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ABSTRACT 

The purpose of this paper is to study a new class of rings R in which, 

for each a  R, a n   a n R a n2 R, for some positive integer n. Such rings are 

called s-weakly regular rings and give some of their basic properties as 

well as the relation between s-weakly regular rings, strongly -regular 

rings and division rings. 
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   sالحلقات المنتظمة بضعف من النمط 

 د. عبد الله عبد الجبار                                                                     د. رائدة داؤد محمود       

 كلية العلوم          كلية علوم الحاسوب والرياضيات                                       

 صل                                                     جامعه صلاح الدين جامعة المو        

 16/08/2006تاريخ القبول:                                17/05/2006تاريخ الاستلام: 
 الملخص

 a  R  ،   R   الغرض من هذا البحث هو دراسة صنف جديد من الحلقات التي تكون لكل

 2nR a na  a  n    لبعض قيمn  .طلق على هكذا حلقات اسم حلقات يو   الصحيحة الموجبة
لهذه الحلقات ثم نجد  الأساسيةوكذلك نعطي بعض الخواص    -sمنتظمة ضعيفة من النمط 

و  و الحلقات المنتظمة بقوة من النمط     -sالعلاقة بين الحلقات المنتظمة الضعيفة من النمط 
 ات القسمة.مع حلق

، حلقات sحلقات منتظمة قوية من النمط ، sحلقات منتظمة من النمط الكلمات المفتاحية: 

 القسمة.
1. Introduction 

Throughout this paper, R is an associative ring with identity. A ring 

R is said to be right (left) s-weakly regular if for each a  R, a  aRa 2 R (a 

 Ra 2 Ra). This concept was introduced by V. Gupta [5] and W. B. 

Vasantha Kandasamy [9]. Recall that:  

(1) An ideal I of a ring R is a right pure, if for every a  I, there exists b  I 

such that a = ab. (2) R is called reduced if R has no nonzero nilpotent 

element. (3) For any element a in R, the right annihilator of a is                

mailto:raida.1961@uomosul.edu.iq


Raida D. Mahmood and Abdullah M. Abdul-Jabbar 
 

 

 26 

r(a) = {x  R: ax = 0} and likewise for the left annihilator ℓ(a). (4) 

According to Cohn [3], a ring R is called reversible if ab = 0 implies ba = 0 

for a, b  R.. It is easy to see that R is reversible if and only if right (left) 

annihilator of a in R is a two-sided ideal [3]. (5) Following [4], a ring R is a 

right (left) weakly -regular if     a n   a n R a n R (a n  R a n R a n ), for every 

a  R and a positive integer n. 

 

2. s-Weakly Regular Rings 

 In this section we introduce a new generalization of s-weakly 

regular rings which is called s-weakly regular, and is denoted by  sWR-

rings. We give some of its basic properties, as well as a connection between      

s-weakly regular rings and sWR-rings. 
 

Definition 2.1: 

An element b of a ring R is said to be s-weakly regular if there 

exists a positive integer n and c, d  R such that b n = b n c b n2 d. 

A ring R is said to be right(left) s-weakly regular, if for each a  R, 

there exists a positive integer n, n = n(a), depending on such that 

 a n  a n R a n2 R (a n  R a n2 R a n ). 

A ring R is called s-weakly regular if it is both right and left  s-

weakly regular. 
 

Remark:   

From now on, sWR-rings mean right s-weakly regular rings 

unless other stated. 
 

Example (1): 

                          

       Let   R =  
















0b,aandR b a, :
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 , where R is the 

                             

set of all real numbers. Then,  R is sWR-rings, since for any positive 

integer n 
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Obviously every s-weakly regular ring is sWR-rings, however the 

converse is not true in general as the following example shows. 
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Example (2):  

Let Z4 be the ring of integers modulo 4. Then, Z4 is sWR-rings, but 

it is not s-weakly regular.    

We now consider a necessary and sufficient condition for sWR-

rings to be s-weakly regular. 
 

 

 

 

Theorem 2.2: 

Let R be a ring. If r(an)  r(a) and anR = aR, for every a  R and a 

positive integer n. Then, every  sWR-rings is s-weakly regular. 

Proof:  

Let R be sWR-ring. Then, for every a  R, there exists a positive 

integer n  such that  a n = a n b a n2 c, for some b, c  R. But, a n2 c = a n  (a n c) 

 anR = aR and a n c  anR = aR. Therefore, a n2 c = a 2 d, for some d  R. 

Now, we obtain  a n = a n b a 2 d. This implies that  a n ( 1-b a 2 d) = 0 and 

hence 1-b a 2 d  r(an)  r(a). Therefore, 1-b a 2 d  r(a). Whence it follows 

that a = ab a 2 d and hence R is s-weakly regular.      
 

Theorem 2.3: 

Let R be a right duo, sWR-ring, then for all a  R, there exists a 

positive integer n such that the principal ideal anR is idempotent. 

Proof: 

Assume that R is sWR-ring. Let I be a right ideal of R such that I =  

anR with a  R, and a positive integer n, clearly I 2   I. On the other hand, 

since I = a n R, 1R and a n  I. But R is sWR-ring, then a n = a n b a n2 c, for 

some b, c  R and R is a right duo ring, then  b a n2 = a n2 x, for some x  R, 

so a n = a n  a n2 xc. If we set y =xc, then a n = a n  a n2 y. Now, a n  I and  a n = 

a n  a n2 y = a n  a n  z I 2 (a n2 y = a n  a n y = a n  z). Therefore, I  I 2 . Hence  

I 2 = I.    
 

Proposition 2.4: 

If R is a ring in which a n = a n3 , for every a  R, then R is sWR-

ring. 

Proof: 

It is obvious; since R is a ring with identity as for every a  R and a 

positive integer n, we have a n  a n R a n2 R (a n = a n 1 a n2 1).    
 

Theorem 2.5: 
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Let  R be a ring without  divisors of zero. The ring R is sWR-ring if 

and only if  a n2 = 1 or b a n2 c =1 or a n2 c =1, for every a  R and a positive 

integer n. 

Proof: 

Given R is a ring with identity; which has no proper divisors of zero. 

Now, let us assume that R is sWR-ring; to prove a n2 = 1 or b a n2 c =1, for 

every a  R and a positive integer n. Given R is sWR-ring, hence  a n  

a n R a n2 R for every a  R and a positive integer n. Thus, a n = a n b a n2 c, for 

every a  R; if b = c = 1, then we have a n = a n3 . This implies that          

a n (1- a n2 ) = 0, but R has no zero divisors; hence  a n2 = 1. If  b  1, c  1; 

then a n = a n b a n2 c implies that a n (1- b a n2 c) = 0, since R has no zero 

divisors, then b a n2 c = 1. If b = 1 and c  1, then a n = a n a n2 c implies that 

a n ( 1- a n2 c) = 0, then a n2 c = 1.  

Conversely, if  a n2 = 1, for every a  R, then  1- a n2  = 0 implies that 

a n = a n3  and a n = a n 1 a n2 1. Therefore, R is sWR-ring. Now, if  1- b a n2 c 

= 0 or a n2 c = 1, we get immediately R to be sWR-ring using the fact that R 

has no zero divisors.    

We recall the following result of [7]. 
 

Lemma 2.6: 

Let R be a reduced ring. Then, for every aR and a positive integer n,  

(1)  r(an) = ℓ (an) 

(2)  r(an)  r (a) 

(3)  ℓ (an)  ℓ (a) 
 

Theorem 2.7: 

Let R be a reduced ring and let I = R a n2 R. Then, R is sWR-ring if 

and only if r(an) is a direct summand for every a R and a positive integer n. 

Proof: 

Assume that R is sWR-ring, then for every a  R, there exists             

a positive integer n such that a n = a n t1 a n2 t2, for some t1, t2  R. So,          

(1- t1 a
n2 t2 )  r(an). Therefore, 1 = t1 a

n2 t2 + (1- t1 a
n2 t2). Hence, R = R 

a n2 R + r(an). Now, let  b  R a n2 R  r(an) implies an b = 0 and  an b t = 0, 

for all t   R, so bt  r(an) = ℓ (an) = ℓ (a n2 ). Then, bt a n2  = 0 and  bt a n2 c = 

0 implies  b (t a n2 c) = b 2 = 0. Since R is reduced, then b = 0. Therefore,      

R a n2 R   r(an) = 0. Thus, r(an) is a direct summand. 

     Conversely, assume that r(an) is a direct summand for every a  R and 

positive integer n. Then, R a n2 R  + r(an) = R and  1 = t1 a
n2 t2 + d, with  t1, t2 
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 R and d  r(an) . Multiplying by an we obtain, a n = a n t1 a
n2 t2 + an d, so 

a n = a n t1 a
n2 t2. Whence R is sWR-ring.    

 

Lemma 2.8: 

If R is a semi-prime reversible ring, then R is reduced. 

Proof:  

See [6, Lemma 2.7].    
 

Proposition 2.9: 

If  R is a semi-prime reversible ring and every maximal right ideal of 

R is a right annihilator, then R is sWR-ring. 

Proof:  

Let a  R, we shall prove that R a n2 R  + r(an) = R, for some positive 

integer n. If not, there exists a maximal right ideal M of R containing R 

a n2 R  + r(an). If M = r(b), for some  0  b  R, we have b  ℓ (R a n2 R  + 

r(an))  ℓ (an) [8]. Since R is semi-prime and reversible ring, then by 

Lemma 2.8, R is reduced. Therefore, by Lemma 2.6(1), b  r(an), which 

implies that  b  M = r(b), then b 2 = 0 and hence b = 0, a contradiction. 

Therefore, R a n2 R  + r(an) = R. In particular,  c a n2 d + x = 1, for some c, d 

 R and x  r(an), then an = an c a n2 d . Whence R is sWR-ring.    
 

3. The Relation Between sWR-rings and Other Rings 

In this section, we consider the connection between sWR-rings, 

strongly -regular rings and division rings.    

We start this section with the following definition. 
 

Definition 3.1: 

A ring R is called strongly -regular [1] if for every a  R, there 

exists a positive integer n, depending on a and an element b  R such that  

an = a 1+n b. Or equivalently R is strongly -regular if and only if                  

an R = a n2  R [8]. It is easy to see that R is strongly -regular if and only if  

R an = R a n2 . 

Recall that R is weakly right duo (briefly, WRD) [2] if for any a  

R, there exists a positive integer n such that an R = R an R. 
 

Theorem 3.2: 

Let R be WRD. Then, R is strongly -regular if and only if R is 

sWR-ring. 

Proof:  

Assume that R is strongly -regular, then for every a  R, there 

exists a positive integer n such that an R = a n2  R. Now,  
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an R = a n2 R  ( R is strongly -regular) 

       = an an R 

       = an (R an R )   ( R is WRD; an R = R an R ) 

       =  an R an R   

       =  an R(a n2 R)   (R is strongly -regular; an R = a n2  R)  

       = an R a n2 R  

Therefore, R is sWR-ring. 

Conversely, assume that R is sWR-ring. Then, a m R =  a m R a m2 R, 

for some positive integer m. Sine R is WRD, then an R = R an R, for some 

positive integer n. Now,  

a n2 R =  an an R 

         = an R an R   

        = (R an R ) an R   

        = R an an R   

   = R a n2 R 

So, a kn R = R a kn R, for some positive integer k     …(1) 

      a m2 R = a m a m R  

               = a m  (a m R a m2 R)   ( R is sWR-ring) 

               = a m2 R a m2 R   

In particular,  a kmR = a kmR a kmR                            …(2) 

Now,  

a mn R a mn R = a mn (R a mn R) 

                 = a mn (a mn R) 

                 = a mn2 R 

a mn R a mn R = a mn R (a mn R a mn R) 

            =  a mn R a mn (a mn R) 

                 =  a mn R a mn2 R 

                 =  a mn R    ( R is sWR-ring) 

Therefore, a mn2 R = a mn R, set lmn = . Thus, a l2 R = a l R. So, R is 

strongly -regular.    
 

Corollary 3.3: 

  Let R be a WRD and sWR-ring. Then, R is -regular. 
 

Theorem 3.4: 

Let R be a WRD ring. If R is sWR-ring with r(an) = 0, for every a 

 R and a positive integer n. Then, R is a division ring. 

Proof:  
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Let R be sWR-ring. Then, by Theorem 3.2, R is strongly -regular. 

Therefore, an R = a n2  R, for every  a  R and  a  positive  integer n. Then,     

an = a n2  b, for some b  R and hence 1- an b  r(an) = 0 implies that 1 = an b 

 an R. Thus, an R = R (right invertible). Now, since an x = 1, we have        

an x an = an, which implies that (1- x an)  r(an) = 0. Therefore, 1- x an = 0, 

whence x an = 1, so R an = R. Whence R is a division ring.    
 

Proposition 3.5: 

Let R be a commutative ring. If x is not nilpotent and right s-

weakly regular element, then  x n2 is invertible in R. 

 

Proof:  

Assume that x is a right s-weakly regular element, there exists b, c 

 R and a positive integer n such that  x n  = x n  b x n2 c. Then, x n (1- b x n2 c) 

= 0. Since x is not nilpotent element, then  x n  0. Therefore, 1- b x n2 c = 0 

(x n  0). So, 1 = b x n2 c implies that  x n2 is invertible.         
 

Theorem 3.6: 

Let R be a reduced ring with every essential right ideal is pure. Then, 

R is sWR-ring. 

Proof:  

Let a  R and I = R a n2 R + r(an). We claim that I is an essential 

right ideal of R. Suppose this is not true, there exists a nonzero ideal K of R 

such that I  K = (0). Then, (R a n2 R) K  IK  I  K = (0). Since a n2 R  

R a n2 R, then a n2 R  K = (0). But, (a n2 R) K  a n2 R  K = (0) implies K = 

(0).This contradiction proves that I is an essential right ideal, that is I is 

pure. Since a  I, there exists b  I such that a = ab. In particular, b =          

c a n2 d + h, for some c, d  R and h  r(an). Therefore, an = an b = an c a n2 d 

+ an h = an c a n2 d. Whence R is sWR-ring.    
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