.By a diagonal unitary similarity, we may assume that $\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{e}_{2}, \mathrm{e}_{3}, \mathrm{e}_{4}$ are non-negative. If one of them is 0 , then A is reducible, so $\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{e}_{2}, \mathrm{e}_{3}, \mathrm{e}_{4}$ are positive. Now suppose that A is in the form expressed in the theorem. Consider the principal submatrix A^{\prime} from the first five rows and columns of $\mathrm{A}, \mathrm{W}\left(A^{\prime}\right)$ is a line segment from 0 to i . clearly, $\mathrm{W}\left(A^{\prime}\right) \subseteq \mathrm{W}(\mathrm{A})$. But since ReA is positive semidefinite, W(A) lies entirely in the right half-plane. So the line segment from 0 to i must be on the boundary of W(A). To see that the line segment does not go beyond o or i , note that any point α on that line must be pure imaginary. So if
$\alpha=\langle A x, x\rangle=\langle(\operatorname{ReA}) x, x\rangle+i<(\operatorname{ImA}) x, x\rangle$, then $\langle(\operatorname{ReA}) x, x\rangle=0$.
Hence
$\mathrm{x} \in \operatorname{kerReA}=\operatorname{span}\left\{[1,0,0,0,0,0]^{\mathrm{T}},[0,1,0,0,0,0]^{\mathrm{T}},[0,0,1,0,0,0]^{\mathrm{T}},[0,0,0,1,0,0]^{\mathrm{T}}\right.$
,$\left.[0,0,0,0,1,0]^{\mathrm{T}}\right\}$ if $\|x\|=1$, then $\mathrm{x}=\left[\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}, 0\right]^{\mathrm{T}}$
with $\left|v_{1}\right|^{2}+\left|v_{2}\right|^{2}+\left|v_{3}\right|^{2}+\left|v_{4}\right|^{2}+\left|v_{5}\right|^{2}=1$, and
$0 \leq\langle(\operatorname{Im} A) x, x\rangle=\left|v_{1}\right|^{2}+\left|e_{1}\right|\left|v_{3}\right|^{2}+\left|e_{2}\right|\left|v_{4}\right|^{2}+\left|e_{5}\right|\left|v_{5}\right|^{2} \leq$
$\left|v_{1}\right|^{2}+\left|v_{3}\right|^{2}+\left|v_{4}\right|^{2}+\left|v_{5}\right|^{2} \leq 1$.
Theorem 3.4 Let A be an irreducible matrix written in the form
$\mathrm{A}=\left[\begin{array}{cccccc}h_{1} & h_{12} & h_{13} & h_{14} & h_{15} & h_{16} \\ \bar{h}_{12} & h_{2} & h_{23} & h_{24} & h_{25} & h_{26} \\ \bar{h}_{13} & \bar{h}_{23} & h_{3} & h_{34} & h_{35} & h_{36} \\ \bar{h}_{14} & \bar{h}_{24} & \bar{h}_{34} & h_{4} & h_{45} & h_{46} \\ \bar{h}_{15} & \bar{h}_{25} & \bar{h}_{35} & \bar{h}_{45} & h_{5} & h_{56} \\ \bar{h}_{16} & \bar{h}_{26} & \bar{h}_{36} & \bar{h}_{46} & \bar{h}_{56} & h_{6}\end{array}\right]+i\left[\begin{array}{cccccc}k_{1} & 0 & 0 & 0 & 0 & 0 \\ 0 & k_{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & k_{3} & 0 & 0 & 0 \\ 0 & 0 & 0 & k_{4} & 0 & 0 \\ 0 & 0 & 0 & 0 & k_{5} & 0 \\ 0 & 0 & 0 & 0 & 0 & k_{6}\end{array}\right]$
where $k_{1}, k_{2}, k_{3}, k_{4}, k_{5}, k_{6}$ are distinct. Then $\mathrm{W}(\mathrm{A})$ has a line segment on its boundary if and only if
$\mathrm{h} 6(\mathrm{k} 4-\mathrm{k} 5)+\mathrm{h}_{5}(\mathrm{k} 6-\mathrm{k} 4)+\mathrm{h} 4(\mathrm{k} 5-\mathrm{k} 6)=(\mathrm{k} 4-\mathrm{k} 5)\left(\frac{\mathrm{h}_{45} \overline{\mathrm{~h}}_{46}}{\mathrm{~h}_{45}}\right)+\left(\mathrm{k}_{6}-\mathrm{k} 4\right)\left(\frac{\mathrm{h}_{35} \overline{\mathrm{~h}}_{45}}{\mathrm{~h}_{36}}\right)+(\mathrm{k} 5-\mathrm{k} 6)\left(\frac{\mathrm{h}_{36} \overline{\mathrm{~h}}_{56}}{\mathrm{~h}_{35}}\right)$
$h_{6}(k 3-k 4)+h_{4}(k 6-k 3)+h_{3}(k 4-k 6)=(k 3-k 4)\left(\frac{h_{36} \bar{h}_{34}}{h_{46}}\right)+(k 6-k 3)\left(\frac{h_{24} \bar{h}_{36}}{h_{23}}\right)+(k 4-k 6)\left(\frac{h_{46} \bar{h}_{46}}{h_{45}}\right)$
$h_{6}(k 2-k 3)+h 3(k 6-k 2)+h 2(k 3-k 6)=(k 2-k 3)\left(\frac{h_{26} \bar{h}_{23}}{h 56}\right)+(k 6-k 2)\left(\frac{h_{24} \bar{h}_{26}}{h 34}\right)+(k 3-k 6)\left(\frac{h_{23} \bar{h}_{26}}{h_{23}}\right)$
$h_{1}\left(\mathrm{k}^{2}-\mathrm{k}_{6}\right)+\mathrm{h}_{5}\left(\mathrm{k}_{6}-\mathrm{k}_{1}\right)+\mathrm{h} 6\left(\mathrm{k}_{1}-\mathrm{k} 5\right)=\left(\mathrm{k} 5-\mathrm{k}_{6}\right)\left(\frac{\mathrm{h}_{35} \overline{\mathrm{~h}}_{46}}{\mathrm{~h}_{35}}\right)+\left(\mathrm{k}_{6}-\mathrm{k}_{1}\right)\left(\frac{\mathrm{h}_{16} \overline{\mathrm{~h}}_{15}}{\mathrm{~h}_{56}}\right)+\left(\mathrm{k}_{1}-\mathrm{k}_{5}\right)\left(\frac{\mathrm{h}_{56} \overline{\mathrm{~h}}_{56}}{\mathrm{~h}_{26}}\right)$

$\mathrm{h}_{25} \mathrm{~h}_{36} \overline{\mathrm{~h}}_{26}, \mathrm{~h}_{45} \mathrm{~h}_{56} \overline{\mathrm{~h}}_{46}$ are real with $\mathrm{h}_{12} \mathrm{~h}_{13} \mathrm{~h}_{14} \mathrm{~h}_{15} \mathrm{~h}_{16} \mathrm{~h}_{23} \mathrm{~h}_{24} \mathrm{~h}_{25} \mathrm{~h}_{26} \mathrm{~h}_{34} \mathrm{~h}_{35 h_{36}} \mathrm{~h}_{45} \mathrm{~h}_{46 h_{56}} \neq 0$. (3.5)
Proof: suppose rank $B=r a n k\left(u \operatorname{ReA}+v \operatorname{Im} A+w I_{6}\right)=1$, since the eigenvalues of $\operatorname{Im} \mathrm{A}$ are all distinct, it is possible only when u is non zero. With-out loss of generality we may assume that $u=1$. To simplify further calculations, rewrite B in the form

The Numerical Range of...
$\mathrm{B}=\left[\begin{array}{cccccc}h_{1}^{\prime}+v k_{1}^{\prime}+w^{\prime} & h_{12} & h_{13} & h_{14} & h_{15} & h_{16} \\ \bar{h}_{12} & \bar{h}_{2}+v k_{2}^{\prime}+w^{\prime} & h_{23} & h_{24} & h_{25} & h_{26} \\ \bar{h}_{13} & \bar{h}_{23} & \bar{h}_{3}+v k_{3}^{\prime}+w^{\prime} & h_{34} & h_{35} & h_{36} \\ \bar{h}_{14} & \bar{h}_{24} & \bar{h}_{34} & \bar{h}_{4}+v k_{4}^{\prime}+w^{\prime} & h_{45} & h_{46} \\ \bar{h}_{4} & \bar{h}_{25} & \bar{h}_{35} & \bar{h}_{45} & \bar{h}_{5}+v k_{5}^{\prime}+w^{\prime} & h_{56} \\ \bar{h}_{16} & \bar{h}_{26} & \bar{h}_{36} & \bar{h}_{46} & \bar{h}_{56} & w^{\prime}\end{array}\right]$

Where $w^{\prime}=w+h 6+v k_{6}, h_{i}^{\prime}=h_{i}-h 6, k_{i}^{\prime}=k_{i}-k_{6}(\mathrm{i}=1,2,3,4,5)$, since by assumption $\operatorname{rank}(\mathrm{B})=1$, then
$h_{12} h_{13} h_{14} h_{15} h_{16} h_{23} h_{24} h_{25} h_{26} h_{34} h_{35} h_{36} h_{45} h_{46} h_{56} \neq 0$ and
$\frac{w^{\prime}}{\bar{h}_{56}}=\frac{h_{56}}{h_{5}^{\prime}+v k_{5}^{\prime}+w^{\prime}}=\frac{h_{16}}{h_{15}}=\frac{h_{26}}{h_{25}}=\frac{h_{36}}{h_{35}}=\frac{h_{46}}{h_{45}}$
$\frac{w^{\prime}}{\bar{h}_{46}}=\frac{h_{56}}{\bar{h}_{45}}=\frac{h_{46}}{h_{4}^{\prime}+v k_{4}^{\prime}+w^{\prime}}=\frac{h_{36}}{h_{34}}=\frac{h_{26}}{h_{24}}=\frac{h_{16}}{h_{14}}$
$\frac{w^{\prime}}{\bar{h}_{36}}=\frac{h_{56}}{h_{35}^{\prime}}=\frac{h_{46}}{h_{34}^{\prime}}=\frac{h_{36}}{h_{3}^{\prime}+v k_{3}^{\prime}+w^{\prime}}=\frac{h_{26}}{h_{23}}=\frac{h_{16}}{h_{13}}$
$\frac{w^{\prime}}{\overline{h_{26}}}=\frac{h_{56}}{h^{\prime}{ }_{25}}=\frac{h_{46}}{h^{\prime}{ }_{24}}=\frac{h_{36}}{h_{23}^{\prime}}=\frac{h_{26}}{h_{2}^{\prime}+v k_{2}^{\prime}+w^{\prime}}=\frac{h_{16}}{h_{12}}$
$\frac{w^{\prime}}{\bar{h}_{16}}=\frac{h_{56}}{h^{\prime}{ }_{16}}=\frac{h_{46}}{h^{\prime}{ }_{14}}=\frac{h_{36}}{h^{\prime}{ }_{13}}=\frac{h_{26}}{h_{12}^{\prime}}=\frac{h_{16}}{h_{1}^{\prime}+v k_{1}^{\prime}+w^{\prime}}$
Solving (3.6), (3.7), (3.8), (3.9) and (3.10) with respect to v, w^{\prime} we find that

$$
\begin{align*}
w^{\prime}= & \frac{\bar{h}_{56}{ }_{46}}{h_{45}}=\frac{\bar{h}_{56} h_{36}}{h_{35}}=\frac{\bar{h}_{56} h_{26}}{h_{25}}=\frac{h_{56} \bar{h}_{16}}{h_{15}}=\frac{h_{16} \bar{h}_{46}}{h_{14}}=\frac{h_{26} \bar{h}_{46}}{h_{24}}=\frac{\bar{h}_{46} h_{36}}{h_{34}^{\prime}}=\frac{\bar{h}_{46} h_{56}}{\bar{h}_{45}} \\
& =\frac{\bar{h}_{36} h_{16}}{h_{13}}=\frac{\bar{h}_{36} h_{26}}{\bar{h}_{23}}=\frac{h_{36} \bar{h}_{46}}{\bar{h}_{34}}=\frac{\bar{h}_{36} h_{56}}{\bar{h}_{35}}=\frac{\bar{h}_{25} h_{16}}{\bar{h}_{12}}=\frac{h_{26} h_{36}}{h_{23}^{\prime}}=\frac{\bar{h}_{26} h_{46}}{h_{24}^{\prime}}=\frac{\bar{h}_{26} h_{56}}{h_{25}^{\prime}} \\
& =\frac{h_{16}^{\prime} h_{26}}{h_{12}^{\prime}}=\frac{h_{16}^{\prime} h_{36}}{h_{13}^{\prime}}=\frac{\bar{h}_{16} h_{46}}{h_{14}^{\prime}}=\frac{\bar{h}_{16} h_{56}}{h_{15}^{\prime}} \ldots \ldots \ldots . ~
\end{align*} .
$$

and

$$
\begin{align*}
v & =\frac{1}{k_{1}^{\prime}}\left(\frac{\bar{h}_{15} h_{16}}{h_{56}}-h_{1}^{\prime}-w^{\prime}\right)=\frac{1}{k_{1}^{\prime}}\left(\frac{h_{16} \bar{h}_{14}}{h_{46}}-h_{1}^{\prime}-w^{\prime}\right)=\frac{1}{\bar{k}_{1}}\left(\frac{h_{16} \bar{h}_{13}}{h_{36}}-h_{1}^{\prime}-w^{\prime}\right)=\frac{1}{\bar{k}_{1}}\left(\frac{h_{16} \bar{h}_{12}}{h_{26}}-h_{1}^{\prime}-w^{\prime}\right) \\
& =\frac{1}{k_{2}^{\prime}}\left(\frac{\bar{h}_{25} h_{26}}{h_{56}}-h_{2}^{\prime}-w^{\prime}\right)=\frac{1}{k_{2}^{\prime}}\left(\frac{\bar{h}_{24} h_{26}}{h_{46}}-h_{2}^{\prime}-w^{\prime}\right)=\frac{1}{k_{2}^{\prime}}\left(\frac{\bar{h}_{23} h_{26}}{h_{36}}-h_{2}^{\prime}-w^{\prime}\right)=\frac{1}{k_{2}^{\prime}}\left(\frac{h_{16} h_{26}}{h_{16}}-h_{2}^{\prime}-w^{\prime}\right) \\
& =\frac{1}{k_{3}^{\prime}}\left(\frac{\bar{h}_{35} h_{36}}{h_{56}}-h_{3}^{\prime}-w^{\prime}\right)=\frac{1}{k_{3}^{\prime}}\left(\frac{\bar{h}_{34} h_{36}}{h_{46}}-h_{3}^{\prime}-w^{\prime}\right)=\frac{1}{k_{3}^{\prime}}\left(\frac{h_{23} h_{26}}{h_{26}}-h_{3}^{\prime}-w^{\prime}\right)=\frac{1}{k_{3}^{\prime}}\left(\frac{h_{36} h_{13}}{h_{16}}-h_{3}^{\prime}-w^{\prime}\right) \\
& =\frac{1}{k_{4}^{\prime}}\left(\frac{\bar{h}_{45} h_{46}}{h_{56}}-h_{4}^{\prime}-w^{\prime}\right)=\frac{1}{k_{4}^{\prime}}\left(\frac{h_{34} h_{46}}{h_{36}}-h_{4}^{\prime}-w^{\prime}\right)=\frac{1}{k_{4}^{\prime}}\left(\frac{h_{46} h_{24}}{h_{26}}-h_{4}^{\prime}-w^{\prime}\right)=\frac{1}{k_{4}^{\prime}}\left(\frac{h_{46} h_{14}}{h_{16}}-h_{4}^{\prime}-w^{\prime}\right) \\
& =\frac{1}{k_{5}^{\prime}}\left(\frac{h_{45}}{h_{456}}-h_{5}^{\prime}-w^{\prime}\right)=\frac{1}{k_{5}^{\prime}}\left(\frac{h_{56} h_{36}}{h_{36}}-h_{5}^{\prime}-w^{\prime}\right)=\frac{1}{k_{5}^{\prime}}\left(\frac{h_{56} h_{25}}{h_{26}}-h_{5}^{\prime}-w^{\prime}\right)=\frac{1}{k_{5}^{\prime}}\left(\frac{h_{56} h_{15}}{h_{16}}-h_{5}^{\prime}-w^{\prime}\right) \ldots \tag{3.12}
\end{align*}
$$

For convenience, let $w^{\prime}=\frac{\bar{h}_{56} h 46}{h_{45}}$ in the remaining proof, since $h_{12} h_{13} h_{14} h_{15} h_{16} h_{23} h_{24} h_{25} h_{26} h_{34} h_{35} h_{36} h_{45} h_{46} h_{56} \neq 0$ and w^{\prime} is real, the equality (3.11)yields, (3.5) and (3.6) from (3.12) we have

$$
\begin{align*}
& k_{4}^{\prime}\left(\frac{h_{45} h_{56}}{h_{46}}-\frac{\bar{h}_{56} h_{46}}{h_{45}}-h_{5}^{\prime}\right)=k_{5}^{\prime}\left(\frac{\bar{h}_{45} h_{46}}{h_{56}}-\frac{\bar{h}_{56} h_{46}}{h_{45}}-h_{4}^{\prime}\right) \tag{3.13}\\
& k_{3}^{\prime}\left(\frac{\bar{h}_{45} h_{46}}{h_{56}}-\frac{\bar{h}_{56} h_{46}}{h_{45}}-h_{4}^{\prime}\right)=k_{4}^{\prime}\left(\frac{\bar{h}_{35} h_{36}}{h_{56}}-\frac{\bar{h}_{56} h_{46}}{h_{45}}-h_{3}^{\prime}\right) \tag{3.14}\\
& k_{2}^{\prime}\left(\frac{\bar{h}_{35} h_{36}}{h_{56}}-\frac{\bar{h}_{56} h_{46}}{h_{45}}-h_{3}^{\prime}\right)=k_{3}^{\prime}\left(\frac{\bar{h}_{25} h_{26}}{h_{56}}-\frac{\bar{h}_{56} h_{46}}{h_{45}}-h_{2}^{\prime}\right) \tag{3.15}\\
& k_{1}^{\prime}\left(\frac{h_{56} h_{35}}{h_{36}}-\frac{\bar{h}_{56} h_{46}}{h_{45}}-h_{5}^{\prime}\right)=k_{4}^{\prime}\left(\frac{\bar{h}_{15} h_{16}}{h_{56}}-\frac{\bar{h}_{56} h_{46}}{h_{45}}-h_{1}^{\prime}\right) \tag{3.16}
\end{align*}
$$

It is easy to check that (3.1),(3.2), (3.3), (3.4) and (3.5) follow from (3.13),(3.14) and (3.15) and (3.16).

To prove the converse assume that (3.1),(3.2), (3.3), (3.4), (3.5) hold, $w^{\prime}=\frac{\bar{h}_{56} h_{46}}{h_{45}}$ by (3.1),(3.2), (3.3), (3.4) and (3.5) we obtain (3.13),(3.14), (3.15) and (3.16) where $h_{i}^{\prime}=h_{i}-h_{6}, k_{i}^{\prime}=k_{i}-k_{6}$ $i=(1,2,3,4,5)$,moreover we set

The Numerical Range of...

$$
\begin{align*}
v & =\frac{1}{k_{1}^{\prime}}\left(\frac{\bar{h}_{15} h_{16}}{h_{56}}-w^{\prime}-h_{1}^{\prime}\right)=\frac{1}{k_{2}^{\prime}}\left(\frac{\bar{h}_{25} h_{26}}{h_{56}}-w^{\prime}-h_{2}^{\prime}\right)=\frac{1}{k_{3}^{\prime}}\left(\frac{\bar{h}_{35} h_{36}}{h_{56}}-w^{\prime}-h_{3}^{\prime}\right) \\
& =\frac{1}{k_{4}^{\prime}}\left(\frac{\bar{h}_{45} h_{46}}{h_{56}}-w^{\prime}-h_{4}^{\prime}\right)=\frac{1}{k_{5}^{\prime}}\left(\frac{h_{45} h_{56}}{h_{46}}-w^{\prime}-h_{5}^{\prime}\right) \ldots \ldots \ldots . ~ \tag{3.17}
\end{align*} .
$$

By taking $w^{\prime}=\frac{\bar{h}_{56} h_{46}}{h_{45}}$ and (3.17), we conclude that (3.6),(3.7),(3.8),(3.9) and (3.10) hold.

Finally, choose $u=1, w=w^{\prime}-h_{6}-v k 6$, then u ReA $+\mathrm{v} \operatorname{Im} \mathrm{A}+\mathrm{w} \mathrm{I}_{6}$ is in the form (M) and has rank 1, hence by theorem (3.1) W(A) has a line segment on its boundary.

REFERENCES

[1] Brown, A. and P.R.Halmoss , "Algebraic properties of Toeplitz operators", J.Reine Angew.Math,231(1963),89-102.
[2] Cheng, M.Y. "The numerical range of 4×4 matrices", M.S thesis, Hong Kong University, (2003).
[3] Chien, M.T. and B.S.Tam, "Circularity of the numerical range", Linear Algebra Appl. 201(1994),113-133.
[4] Horn, R.A. and C.R.Johnson, Matrix Analysis, Cambridge University press,(1985).
[5] Keeler, D.S. L.Rodman and I.M.Spitkovsky, "The numerical Range of 3×3 matrices", Linear Algebra Appl; 252(1997), 115-139.
[6] Kippenhahn, R. "Uber den Wertevorat einer Matrix", Math. Nachr., 6(1951) ,193-228.
[7] Wu, P.Y. "Numerical Range of Hilbert space operators", preprint. (2003).

