s π-Weakly Regular Rings

Raida D. Mahmood
raida.1961@uomosul.edu.iq
Abdullah M. Abdul-Jabbar
abdullah.abdulgabbar@su.edu.krd College of Computer sciences and Mathematics College of Sciences University of Mosul
University of Salahaddin
Received on: 17/05/2006
Accepted on: 16/08/2006

The purpose of this paper is to study a new class of rings R in which, for each $a \in R, a^{n} \in a^{n} R a^{2 n} R$, for some positive integer n. Such rings are called $s \pi$-weakly regular rings and give some of their basic properties as well as the relation between $s \pi$-weakly regular rings, strongly π-regular rings and division rings.
Keywords: $s \pi$-weakly regular rings, strongly π-regular rings and division rings.

> الحلقات المنتظمة بضعف من النمط ST

الكلمات المفتاحية: حلقات منتظمة من النمط s π ، حقات منتظمة قوية من النمط π ، حلقات القسمة.

1. Introduction

Throughout this paper, R is an associative ring with identity. A ring R is said to be right (left) s-weakly regular if for each $a \in R, a \in a R a^{2} R(a$ $\in \mathrm{Ra}^{2} \mathrm{Ra}$). This concept was introduced by V. Gupta [5] and W. B. Vasantha Kandasamy [9]. Recall that:
(1) An ideal I of a ring R is a right pure, if for every $a \in I$, there exists $b \in I$ such that $\mathrm{a}=\mathrm{ab}$. (2) R is called reduced if R has no nonzero nilpotent element. (3) For any element a in R , the right annihilator of a is
$r(a)=\{x \in R: a x=0\}$ and likewise for the left annihilator $\ell(a)$. (4) According to Cohn [3], a ring R is called reversible if $\mathrm{ab}=0$ implies $\mathrm{ba}=0$ for $a, b \in R$.. It is easy to see that R is reversible if and only if right (left) annihilator of a in R is a two-sided ideal [3]. (5) Following [4], a ring R is a right (left) weakly π-regular if $\quad \mathrm{a}^{n} \in \mathrm{a}^{n} \mathrm{R} \mathrm{a}^{n} \mathrm{R}\left(\mathrm{a}^{n} \in \mathrm{R} \mathrm{a}^{n} \mathrm{R} \mathrm{a}^{n}\right)$, for every $a \in R$ and a positive integer n.

2. $s \pi$-Weakly Regular Rings

In this section we introduce a new generalization of s-weakly regular rings which is called $s \pi$-weakly regular, and is denoted by $s \pi$ WRrings. We give some of its basic properties, as well as a connection between s-weakly regular rings and $s \pi$ WR-rings.

Definition 2.1:

An element b of a ring R is said to be $s \pi$-weakly regular if there exists a positive integer n and $\mathrm{c}, \mathrm{d} \in \mathrm{R}$ such that $\mathrm{b}^{n}=\mathrm{b}^{n} \mathrm{c} \mathrm{b}^{2 n} \mathrm{~d}$.

A ring R is said to be $\operatorname{right}(\mathrm{left}) s \pi$-weakly regular, if for each $a \in R$, there exists a positive integer $n, n=n(a)$, depending on such that
$\mathrm{a}^{n} \in \mathrm{a}^{n} \mathrm{Ra}^{2 n} \mathrm{R}\left(\mathrm{a}^{n} \in \mathrm{R} \mathrm{a}^{2 n} \mathrm{Ra}^{n}\right)$.
A ring R is called $s \pi$-weakly regular if it is both right and left $s \pi$ weakly regular.

Remark:

From now on, $s \pi$ WR-rings mean right $s \pi$-weakly regular rings unless other stated.

Example (1):

Let $R=\left\{\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right): a, b \in R\right.$ and $\left.a, b \neq 0\right\}$, where \mathbf{R} is the
set of all real numbers. Then, R is $s \pi$ WR-rings, since for any positive integer n

$$
\left(\begin{array}{cc}
\mathrm{a} & 0 \\
0 & \mathrm{~b}
\end{array}\right)^{\mathrm{n}}=\left(\begin{array}{ll}
\mathrm{a} & 0 \\
0 & \mathrm{~b}
\end{array}\right)^{\mathrm{n}}\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
\mathrm{a}^{2} & 0 \\
0 & \mathrm{~b}^{2}
\end{array}\right)^{\mathrm{n}}\left(\begin{array}{cc}
\frac{1}{a^{2 n}} & 0 \\
0 & \frac{1}{b^{2 n}}
\end{array}\right)
$$

Obviously every s-weakly regular ring is $\mathrm{s} \pi \mathrm{WR}$-rings, however the converse is not true in general as the following example shows.

Example (2):
Let \mathbf{Z}_{4} be the ring of integers modulo 4 . Then, \mathbf{Z}_{4} is $\mathrm{s} \pi$ WR-rings, but it is not s-weakly regular.

We now consider a necessary and sufficient condition for $s \pi$ WRrings to be s-weakly regular.

Theorem 2.2:

Let R be a ring. If $r\left(a^{n}\right) \subseteq r(a)$ and $a^{n} R=a R$, for every $a \in R$ and a positive integer n. Then, every $s \pi W R$-rings is s-weakly regular.

Proof:

Let R be $s \pi$ WR-ring. Then, for every $a \in R$, there exists a positive integer n such that $a^{n}=a^{n} b a^{2 n} c$, for some $b, c \in R$. But, $a^{2 n} c=a^{n} \quad\left(a^{n} c\right)$ $\in a^{n} R=a R$ and $a^{n} c \in a^{n} R=a R$. Therefore, $a^{2 n} c=a^{2} d$, for some $d \in R$. Now, we obtain $a^{n}=a^{n} b a^{2} d$. This implies that $a^{n}\left(1-b a^{2} d\right)=0$ and hence $1-b a^{2} d \in r\left(a^{n}\right) \subseteq r(a)$. Therefore, $1-b a^{2} d \in r(a)$. Whence it follows that $\mathrm{a}=\mathrm{ab} \mathrm{a}^{2} \mathrm{~d}$ and hence R is s-weakly regular.

Theorem 2.3:

Let R be a right duo, $s \pi$ WR-ring, then for all $a \in R$, there exists a positive integer n such that the principal ideal $\mathrm{a}^{\mathrm{n}} \mathrm{R}$ is idempotent.

Proof:

Assume that R is $s \pi$ WR-ring. Let I be a right ideal of R such that $I=$ $a^{n} R$ with $a \in R$, and a positive integer n, clearly $I^{2} \subseteq I$. On the other hand, since $\mathrm{I}=\mathrm{a}^{n} \mathrm{R}, 1 \in \mathrm{R}$ and $\mathrm{a}^{n} \in \mathrm{I}$. But R is $s \pi$ WR-ring, then $\mathrm{a}^{n}=\mathrm{a}^{n} \mathrm{ba}^{2 n} \mathrm{c}$, for some $b, c \in R$ and R is a right duo ring, then $b a^{2 n}=a^{2 n} x$, for some $x \in R$, so $\mathrm{a}^{n}=\mathrm{a}^{n} \mathrm{a}^{2 n} \mathrm{xc}$. If we set $\mathrm{y}=\mathrm{xc}$, then $\mathrm{a}^{n}=\mathrm{a}^{n} \mathrm{a}^{2 n} \mathrm{y}$. Now, $\mathrm{a}^{n} \in \mathrm{I}$ and $\mathrm{a}^{n}=$ $a^{n} a^{2 n} y=a^{n} a^{n} z \in I^{2}\left(a^{2 n} y=a^{n} a^{n} y=a^{n} z\right)$. Therefore, $\mathrm{I} \subseteq \mathrm{I}^{2}$. Hence $\mathrm{I}^{2}=\mathrm{I}$.

Proposition 2.4:

If R is a ring in which $a^{n}=a^{3 n}$, for every $a \in R$, then R is $s \pi W R-$ ring.

Proof:

It is obvious; since R is a ring with identity as for every $\mathrm{a} \in \mathrm{R}$ and a positive integer n, we have $a^{n} \in a^{n} R a^{2 n} R\left(a^{n}=a^{n} 1 a^{2 n} 1\right)$.

Theorem 2.5:

Let R be a ring without divisors of zero. The ring R is $s \pi$ WR-ring if and only if $\mathrm{a}^{2 n}=1$ or $\mathrm{b} \mathrm{a}^{2 n} \mathrm{c}=1$ or $\mathrm{a}^{2 n} \mathrm{c}=1$, for every $\mathrm{a} \in \mathrm{R}$ and a positive integer n .

Proof:

Given R is a ring with identity; which has no proper divisors of zero. Now, let us assume that R is $\mathrm{s} \pi \mathrm{WR}$-ring; to prove $\mathrm{a}^{2 n}=1$ or $\mathrm{ba}^{2 n} \mathrm{c}=1$, for every $a \in R$ and a positive integer n. Given R is $s \pi W R-$ ring, hence $a^{n} \in$ $\mathrm{a}^{n} \mathrm{R} \mathrm{a}^{2 n} \mathrm{R}$ for every $\mathrm{a} \in \mathrm{R}$ and a positive integer n . Thus, $\mathrm{a}^{n}=\mathrm{a}^{n} \mathrm{ba}^{2 n} \mathrm{c}$, for every $\mathrm{a} \in \mathrm{R}$; if $\mathrm{b}=\mathrm{c}=1$, then we have $\mathrm{a}^{n}=\mathrm{a}^{3 n}$. This implies that $\mathrm{a}^{n}\left(1-\mathrm{a}^{2 n}\right)=0$, but R has no zero divisors; hence $\mathrm{a}^{2 n}=1$. If $\mathrm{b} \neq 1, \mathrm{c} \neq 1$; then $\mathrm{a}^{n}=\mathrm{a}^{n} \mathrm{~b} \mathrm{a}^{2 n} \mathrm{c}$ implies that $\mathrm{a}^{n}\left(1-\mathrm{b} \mathrm{a}^{2 n} \mathrm{c}\right)=0$, since R has no zero divisors, then $\mathrm{b} \mathrm{a}{ }^{2 n} \mathrm{c}=1$. If $\mathrm{b}=1$ and $\mathrm{c} \neq 1$, then $\mathrm{a}^{n}=\mathrm{a}^{n} \mathrm{a}^{2 n} \mathrm{c}$ implies that $\mathrm{a}^{n}\left(1-\mathrm{a}^{2 n} \mathrm{c}\right)=0$, then $\mathrm{a}^{2 n} \mathrm{c}=1$.

Conversely, if $\mathrm{a}^{2 n}=1$, for every $\mathrm{a} \in \mathrm{R}$, then $1-\mathrm{a}^{2 n}=0$ implies that $\mathrm{a}^{n}=\mathrm{a}^{3 n}$ and $\mathrm{a}^{n}=\mathrm{a}^{n} 1 \mathrm{a}^{2 n} 1$. Therefore, R is $s \pi W \mathrm{~W}-$ ring. Now, if $1-\mathrm{b} \mathrm{a}^{2 n} \mathrm{c}$ $=0$ or $\mathrm{a}^{2 n} \mathrm{c}=1$, we get immediately R to be $\mathrm{s} \pi \mathrm{WR}$-ring using the fact that R has no zero divisors.
We recall the following result of [7].

Lemma 2.6:

Let R be a reduced ring. Then, for every $a \in R$ and a positive integer n,
(1) $\mathrm{r}\left(\mathrm{a}^{\mathrm{n}}\right)=\ell\left(\mathrm{a}^{\mathrm{n}}\right)$
(2) $r\left(a^{n}\right) \subseteq r(a)$
(3) $\quad \ell\left(\mathrm{a}^{\mathrm{n}}\right) \subseteq \ell(\mathrm{a})$

Theorem 2.7:

Let R be a reduced ring and let $\mathrm{I}=\mathrm{R} \mathrm{a}^{2 n} \mathrm{R}$. Then, R is $\mathrm{s} \pi \mathrm{WR}$-ring if and only if $r\left(a^{n}\right)$ is a direct summand for every $a \in R$ and a positive integer n. Proof:

Assume that R is $s \pi W R-$ ring, then for every $a \in R$, there exists a positive integer n such that $a^{n}=a^{n} t_{1} a^{2 n} t_{2}$, for some $t_{1}, t_{2} \in R$. So, $\left(1-t_{1} a^{2 n} t_{2}\right) \in \mathrm{r}\left(\mathrm{a}^{\mathrm{n}}\right)$. Therefore, $1=\mathrm{t}_{1} \mathrm{a}^{2 n} \mathrm{t}_{2}+\left(1-\mathrm{t}_{1} \mathrm{a}^{2 n} \mathrm{t}_{2}\right)$. Hence, $\mathrm{R}=\mathrm{R}$ $a^{2 n} R+r\left(a^{n}\right)$. Now, let $b \in R a^{2 n} R \cap r\left(a^{n}\right)$ implies $a^{n} b=0$ and $a^{n} b t=0$, for all $\mathrm{t} \in \mathrm{R}$, so $\mathrm{bt} \in \mathrm{r}\left(\mathrm{a}^{\mathrm{n}}\right)=\ell\left(\mathrm{a}^{\mathrm{n}}\right)=\ell\left(\mathrm{a}^{2 n}\right)$. Then, $\mathrm{bt} \mathrm{a}^{2 n}=0$ and $\mathrm{bt} \mathrm{a}^{2 n} \mathrm{c}=$ 0 implies $b\left(t a^{2 n} c\right)=b^{2}=0$. Since R is reduced, then $b=0$. Therefore, $R \mathrm{a}^{2 n} \mathrm{R} \cap \mathrm{r}\left(\mathrm{a}^{\mathrm{n}}\right)=0$. Thus, $\mathrm{r}\left(\mathrm{a}^{\mathrm{n}}\right)$ is a direct summand.

Conversely, assume that $r\left(a^{n}\right)$ is a direct summand for every $a \in R$ and positive integer n. Then, $R a^{2 n} R+r\left(a^{n}\right)=R$ and $1=t_{1} a^{2 n} t_{2}+d$, with t_{1}, t_{2}
$\in R$ and $d \in r\left(a^{n}\right)$. Multiplying by a^{n} we obtain, $a^{n}=a^{n} t_{1} a^{2 n} t_{2}+a^{n} d$, so $a^{n}=a^{n} t_{1} a^{2 n} t_{2}$. Whence R is $s \pi$ WR-ring.

Lemma 2.8:

If R is a semi-prime reversible ring, then R is reduced.

Proof:

See [6, Lemma 2.7].

Proposition 2.9:

If R is a semi-prime reversible ring and every maximal right ideal of R is a right annihilator, then R is $s \pi$ WR-ring.

Proof:

Let $a \in R$, we shall prove that $R a^{2 n} R+r\left(a^{n}\right)=R$, for some positive integer n. If not, there exists a maximal right ideal M of R containing R $a^{2 n} R+r\left(a^{n}\right)$. If $M=r(b)$, for some $0 \neq b \in R$, we have $b \in \ell\left(R^{2 n} R+\right.$ $\left.r\left(\mathrm{a}^{\mathrm{n}}\right)\right) \subseteq \ell\left(\mathrm{a}^{\mathrm{n}}\right)$ [8]. Since R is semi-prime and reversible ring, then by Lemma 2.8, R is reduced. Therefore, by Lemma $2.6(1), \mathrm{b} \in \mathrm{r}\left(\mathrm{a}^{\mathrm{n}}\right)$, which implies that $b \in M=r(b)$, then $b^{2}=0$ and hence $b=0$, a contradiction. Therefore, $R a^{2 n} R+r\left(a^{n}\right)=R$. In particular, $c a^{2 n} d+x=1$, for some c, d $\in R$ and $x \in r\left(a^{n}\right)$, then $a^{n}=a^{n} c a^{2 n} d$. Whence R is $s \pi$ WR-ring.

3. The Relation Between s π WR-rings and Other Rings

In this section, we consider the connection between $s \pi$ WR-rings, strongly π-regular rings and division rings.

We start this section with the following definition.

Definition 3.1:

A ring R is called strongly π-regular [1] if for every $a \in R$, there exists a positive integer n, depending on a and an element $b \in R$ such that $a^{n}=a^{n+1} b$. Or equivalently R is strongly π-regular if and only if $a^{n} R=a^{2 n} R$ [8]. It is easy to see that R is strongly π-regular if and only if R $\mathrm{a}^{\mathrm{n}}=\mathrm{Ra}^{2 n}$.

Recall that R is weakly right duo (briefly, WRD) [2] if for any a \in R, there exists a positive integer n such that $a^{n} R=R a^{n} R$.

Theorem 3.2:

Let R be WRD. Then, R is strongly π-regular if and only if R is $\mathrm{s} \pi$ WR-ring.

Proof:

Assume that R is strongly π-regular, then for every $\mathrm{a} \in \mathrm{R}$, there exists a positive integer n such that $a^{n} R=a^{2 n} R$. Now,

$$
\begin{aligned}
\mathrm{a}^{\mathrm{n}} \mathrm{R} & =\mathrm{a}^{2 n} \mathrm{R} \quad(\mathrm{R} \text { is strongly } \pi \text {-regular) } \\
& =\mathrm{a}^{\mathrm{n}} \mathrm{a}^{\mathrm{n}} \mathrm{R} \\
& =\mathrm{a}^{\mathrm{n}}\left(\mathrm{R} \mathrm{a}^{\mathrm{n}} \mathrm{R}\right) \quad\left(\mathrm{R} \text { is WRD; } \mathrm{a}^{\mathrm{n}} \mathrm{R}=\mathrm{R} \mathrm{an} \mathrm{R}\right) \\
& =\mathrm{a}^{\mathrm{n}} \mathrm{R} \mathrm{a}^{\mathrm{n}} \mathrm{R} \\
& =\mathrm{a}^{\mathrm{n}} \mathrm{R}\left(\mathrm{a}^{2 n} \mathrm{R}\right) \quad\left(\mathrm{R} \text { is strongly } \pi \text {-regular; } \mathrm{a}^{\mathrm{n}} \mathrm{R}=\mathrm{a}^{2 n} \mathrm{R}\right) \\
& =\mathrm{a}^{\mathrm{n}} \mathrm{R} \mathrm{a} a^{2 n} \mathrm{R}
\end{aligned}
$$

Therefore, R is $s \pi \mathrm{WR}$-ring.
Conversely, assume that R is s π WR-ring. Then, $a^{m} R=a^{m} R a^{2 m} R$, for some positive integer m. Sine R is WRD, then $a^{n} R=R a^{n} R$, for some positive integer n. Now,

$$
\begin{align*}
a^{2 n} R & =a^{n} a^{n} R \\
& =a^{n} R a^{n} R \\
& =\left(R a^{n} R\right) a^{n} R \\
& =R a^{n} a^{n} R \\
& =R a^{2 n} R \tag{1}
\end{align*}
$$

So, $a^{k n} R=R a^{k n} R$, for some positive integer k
$a^{2 m} R=a^{m} a^{m} R$
$=\mathrm{a}^{m}\left(\mathrm{a}^{m} \mathrm{R} \mathrm{a}^{2 m} \mathrm{R}\right)(\mathrm{R}$ is $\mathrm{s} \pi$ WR-ring)
$=\mathrm{a}^{2 m} \mathrm{Ra}^{2 m} \mathrm{R}$
In particular, $\mathrm{a}^{k m} \mathrm{R}=\mathrm{a}^{k m} \mathrm{R} \mathrm{a}^{k m} \mathrm{R}$
Now,

$$
\begin{align*}
& \mathrm{a}^{m n} \mathrm{R} \mathrm{a}^{m n} \mathrm{R}=\mathrm{a}^{m n}\left(\mathrm{R} \mathrm{a}^{m n} \mathrm{R}\right) \tag{2}\\
& =\mathrm{a}^{m n}\left(\mathrm{a}^{m n} \mathrm{R}\right) \\
& =\mathrm{a}^{2 m n} \mathrm{R} \\
& \mathrm{a}^{m n} \mathrm{R} \mathrm{a}^{m n} \mathrm{R}=\mathrm{a}^{m n} \mathrm{R}\left(\mathrm{a}^{m n} \mathrm{R} \mathrm{a}^{m n} \mathrm{R}\right) \\
& =\mathrm{a}^{m n} \mathrm{Ra}^{m n}\left(\mathrm{a}^{m n} \mathrm{R}\right) \\
& =\mathrm{a}^{m n} \mathrm{R} \mathrm{a}^{2 m n} \mathrm{R} \\
& =\mathrm{a}^{m n} \mathrm{R} \quad \text { (} \mathrm{R} \text { is } s \pi \text { WR-ring) }
\end{align*}
$$

Therefore, $\mathrm{a}^{2 m n} \mathrm{R}=\mathrm{a}^{m n} \mathrm{R}$, set $m n=l$. Thus, $\mathrm{a}^{2 l} \mathrm{R}=\mathrm{a}^{l} \mathrm{R}$. So, R is strongly π-regular.

Corollary 3.3:

Let R be a WRD and $s \pi$ WR-ring. Then, R is π-regular.

Theorem 3.4:

Let R be a WRD ring. If R is $s \pi$ WR-ring with $\mathrm{r}\left(\mathrm{a}^{\mathrm{n}}\right)=0$, for every a $\in \mathrm{R}$ and a positive integer n . Then, R is a division ring.
Proof:

Let R be $s \pi$ WR-ring. Then, by Theorem 3.2, R is strongly π-regular. Therefore, $a^{n} R=a^{2 n} R$, for every $a \in R$ and a positive integer n. Then, $a^{n}=a^{2 n} b$, for some $b \in R$ and hence $1-a^{n} b \in r\left(a^{n}\right)=0$ implies that $1=a^{n} b$ $\in a^{n} R$. Thus, $a^{n} R=R$ (right invertible). Now, since $a^{n} x=1$, we have $a^{n} \times a^{n}=a^{n}$, which implies that $\left(1-\mathrm{x} \mathrm{a}^{\mathrm{n}}\right) \in \mathrm{r}\left(\mathrm{a}^{\mathrm{n}}\right)=0$. Therefore, $1-\mathrm{x} a^{\mathrm{n}}=0$, whence $x a^{n}=1$, so $R a^{n}=R$. Whence R is a division ring.

Proposition 3.5:

Let R be a commutative ring. If x is not nilpotent and right $\mathrm{s} \pi$ weakly regular element, then $\mathrm{x}^{2 n}$ is invertible in R .

Proof:

Assume that x is a right $\mathrm{s} \pi$-weakly regular element, there exists b, c $\in R$ and a positive integer n such that $x^{n}=x^{n} b x^{2 n} c$. Then, $x^{n}\left(1-b x^{2 n} c\right)$ $=0$. Since x is not nilpotent element, then $\mathrm{x}^{n} \neq 0$. Therefore, $1-\mathrm{b} \mathrm{x}^{2 n} \mathrm{c}=0$ $\left(\mathrm{x}^{n} \neq 0\right)$. So, $1=\mathrm{b} \mathrm{x}^{2 n} \mathrm{c}$ implies that $\mathrm{x}^{2 n}$ is invertible.

Theorem 3.6:

Let R be a reduced ring with every essential right ideal is pure. Then, R is $s \pi$ WR-ring.

Proof:

Let $a \in R$ and $I=R a^{2 n} R+r\left(a^{n}\right)$. We claim that I is an essential right ideal of R. Suppose this is not true, there exists a nonzero ideal K of R such that $I \cap K=(0)$. Then, $\left(R^{2 n} R\right) K \subseteq I K \subseteq I \cap K=(0)$. Since $a^{2 n} R \subseteq$ $R \mathrm{a}^{2 n} \mathrm{R}$, then $\mathrm{a}^{2 n} \mathrm{R} \cap \mathrm{K}=(0)$. But, $\left(\mathrm{a}^{2 n} \mathrm{R}\right) \mathrm{K} \subseteq \mathrm{a}^{2 n} \mathrm{R} \cap \mathrm{K}=(0)$ implies $\mathrm{K}=$ (0).This contradiction proves that I is an essential right ideal, that is I is pure. Since $a \in I$, there exists $b \in I$ such that $a=a b$. In particular, $b=$ $\mathrm{c} \mathrm{a}^{2 n} \mathrm{~d}+\mathrm{h}$, for some $\mathrm{c}, \mathrm{d} \in \mathrm{R}$ and $\mathrm{h} \in \mathrm{r}\left(\mathrm{a}^{\mathrm{n}}\right)$. Therefore, $\mathrm{a}^{\mathrm{n}}=\mathrm{a}^{\mathrm{n}} \mathrm{b}=\mathrm{a}^{\mathrm{n}} \mathrm{c} \mathrm{a}^{2 n} \mathrm{~d}$ $+a^{n} h=a^{n} c a^{2 n} d$. Whence R is $s \pi$ WR-ring.

REFERENCES

[1] Azumaya, G. (1954) "Strongly π-regular rings", J. Fac. Sci. Hokkaida Univ. vol. 13, 34-39.
[2] Chen, J. L. and Ding N. Q. (1999) "On general principally injective rings", Comm. Algebra, 27(5), 2097-2116.
[3] Cohn, P. M. (1999) "Reversible rings", Bull. London Math. Soc., 31, 641-648.
[4] Gupta, V. (1977) "Weakly π-regular rings and group rings", Math. J. Okayama Univ. 19, 123-127.
[5] Gupta, V. (1984) "A generalization of strongly regular rings", Acta. Math. Hung., vol. 43 (1-2), 57-61.
[6] Kim, N. K. and Lee Y. (2003) "Extensions of reversible rings", Journal of Pure and Applied Algebra 185, 207-223.
[7] Mahmood, A. S. (1990) "On von Neumann regular rings", M. Sc. Thesis, Mosu University.
[8] Mohammed, R. M. (1996) "On π-regular rings", M. Sc. Thesis, Mosul University.
[9] Vasantha Kandasamy, W. B. (1993) "s-weakly regular group rings", Arch. Math. (BRNO), 39-41.

