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ABSTRACT 

The Wiener index is a graphical invariant which has found many 

applications in chemistry. The Wiener Polynomial of a connected graph G is 

the generating function of the sequence (C(G,k)) whose derivative at x=1 is 

the Wiener index W(G) of G, in which C(G,k) is the number of pairs of 

vertices distance k apart. The Wiener Polynomials of star-like trees and 

other special trees are found in this paper; and hence a formula of the 

Wiener index for each such trees is obtained .   
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 لبعض الاشجارمتعـددات حـدود وينـر 
 أحمد محمد علي           علي عزيز علي

 جامعة الموصل ، كلية علوم الحاسبات والرياضيات 
 16/08/2006 تاريخ قبول البحث:     02/05/2006 تاريخ استلام البحث:

 الملخص
عيددة ديدود متو دليل وينر هو لا متغير بياني أصبحت له تطبيقات عديدة فيي الييمييا   إنَّ 
  x=1قتها عنيييد توالتيييي ةيمييية م ييي  (C(G,k)) هيييي الدالييية الموليييدة للمتتا عييية  Gمتصيييل  وينييير لبييييان

المسافة أزواج الرؤوس التي ليل منها   عدد هو C(G,k)، إذ أن   Gللبيان  W(G)تساوي دليل وينر
ن مييية  - ييبيهةأوجييدنا متعييددات دييدود وينيير   يي اس فييي هييلا البحيي    kبييير سأسييي اليياوج تسيياوي 

 و   اس خاصة أخرى، ومر ثم دصلنا على صيغة لدليل وينر ليل مر هله ا   اس 
 ، الا  اس متعددة ددود وينر الكلمات المفتاحية:

1. Introduction 

Let G be a finite connected graph of vertex set V. The distance 

between vertices u and v in G is the length of a shortest u-v path. 

Let )v,u(dG , or simply d(u,v), denote the distance between 

vertices u and v. The eccentricity e(v) of a vertex v is the greatest possible 

distance from v to all other vertices of G, that is  
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      )v,u(dmax)v(e
Vu

= . 

The diameter of G, denoted by diamG or  , is defined as  

       )v(emax
Vv

= . 

The radius of  G, denoted by radG or r, is defined as 

       )v(eminr
Vv

= . 

The Wiener index of G is defined as 

       =
}v,u{

)v,u(d)G(W  , 

where the sum is over all unordered pairs {u,v} of distinct vertices in G. It is 

clear that 

       2/)v()G(W
Vv




= , 

where )v(  is the transmission of a vertex v defined by  

       


=
Vu

)u,v(d)v( . 

The average distance  of G is defined as 

       )1p(p
2

1
)G(W)G(D −= , 

where p is the order of G . It is know [2] that  

       )1p(
3

1
)G(D1 + . 

If  x  is a parameter, then the Wiener polynomial of G is  

       =
}v,u{

)v,u(dx)x;G(W , 

where the sum is taken over all unordered pairs {u,v} of vertices in G . 

Let d(G,k) denote the number of all distinguishable unordered pairs 

of vertices that are of distance k apart. Then  

       


=

=
0k

kx)k,G(d)x;G(W . 

It is clear that the Wiener index W(G) is equal to the value of the 

derivative of W(G;x), with respect to x , at x=1 

Deriving a formula for the Wiener polynomial of some type of 

graphs requires that the graphs must have a particular degree of uniformity. 

Therefore several authors had obtained Wiener polynomials for special 
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graphs and compound graphs (see [4] and [5]).The trees are considered as 

the most important and useful kind of graphs. 

Therefore many papers have been written about the average distance 

of particular graphs including trees. Since Wiener polynomials provide us 

with more information about distance, it is useful to find Wiener 

polynomials of some type of trees. In 1996, Sagan, Yeh and Zhang [6] 

obtained and studied Wiener polynomial for trees called "dendrimer" which 

are used in chemistry. In 2002, D. Bonchev and D. J. Klein [1] obtained the 

Wiener index of thorn rods and thorn stars that are used in theoretical 

chemistry.  Therefore it is suitable to find Wiener polynomials for some 

other kinds of trees, as we have done in this paper. 

 

2. The Wiener Polynomial of a Star-like Tree 
 

Definition 2.1: A tree T of order 4p   is said to be a star-like tree if T is 

homomorphic with a star F, i.e. it is possible to get T from F by inserting 

vertices of degree 2 on some edges of F. The tree T has a particular root c 

which is in the origin the center of the star F. Let 
m21

u,...,u,u be the end-

vertices of T, and let, be the length of the unique path from mi1  , i  
c to iu . Assume that the end-vertices of T are labeled such that 

m21 ...   , then such star-like tree will be denoted by 

),...,,(T m21  . 

       Now we find the Wiener Polynomial for ),...,,(T
m21

 , using the  

symbol [n] defined by  

      
1n2 x...xx1]n[ −++++= , 

for every positive integer n . 

 

Theorem 2.1: For any star-like tree ),...,,(T m21  of order 4p  , we 

have  

)x);,...,,,T((W m21  = 
=



= 







−
m

1j 0i

i

j

j

x)i( +[
1

1 + ][
2

1 + ] 

      +
=

−
−++−++++++

m

3r
r1r21

)1]1)([2r]1[...]1[]1([  …(2.1) 

Proof:  
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     To simplify the symbols in this proof , we shall denote )m(T  for the star-

like tree ),...,,(T m21  . 

It is clear that the order of )m(T  is 1...p m21 ++++= . 

If m=1 , then )1(T  is a path from the vertex c to the vertex 
1u , and of the 

degree 
11 + , and using the formula of the polynomial of a path [4], we get 

=)x;T(W )1(
i

0i
1 x)i1(

1

−+


=

. 

which is the same result obtained from (2.1) when m=1. 

If m=2 , we use Theorem 1 of Gutman [4] , and we get  

)x;F,c(W)x;T,c(W)x;F(W)x;T(W)x;T(W )1()1()2( ++=  

                )x;F,c(W)x;T,c(W )1( −− , 

where F is a path from the vertex c to the vertex 2u  of order 21 + , and 

FTT
)1()2(
•= .Hence we have  

=)x;T(W )2(
i

0i
1 x)i1(

1

−+


=

+ i

0i
2 x)i1(

2

−+


=

+  


=



=

1 2

0i 0i

ii )x)(x(  

                


=

−
1

0i

ix 


=

−
2

0i

ix  

                =  
=



= 







−
2

1j 0i

i

j

j

x)i( +[
1

1 + ][
2

1 + ] , 

which is the result obtained from (2.1) when we put m=2. 

If m=3 we a gain use Theorem 1 of Gutman [4], and we get  

)x;Q,c(W)x;T,c(W)x;Q(W)x;T(W)x;T(W )2()2()3( ++=  

                )x;Q,c(W)x;T,c(W )2( −− , 

where Q is a path from the vertex c to the vertex 3u  of order 31 +  , and 

 QTT )2()3( •=  .Hence , we have  

)x;Q,c(W)x;Q(W)x;T(W)x;T(W )2()3( −+=   

                )1)x;Q,c(W)(x;T,c(W )2( −+  

=)x;T(W )3(  
=



= 







−
3

1j 0i

i

j

j

x)i( +[
1

1 + ][
2

1 + ] 
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                )1]1)([1]1[]1([ 321 −+−++++ , 

which is the result obtained from (2.1) when we put m=3. 

Now assume that the formula (2.1) be true for the tree )k(T  , where 

mk3  . 

We shall prove that it's true for the tree )1k(T + . 

Using Theorem (1) of Gutman [4], we get 

)x;R,c(W)x;T,c(W)x;R(W)x;T(W)x;T(W )k()k()1k( ++=+  

                  )x;R,c(W)x;T,c(W )k( −−  

where R is a path from the vertex c to the vertex 1ku +  of order 1k1 ++  , 

and that RTT )k()1k( •=+ . 

Then 

)x;R,c(W)x;R(W)x;T(W)x;T(W )k()1k( −+=+  

                  )1)x;R,c(W)(x;T,c(W )k( −+ . 

It's clear that 

 


=



=



=

+++=
2 k1

1i 1i

ii

0i

i

)k( x...xx)x;T,c(W  

                   )1k(]1[...]1[]1[ k21 −−++++++= . 

Therefore , substituting for , )x;T(W )k(  and )x;T,c(W )k(  and simplify, 

we get 
 

=+ )x;T(W )1k(  
+

=



= 







−
1k

1j 0i

i

j

j

x)i( + [
1

1 + ][
2

1 + ] 

                  
=

− −++−+++++++
k

3r
r1r21 )1]1)([2r]1[...]1[]1([   

)1]1)([1k]1[...]1[]1([ 1kk21 −++−+++++++ +  

                  = 
+

=



= 







−
1k

1j 0i

i

j

j

x)i( +[
1

1 + ][
2

1 + ] 

                  
+

=
− −++−+++++++

1k

3r
r1r21 )1]1)([2r]1[...]1[]1([  



Ali  A. Ali and Ahmed M. Ali  

 

 

 74 

Since the theorem is true for )1k(T +  , then it's true for any tree )m(T  , and 

thus the proof is completed. 

 

Corollary 2.2: Let ),...,,(T m21   be a star-like tree of order 4p  , 

where m21 ...  , then its Wiener index is  

))(1)(1(
2

1
)1(

6

1
)),...,,,T((W 2121

2

j

m

1j
jm21 ++++−= 

=

 

                                +   
=

−

=

−

= 





 +−+++

m

3r

1r

1i

1r

1i
ir

2

ir
2r)1()1(

2

1  

Proof: 

     Differentiating (2.1) with respect to x and replacing x=1, we get  

= )),...,,,T((W m21  
=



=



=



=

++++








−
m

1j 1i
2

1i
1

1i
j

12j

i)1(i)1()i(i  

             +     
=



=



=



==



=
−









++++








++++
−m

3r 1i 1i 1i
r

m

3r 1i
1r21

1 2 1rr

)i...ii(i)...1(  

             = )1()1(
2

1
)12)(1(

6

1
)1(

2

1
221

m

1j
jjjj

2

j
+++









++−+
=

 

             +   
=

−

=

−

= 





 +++++++

m

3r

1r

1i

1r

1i
iirir112
)1()1)(1(

2

1
)1()1(

2

1  

             = 
=

++++−
m

1j
2121

2

jj
))(1)(1(

2

1
)1(

6

1
 

             +    
=

−

=

−

=

−

= 





 ++++

m

3r

1r

1i

1r

1i

1r

1i

2

iiirr
21)1(

2

1
 

             = 
=

++++−
m

1j
2121

2

jj
))(1)(1(

2

1
)1(

6

1
 

             +  
=

−

=

−

= 





 +−+++

m

3r

1r

1i

2

i

1r

1i
irr

2r)1()1(
2

1
.  # 

Notice that it's possible to find the average distance of a star-like tree 

),...,,(T m21  ,by dividing the Wiener index )),...,,(T(W m21  by 










2

p
, where 

=

+=
m

1i
i1p . 
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Definition 2.2: The tree ),...,,(T m21  of order 4p   is called a Fan 

graph if =
j

, mj1  , which will be denoted by ),m(F  . 

Corollary 2.3: The Wiener Polynomial of a fan graph ),m(F  is given by  

= )x);,m(F(W 


=

+−−+−+−+
0i

2i 1m)1]1)([1m(m
2

1
x)i1(m  …(2.2) 

Proof: 

     Using Theorem 2.1 and putting =
j

 for all j=1,2,…,m, we get   

= )x);,m(F(W  
=



=

++






 −

m

1j

2

0i

i ]1[x)i(  

                     ( )( )
=

−++−+−+
m

3r

1]1[2r]1)[1r(  

                     
=



=

−++++−=
m

3r0i

22i )1r(]1[]1[x)i(m  

                      
= =

−+−+−
m

3r

m

3r

)2r()3r2(]1[  

                     


=

+−−+−+−=
0i

2i ]1)[2m(m]1)[1m(m
2

1
x)i(m  

                     )2m)(1m(
2

1
−−+  

                     


=

+−−+−+−+=
0i

2i 1m)1]1)([1m(m
2

1
x)i1(m  . 

                                                                                                               # 

We notice that when 1= , the fan )1,m(F  becomes a star of order 

m+1, and if we substitute 1=  in the formula (2.2) we get the Wiener 

Polynomial of the star of order m+1.  

                 

Corollary 2.4: The Wiener index of a fan graph ),m(F  of order 4p   is 

=),m(F(W )22m3)(1(m
6

1
+−+ , 

and its average distance is  

=)),m(F(D









+

+
−+

)1m(3

12
1)1( . 



Ali  A. Ali and Ahmed M. Ali  

 

 

 76 

Proof: 

The Wiener index ),m(F(W  follows from corollary 2.2 by 

substituting  =
j

 for j=1,2,…,m . 

And since the number of vertices of ),m(F  is 1mp += , then 

its average distance is 

)),m(F(W
m)1m(

2
)),m(F(D 

+
=    

                 
)1m(3

)22m3)(1(

+

+−+
= 









+

+
−+=

)1m(3

12
1)1( . 

                                                                                               # 
 

Its clear from the above result that + 1)),m(F(D , and this 

inequality generally means that the average distance of the tree ),m(F  is 

bounded above by 1+e(c), where c is root .  
 

3. Other trees 
 

Definition 3.1: Let  ),(b),(aM  be a tree constructed from a path whose 

vertices ( in order ) are w,...,w,w 21  with a fan graph ),a(F  which has 

w  as its center , and another fan graph ),b(F  of center 1w , as shown in 

Fig. 3.1. 
 

 

 

 

  

 
 
 
 

 

2w 
1w 

1,1v 
1,2v 

2,1v 
2,2v 

b,v 

2,v 
1,1u 

1,2u 

1,u 

2,1u 
2,2u 

a,2u 

a,1u 

1,u 

1,v 

b,2v 

b,1v 

w 

a,u 
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Fig. 3.1,. The tree  ),(b),(aM  

Notice that the order of  ),(b),(aM  is ++= bap , its 

diameter 1−++ , and will suppose that  . 

To simplify the symbol  ),(b),(aM  we'll denote it by M in the 

following results.  
 

Theorem 3.1: The Wiener Polynomial of a tree M is given by  


=

=


0

),();(

k

kxkMdxMW ,  

where ++== bap)0,M(d  , and for all 1k  , we have 

  

                         
















+








−+− k1when;

2

b

2

a
)1k(kp  

 
                        















 −+
+








−+− kwhen;

2

b

1

k12

2

a
)1k(kp  

  d(M,k) = 

                         














 −+
+















 −+
+− kwhen;

2

b

1

k12

2

a

1

k12
kp  

 

                          















 −+
+







 −+
+







 −+

2

a

1

k12

1

k
b

1

k
a  

                          +














 −+
+ kwhen;mab

2

b

1

k12  

 

in which  

                   1kwhen;k −+−  

                    

    m =         ++ kwhen;   

 
                   +++− k1when;1k  
 



Ali  A. Ali and Ahmed M. Ali  

 

 

 78 

and 1−++=  

Proof: 

We partition the set of the vertices of the tree M into three subsets 

 3,
2

,
1

VVV  , where  

 = w,...,w,wV 211 , 


a

1i
i22 VV

=

=  ,   
i,i,2i,1i2 u,...,u,uV =  ,      ai1  , 


b

1i
i33 VV

=

=  ,   i,i,2i,1i3 v,...,v,vV =  ,       bi1  , 

It's clear that each of the induced sub graphs  iV2 and, is a  iV3  
path. 

To explain the proof we divide it into two parts. 

 

First: When  k1 , this part is divided into the following three cases  

(a)When  k1 , we note that 
 

 1. If the two vertices were in the set i2V , or if one of the two vertices 

 is in the set i2V and the other vertex is in the set 1V , for all ai1  , 

 then we have  , of the pairs that are distance k apart , and this case 

 leads to a  unordered pairs for all these values of i . 
 

 2. If the two vertices were in the set i3V , or if one of the two vertices 

 is in the set i3V  and the other vertex is in the set 1V , for all bi1  , 

 then we have  , of the pairs that are distance k apart , and this case leads 

 to b  unordered pairs for all these values of i . 
 

 3. If the two vertices are in the set 1V , then we have k−  pairs . 

 4. If one of  the two vertices was in the set i2V  and the other  was in the     

set j2V for each ji  , then we have )1k( − unordered pairs , and this leads 

to 








−

2

a
)1k(

 when we take all the cases for i,j=1,2,…,a. 
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Similarly, we have 








−

2

b
)1k(

 unordered pairs if one of the two 

vertices is in the set i3V  and the other is in the set j3V  for each ji  , and 

for all values of  i,j=1,2,…,b. 

Hence, the total number of unordered pairs of vertices that are 

distance k apart, when  k1  is  









−+








−+−++

2

b
)1k(

2

a
)1k(kba . 

Therefore  

;
2

b

2

a
)1k(kp)k,M(d

















+








+−+−=                  k1when  

(b) When  k , then the numbers of unordered pairs of vertices 

mentioned in case (a) are all hold except for the case in which one of the 

two vertices is in the set i3V  and other is in j3V  for all ji  , in which if, 

 2k , then the number of the pairs is k12 −+ , and if  2k , the 

number of the pairs is zero. Therefore 
















 −+
+








−+−=

2

b

1

k12

2

a
)1k(kp)k,M(d ,     kwhen . 

Notice that its not true in this case to write the number 







 −+

1       

k12  in 

the form k12 −+ , since, if 12k + , then this combination will be 

zero, this style of expression will be used later in similar cases. 
 

(c) When  k , then the numbers of unordered pairs of vertices 

mentioned in case (b) are all hold all except for the case in which one of the 

two vertices is in the set i2V  and other is in j2V  for all ji  , in which if, 

 2k , the number of the pairs is k12 −+ , and if  2k , the 

number of the pairs is zero. Therefore 
















 −+
+















 −+
+−=

2

b

1

k12

2

a

1

k12
kp)k,M(d ,     kwhen . 

 

Second: When , the unordered pairs of vertices that are distance k apart are 

of the following five kinds: 
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(1) One vertex in the set 1V  and the other in the set 2V ; the number of the 

these pairs is 

 







 −+

1       

k
a . 

(2) One vertex in the set 1V  and the other in the set 3V ; the number of the  

these pairs is 








 −+

1       

k
b . 

(3) One vertex in the set i2V  and the other in the set j2V ; for all ji  ; the 

total number of these pairs is 








 −+









1       

k12

2

a . 

(4) One vertex in the set i3V  and the other in the set j3V ; for all ji  ; the 

total number of these pairs is 








 −+









1       

k12

2

b
. 

(5) One vertex in the set 2V  and the other in the set 3V (i.e. a vertex in i2V  

and other in j3V ) where bj1,ai1  , then the number of such pairs 

of vertices is mab in which the values of m depend on k, and we find it 

easily from Fig. 3.2. 
 

 

 

 

 

 

 

 

 

 

Fig.3.2 
2w

 

s,u

 

1w

 

t,v

 

s,1u

 

s,2u

 

t,2v

 
t,1v
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Therefore if 1k −+ , then −= km ; 

if ++ k , then =m ; 

if + k , then k1m −+= . 

Hence by taking the numbers of pairs in the cases (1),(2),(3),(4) and 

(5), we get the formula mentioned in the statement of the theorem when 

 k . Thus the proof is completed . 

Remark  

The Wiener Polynomial of the tree  ),(b),(aM  can be expressed in 

the terms of Wiener Polynomial of the path graph =
1

VQ , the fan 

graph ),b(F  , and the fan graph ),a(F  , by using Theorem (1) of 

Gutman [4], as it is given in the next theorem.  

 

Theorem 3.1: For the tree == ),(b),(aM)M(  we have  

2)x);,a(F(W)x);,b(F(W)x;Q(W)x;M(W −++=

 


=

−

=

+
1k

1

1k

kk )x)(x(b  

                


=

−+

=

−

=

++
1k

1

k

k
1

1k

kk )xbx)(x(a       … (3.1). 

Proof:  

      Let ),b(FQH •= , then    

1}1)x);,b(F,w(W}{1)x;Q,w(W{)x);,b(F(W)x;Q(W)x;H(W 11 −−−++=               

1)x)(x(b))x);,b(F(W)x;Q(W
1k

1

1k

kk −++=  


=

−

=

     … (1) 

Since ),a(FHM •= , then 

)x);,a(F(W)x;H(W)x;M(W +=  

                  1}1)x);,a(F,w(W}{1)x;H,w(W{ −−−+ 
   …(2) 

But  

 
−

=

−+

=
 ++=

1

1k

1

k

kk xbx1)x;H,w(W      …(3)  

and 


=
 +=

1k

kxa1)x);,a(F,w(W                                …(4) 
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Thus, substituting (1),(3) and (4) in (2) , we get the required relation 

(3.1). 

 

Notice that Theorem 3.2 is more general than Theorem 3.1 , because 

it doesn’t require the condition  ; but it's possible to find formulas 

for d(M,k) when   or  , as in Theorem 3.1. 

But Theorem 3.1 is more useful than Theorem 3.2 when we want to 

find the coefficient of a particular power of x. 

 

Corollary 3.3: The Wiener index of the tree = ),(b),(aMM  is 

 )13)(ba()2a3(a)2b3(b)1(
6

1
)M(W 2332 −++−+−+−=  

             +++++−+−+ ab)b(a)a(b)1a(a)1b(b
2

1 2222 . 

Proof: 

To get the Wiener index of   ),(b),(aM  , differentiate the formula 

(3.1) with respect to x then substitute x=1, as follows: 

)),a(F(W)),b(F(W)Q(W)1,M(W)x;M(W ++==  

                 
−+

=



=

−

=

−

=



=

+−+++−++
1

k 1k

1

1k

1

1k 1k

k)b1(a)kbk(ak)1(bkb  

               )22b3)(1(b
6

1
)1(

6

1 2 +−++−=  

               )1()1(b
2

1
)1(b

2

1
)22a3)(1(a

6

1
+−+−++−++  

               )1()b1(a
2

1
))1(

2

1
(b)1(

2

1
a ++−+









−++−+  

Simplifying the above expression , we get 

 )13)(ba()2a3(a)2b3(b)1(
6

1
)M(W 2332 −++−+−+−=  

             +++++−+−+ ab)b(a)a(b)1a(a)1b(b
2

1 2222 . 

                                                                                                                # 
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