Weighted Points and Lines in Projective Plane of order 17

Ban A. Qassim
Makbola. J. Mohamed
College of Computer Sciences and Mathematics
College of Engineering
University of Mosul, Iraq

Received on: 11/10/2006

Accepted on: 24/12/2006
In the current research ,the points and lines of the projective plane of the seventeenth (17th)order were constructed ,this was followed by examining the arcs designated ($\mathrm{k}, \mathrm{n} ; \mathrm{f}$)- in the plane type (m, n).As a result, it is concluded that these arcs do exist having all their points of the order one or two ,but the order of their lines are m or n only .A further result was arriving at proving the theorems being concluded. The research also included a study of Monoidal arcs with some given examples.
Keywords: projective plane, Monoidal arcs.
نقاط ومستقيمات المستوي الاسقاطي ذي الرتبة 17 ذات الاوزان
مقبولة محمد
كلية الهندسة، جامعة الموصل
تاريخ القبول: 2006/12/24
كلية علوم الحاسوب والرياضيات، جامعة الموصل
تاريخ الاستلام: 2006/10/11

الملخص

في هذا البحث تم تركيب نقاط ومستقيمات المستوي الأسقاطي ذي الرتبة الهابعة عشرة ثم
حاولنا دراسة القوس -(k,n;f) في هذا المستوي ومن النوع (m,n) وتوصلنا إلى إثبات وجود تلك الأقواس التي تكون جميع نقاطها ذات اوزان واحد أو اثين ,أما أوزان مستقيماتها فتكون m او او الما

1- Introduction:

The existence of (k,n;f)- arcs is studied by D' Agostini .Also [8], [6], [7], and [4] study the existance of these arcs in the projective plane of order 3,5,7 and 9, respectively.

In this paper, we studied the existance of(k,n;f)- arcs in projective plane of order seventeen .

To explain this work we need first the following introduction about the projective plane π.

If f is a function from the set of points of the projective plane π in to the set of natural number N, the value $f(p)$ is called the weight point p and F
is a function from the set of lines of π in to N , the value $\mathrm{F}(\mathrm{L})$ is called the weight line L , i.e $\mathrm{F}(\mathrm{L})=\sum_{p \in L} \mathrm{f}(\mathrm{p})$.

A $(k, n ; f)$-arc Kof π is a set of k points such that K does not contain any points of weight zero.

The line L of π is called i-secant if the total weight of L is i, X_{j} denotes the number of the points having weight j for $\mathrm{j}=0,1,2, \ldots \ldots$, v (where $\mathrm{v}=\max _{\mathrm{p} \in \mathrm{k}} \mathrm{f}(\mathrm{p})$) and we used $\mathrm{W}_{\mathrm{i}}^{\mathrm{j}}$ for the number of lines of weight i through a point of weight j; we also denote that the number of lines of weight i is z_{i}, the integers z_{i} are called the characters of K. If the points in the plane are only of weight zero and one, then K is a (k, n)-arc.

Let V denote the total weight of K , so by [2] we have:

$$
\mathrm{m}(\mathrm{q}+1) \leq \mathrm{V} \leq(\mathrm{n}-\mathrm{v})(\mathrm{q}+1)+\mathrm{v}-\cdots---(\mathrm{i}) .
$$

Arcs for which equality holds on the left are called minimal and arcs for which equality holds on the right are called maximal also [2] has proved to be a necessary condition for the existence of a ($\mathrm{k}, \mathrm{n} ; \mathrm{f}$) -arc K of type (m , n), $0<\mathrm{m}<\mathrm{n}$ is that

$$
q \equiv 0 \bmod (n-m) \text {------(ii) }
$$

and

$$
\mathrm{v}=\mathrm{n}-\mathrm{m} \quad-----(\mathrm{iii})
$$

From [1], a (k, n; f)- arc of type (m, n) requires that $q \equiv 0 \bmod (n-m)$, $\mathrm{m}>0, \mathrm{v} \leq \mathrm{n}-\mathrm{m}$ and $(\mathrm{n}-\mathrm{v})(\mathrm{q}+1) \leq \mathrm{V} \leq(\mathrm{n}-\mathrm{v})(\mathrm{q}+1)+\mathrm{v}$.
For a ($\mathrm{k}, \mathrm{n} ; \mathrm{f}$)-arc of type ($\mathrm{n}-17, \mathrm{n}$) with $\mathrm{n}-\mathrm{m}=17$ and for discussion of maximality and minimality of this arc, we study the following conditions:

$$
\mathrm{X}_{0}>0, \mathrm{X}_{1}>0, \mathrm{X}_{2}>0, \mathrm{X}_{\mathrm{i}}=0 \text {,for } \mathrm{i}=3, \ldots . ., 17 .
$$

For minimal $\mathrm{V}=(\mathrm{n}-17)(\mathrm{q}+1)$,from ([6],p.12) we deduce that:

$$
\left.\begin{array}{lc}
\mathrm{W}_{\mathrm{n}-17}{ }^{0}=\mathrm{q}+1 & \mathrm{~W}_{\mathrm{n}}{ }^{0}=0 \\
\mathrm{~W}_{\mathrm{n}-17^{1}}=(16 / 17) \mathrm{q}+1 & \mathrm{~W}_{\mathrm{n}}{ }^{1}(1 / 17) \mathrm{q} \\
\mathrm{~W}_{\mathrm{n}-17^{2}}=(15 / 17) \mathrm{q}+1 & \mathrm{~W}_{\mathrm{n}}{ }^{2}=(2 / 17) \mathrm{q} \tag{1}
\end{array}\right\}
$$

Lemma (2-1):

There is no point of weight zero on any n -secants of $\mathrm{a}(\mathrm{k}, \mathrm{n} ; \mathrm{f})$-arc.
Proof: Follows from equation (1), since $\mathrm{Wn}^{0}=0$.\#
Theorem(2-2): The total number of n-secants and ($\mathrm{n}-17$)- secants of the $(k, n ; f)$-arc of type ($n-17, n$) in PG $(2,17)$ is:


```
\(\mathrm{Z}_{\mathrm{n}}=(1 / 17)(\mathrm{n}-17) \mathrm{q}\)
and
\[
\begin{equation*}
\mathrm{Z}_{\mathrm{n}-17}=(1 / 17)\left(17 \mathrm{q}^{2}+34 \mathrm{q}-\mathrm{nq}+17\right) \tag{2}
\end{equation*}
\]
```


Proof:

Let Z_{n-17} be the number of lines of weight $n-17$ and Z_{n} the number of lines of weight n ;then

$$
\begin{align*}
& \mathrm{Z}_{\mathrm{n}-17}+\mathrm{Z}_{\mathrm{n}}=\mathrm{q}^{2}+\mathrm{q}+1 \tag{a1}\\
& (\mathrm{n}-17) \mathrm{Z}_{\mathrm{n}-17}+\mathrm{nZn}=\mathrm{V}(\mathrm{q}+1)=(\mathrm{n}-17)(\mathrm{q}+1)^{2} \tag{a2}
\end{align*}
$$

solving equations (a1)\&(a2) we get

$$
\begin{aligned}
& \mathrm{Zn}=1 / 17(\mathrm{n}-17) \mathrm{q} \\
& \mathrm{Z}_{\mathrm{n}-17}=1 / 17\left(17 \mathrm{q}^{2}+34 \mathrm{q}-\mathrm{nq}+17\right) . \#
\end{aligned}
$$

Now let Y be an n -secants and suppose that on Y there are a points of weight two and \mathbf{b} points of weight one.The counting points of Y , gives the following:

$$
a+b=q+1
$$

and the weight of points of Y is
$2 \mathrm{a}+\mathrm{b}=\mathrm{n}$
so, we get
$\left.\begin{array}{l}\mathrm{b}=2(\mathrm{q}+1)-\mathrm{n} \\ \mathrm{a}=\mathrm{n}-(\mathrm{q}+1)\end{array}\right\}$
Counting the incidences between points of weight 1and n - secant gives:
$\mathrm{X}_{1} \mathrm{~W}_{\mathrm{n}}{ }^{1}=\mathrm{Z}_{\mathrm{n}} \mathrm{b}$
by using equation (1), (2) \& (3), we have:
$\mathrm{X}_{1}=(\mathrm{n}-17)(2 \mathrm{q}+2-\mathrm{n})$
Simillarly, counting incidence between points of weight 2 and the n secants gives:
$\mathrm{X}_{2} \mathrm{~W}_{\mathrm{n}}{ }^{2}=\mathrm{Z}_{\mathrm{n}} \mathrm{a}$
Hence using (1), (2) \& (3), we have:
$\mathrm{X}_{2}=[(\mathrm{n}-17)(\mathrm{n}-\mathrm{q}-1)] / 2$
Since
$X_{0}+X_{1}+X_{2}=q^{2}+q+1$
then by using equations(4) \& (5), we get
$2 q^{2}+(53-3 n) q+n^{2}-20 n+53-2 X_{0}=0$
For a solution of q in (6), we require
$(\mathrm{n}-79)^{2}-\left(3856-16 \mathrm{X}_{0}\right)$ is a square

$$
\begin{equation*}
\text { that is : } \delta^{2}=(\mathrm{n}-79)^{2}-\left(3856-16 \mathrm{X}_{0}\right) \tag{7}
\end{equation*}
$$

3-Arcs in PG(2,17):

Let $\operatorname{PG}(2,17)$ be a projective plane of order 17.From([5]chapter-3), we attained that this plane contains 307 points, 307 lines, 18 points on every line and 18 lines through every point.

Let L_{1} be the line which contains the points: $(1,2,10,16,87,110$, 120, 152, 176, 180, 192, 211, 233, 254, 259, 272, 279, 306).

The line L_{2} can be obtain by adding one to each number of the line L_{1} to get $\mathrm{L}_{2}(2,3,11,17,88,111,121,153,177,181,193,212,234,255,260$, 273, 280, 307).

Simillarly we can find all others 305 lines of this plane by adding in each step one to get the other line.

4-(150,29;f)-arc of type (12,29) in PG(2,17).

To find this arc we need to find the value of X_{0} which makes equation (7) be a square and then find from it n and δ i.e we try to check X_{0} from 1 to 307 and after a large number of efforts we found that, when $\mathrm{X}_{0}=157$, we get $\delta=34$ and $\mathrm{n}=29$, and from (6) we have $\mathrm{q}=17$, which means that $(k, n ; f)$-arc of type (m, n) exist in PG $(2,17)$.
From (4) and (5), we get
$\mathrm{X}_{1}=84$ and $\mathrm{X}_{2}=66$
Which implies that this arc is $(150,29$; f$)$-arc of type $(12,29)$ and the point of weight 0 form $(157,12)$-arc in PG $(2,17)$.

5 -Classification of the lines of the plane with respect to the (150,$29 ; f)$ arc of type (12,29).

Let L be 12 -secant having on it a points of weight 2 , \mathbf{b} points of weight 1 and \mathbf{c} points of weight zero, then $\mathrm{a}+\mathrm{b}+\mathrm{c}=18$
and the weights of the points on L gives
$2 a+b=12$
Let N be an 29 -secant of a (150,29 ; f)-arc, since there are no points of weight 0 on a 29 -secant because $\mathrm{W}_{\mathrm{n}}{ }^{0}=0$, then we can assume that on N there are a points of weight 2 and \mathbf{b} points of weight 1 , then $\mathrm{a}+\mathrm{b}=18$ and the weight of points on N gives:
$2 \mathrm{a}+\mathrm{b}=29$
so $a=11$ and $b=7$
and by solving equation (8) \& (9), we have the following lemma.

Lemma (5-1): The lines of PG $(2,17)$ are partitioned in to eight classes with respect to a minimal $(150,29 ; f)$-arc of type $(12,29)$ as in table-1

Table - 1

Type of the lines	a	b	c
L_{0}	0	12	6
$\mathrm{~L}_{1}$	1	10	7
$\mathrm{~L}_{2}$	2	8	8
$\mathrm{~L}_{3}$	3	6	9
$\mathrm{~L}_{4}$	4	4	10
$\mathrm{~L}_{5}$	5	2	11
$\mathrm{~L}_{6}$	6	0	12
$\mathrm{~L}_{7}$	11	7	0

Corollary(5-1-1):

There is no point of weight $\mathbf{1}$ on the 12 - secant of $(157,12)$ - arc.
Corollary(5-1-2): There is no point of weight 2 on the 6- secant of $(157,12)$ - arc.

Lemma(5-2): For the existence of $(150,29 ; f)$-arc K of type $(12,29)$ with 157 points of weight zero in $\operatorname{PG}(2,17)$, we have the following:
1 - The number Z_{29} of 29 - secants of K is 12 .
2- The number Z_{12} of 12- secants of K is 295 .
3 - The number X_{2} of points of weight 2 is 66 .
4 - The number X_{1} of points of weight 1 is 84 .

Proof:

Follows from equations (2), (4) \& (5).\#
Lemma(5-3): No thirteen points of weight zero can be collinear.

Proof:

Let L be 13- secant having on it 13 points of weight 0 , then the remaining points of L is five, if all these points of weight 2 we get the weight of the line L is ten which is a contraduction. Since the weight of L is 12.\#

Corollary(5-3-1): The points of weight 0 form $(157,12)$-arc in $\operatorname{PG}(2,17)$.
6- Monoidal arc: In this section we consider ($\mathrm{k}, \mathrm{n} ; \mathrm{f}$)- arc which have only one point of weight greater than one, such arcs are called monoidal arcs, i.e $\mathrm{a}(\mathrm{k}, \mathrm{n} ; \mathrm{f})-\mathrm{arc}$ is called monoidal if $\operatorname{Imf}=\{0,1, \mathrm{v}\}$ and $\mathrm{X}_{\mathrm{v}}=1$.

Example(6-1): An example of a monoidal arc can be obtained as follows:

From (6) when $\mathrm{X}_{0}=272$ and $\mathrm{n}=19$, we get $\mathrm{q}=17$, and from (4) \& (5), we have $X_{1}=34 \& X_{2}=1$ i.e there is a $(35,19 ; f)$ - arc of type $(2,19)$ in $\mathrm{PG}(2,17)$ consists of the following points :
Pi for $\mathrm{i}=\{3,4,12,18,89,112,122,154,178,182,194,213,235,256,261$, 274, 281, 1, 19, 27, 33,104, 127, 137, 169, 193, 197, 209, 228, 250, 271, 276, 289, 296, 16\}
with $\mathrm{V}\left(\mathrm{p}_{\mathrm{i}}\right)=1$ for $\mathrm{i}=\{3,4,12,89,112,122,154,178,182,194,213,235$, 256, 261, 274, 281, 1, 19, 27, 33, 104, 127, 137, 169, 193, 197, 209, 228, 250, 271, 276, 289, 296,16\}
and $\mathrm{V}\left(\mathrm{p}_{\mathrm{i}}\right)=2$, for $\mathrm{i}=18$
and the other points of the plane are of weight zero and form (272, 17)-arc The lines of this arc are 17 -secants, 16 - secants and 0 - secants and
1 - The number of 17 -secants are 16 .
2 - The number of 16 -secants are 289 .
3 - The number of 0 -secants are 2 .
so the total number is 307 .
see table-2.
Since table-2 contains 307 lines, so it is not suitable to write it completly.For this reason it is enough to write only the first twenty lines of the plane and the last twenty lines of it.

Lemma (6-2): There is one point of weight 2 on each 17-secants of $(272,17)$ - arc .

Proof:

Let L be 17 -secants of $(272,17)$-arc and having two points of weight 2 , then the weight of L because 4 and this is a contraduction because the weight of all lines of the plane is either 2 or 19.\#

Corollary(6-2-1): There is no point of weight 1 on each 17- secants of $(272,17)$ - arc.

Lemma (6-3): There is no point of weight 2 on each 16- secant of (272,17)arc.

Proof:

Let L is 16 - secant line the remaining points of L is two .If one of these two points of weight 2 means that the weight of L is 3 , which is a contraduction as in the previous lemma.\#

Corollary(6-3-1): There are two points of weight 1 on each (16-secant) line of (272,17)- arc.

Theorem(6-4): Each 0 - secants line of $(272,17)$ - arc contains one point of weight 2 and seventeen points of weight 1.

Weighted Points and Lines...
Proof:From lemma (2-1), and type $(2,19)$ of these lines, we know that the weight of each 0 - secant line is 19 , this means that each 0 - secant line must be contain one point of weight 2 and 17 points of weight 1 .\#
see table -2 .
In this table we have:
1- The star points are points of weight 2 .
2- The underlined blodface points are points of weight 1.
3- The other points are of weight zero.

Table (1)

Lines	Points																		Type	$\mathrm{V}\left(\mathrm{L}_{\mathrm{J}}\right)$
L_{288}	288	289	297	303	67	90	100	132	156	160	172	191	213	234	239	252	259	286	16-secant	,
L289	289	290	298	304	68	91	101	133	157	161	173	192	214	235	240	253	260	287	16-secant	2
L_{290}	290	291	299	305	69	92	102	134	158	162	174	193	215	236	241	254	$\underline{261}$	288	16-secant	2
L_{291}	291	292	300	306	70	93	103	135	159	163	175	194	216	237	242	255	262	289	16-secant	2
L_{292}	292	293	301	307	71	94	104	136	160	164	176	195	217	238	243	256	263	290	16-secant	2
L_{293}	293	294	302	1	72	95	105	137	161	165	177	196	218	239	244	257	264	291	16-secant	2
L_{294}	294	295	303	2	73	96	106	138	162	166	178	197	219	240	245	258	265	292	16-secant	2
L_{295}	295	296	304	3	74	97	107	139	163	167	179	198	220	241	246	259	266	293	16-secant	2
L_{296}	$\underline{296}$	297	305	4	75	98	108	140	164	168	180	199	221	242	247	260	267	294	16-secant	2
L_{297}	297	298	306	5	76	99	109	141	165	169	181	200	222	243	248	261	268	295	16-secant	2
L_{298}	298	299	307	6	77	100	110	142	166	170	182	201	223	244	249	262	269	296	16-secant	2
L_{299}	299	300	1	7	78	101	111	143	167	171	183	202	224	245	250	263	270	297	16-secant	2
L_{300}	300	301	2	8	79	102	$\underline{112}$	144	168	172	184	203	225	246	251	264	271	298	16-secant	2
L^{201}	301	302	3	9	80	103	113	145	169	173	185	204	226	247	252	265	272	299	16-secant	2
L_{302}	302	303	4	10	81	104	114	146	170	174	186	205	227	248	253	266	273	300	16-secant	2
	303	304	5	11	82	105	115	147	171	175	187	206	228	249	254	267	274	301	16-secant	2
L^{204}	304	305	6	12	83	106	116	148	172	176	188	207	229	250	255	268	275	302	16-secant	2
L_{305}	305	306	7	13	84	107	117	149	173	177	189	208	230	251	256	269	276	303	16-secant	2
L_{306}	306	307	8	14	85	108	118	150	174	178	190	209	231	252	257	270	277	304	16-secant	2
L_{307}	307	1	9	15	86	109	119	151	175	179	191	210	232	253	258	271	278	305	16 -secant	2

Table-2

Lines																				
L_{1}																			Type	$\mathrm{V}\left(\mathrm{L}_{\mathrm{J}}\right)$
L_{2}	2	3	11	17	88	111	121	153	177	181	193	212	234	255	260	273			16-secant	2
L_{3}	3	4	12	18*	89	112	122	154	178	182	94	13				273	0	307	16-secant	2
L_{4}	4	5	13	19	90	113	123	155	179	$\underline{183}$	195		,	256	1	$\underline{274}$	$\underline{281}$	1	0 -secant	19
L_{5}	5	6	14	20	91	114	124	156	180	184	196					275	282	2	16-secant	2
L_{6}	6	7	15	21	92	115	125	157	181	185	197				263	$\underline{276}$	283	3	16-secant	2
L_{7}	7	8	16	22	93	116	126	158	182	186	198			259	264	277	284	4	16-secant	2
L8	8	9	17	23	94	117	127	159	183				239	260	265	278	285	5	16-secant	2
L9	9	10	18^{*}	24	95	118	128	160	184	188	200		240	$\underline{261}$	266	279	286	6	16-secant	2
L_{10}	10	11	19	25	96	119	129	161	185	189	201		241	262	267	280	287	7	17-secant	2
L_{11}	11	12	20	26	97	120	130	162	186	190	2		242	263	268	281	288	8	16-secant	2
L_{12}	12	13	21	27	98	121	131	163	187	191	203		243	264	269	282	$\underline{289}$	9	16-secant	2
L_{13}	13	14	22	28	99	122	132	164	188	192	204	223	244	265	270	283	290	10	16-secant	2
L_{14}	14	15	23	29	100	123	133	165	189	193	205	4	246	66	$\underline{271}$	284	291	11	16 -secant	2
L_{15}	15	16	24	30	101	124	134	166	190	194	206	225		267	272	285	292	12	16-secant	2
L_{16}	16	17	25	31	102	125	135	167	191	195	207	226			273	286	293	13	16-secant	2
L_{17}	17	$18{ }^{*}$	26	32	103	126	136	168	192	196	208	227		98	$\underline{274}$	287	294	14	16 -secant	2
L_{18}	$18{ }^{*}$	19	$\underline{27}$	33	104	127	137	169	193	197	209	228	249	270	275	288	295	15	17 -secant	2
L_{19}	19	20	28	34	105	128	138	170	194	198	210	229		271	$\underline{276}$	$\underline{289}$	$\underline{296}$	16	0 -secant	19
L_{20}	20	21	29	35	106	129	139	171	195	199	211	230			277	290	297	17	16-secant	2
													252	273	278	291	298	$18{ }^{*}$	17-secant	2

REFERENCES

[1] Ball, S.(2004) "An Introduction to Finite Geometry ",PP. 1-63.
[2] D' Agostini, E. (1980) "Sulla caratterizzazione delle (k, n; f)-calotte di tipo (n-2,n)", Atti sem. Mat. Fis. University. Modena, XX1X, PP.263-275.
[3] D' Agostini, E. (1981) "On caps with weighted points in PG (2,q)", Discrete Mathematics 34,PP.103-110.
[4] Hammed , F.K. (1989) "Weighted (k,n)- arcs in the projective plane of order nine " Ph.D.Thesis, University of London.
[5] Hirschfeld, J. W. P. (1979) "Projective Geometries Over Finite Fields" Oxford.
[6] Mahmood, R.D. (1990) "(k,n;f)-arcs of type (n-5,n) in PG(2,5)" M.Sc. Thesis, College of Science ,University of Mosul.
[7] Mohammed, M.J. and Mahmood. R. D. (1995) " (k, n; f)-arcs in Galois plane of order seven" Basrah J.science, Vol.13, No.1, 49-56.
[8] Wilson, B. J. (1986) " (k, n; f)-arc and caps in finite projective spaces", Annals of Discrete Mathematics 30, PP.355-362.

