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ABSTRACT 

Stability study of stationary solutions of the viscous Burgers equation using 

Fourier mode stability analysis for the stationary solutions Du =1 , where 

D  is constant and ( ) 10,11 = xxuu , in two cases is analyzed. Firstly 

when the wave amplitude A  is constant and secondly when the wave 

amplitude A  is variable. In the case of constant amplitude, the results found 

to be: The solution Du =1  is always stable while the solution ( )xuu 11 =  is 

conditionally stable. In the case of variable amplitude, it has been found that 

the solutions Du =1  and ( ) 10,11 = xxuu  are conditionally stable. 

Keywords: Burgers Equation, Stability Analysis, Stationary Solutions. 
 ةاللزج Burgers لمعادلة لازمنيةلحلول الل يةستقرار الادراسة  

سبعاوي المحمد   
 جامعة الموصل ، كلية علوم الحاسوب والرياضيات

 29/06/2005قبول: تاريخ ال                                 28/04/2005تاريخ الاستلام: 
 الملخص

 اللزج     ة داس        ام تحل      ل  Burgersالحل     وز الة ممي     ة لمعادل     ة  ةدراس     ة اس       راري تتم      
Duللحل                   وز الة ممي                  ة  Fourierم                     ال                  مم   الأس                    رارية ثاب                   ت و  Dإذ  1=

( ) 10,11 = xxuu   في حال   : الأولى في حالة ك و  الع عة الموجي ةA  ثاب  ة والاايي ة ف ي
م غ   رو وا  الم   الت ال   ي ت    الحا  وز عل    ا ف  ي حال  ة الع  عة  الااب   ة  A ي  ةجحال  ة ك  و  الع  عة المو 
Duهي: الح ل الة مم ي  )ه و دوم ام مع   ر ف ي ح    ح  الح ل  1= )xuu 11 مع   ر عل ى يح و  =

 الة ممي   ا  الح   ة  م   امش   رووا وا  الم    الت ال    ي ت     الحا   وز عل     ا ف   ي حال   ة الع   عة  الم غ    رو ه
Du )و  1= ) 10,11 = xxuu  هما  مع  را  على يحو مشرووا و 

 ا الحلوز الة ممية، ةس  راريالاتحل ل  الكلمات المفتاحية:
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1. Introduction  

Consider a system of any nature whatsoever that exists in a state S. 

We say that S is stable, in one sense or another, if small perturbations or 

changes in the system do not drastically affect the state S. For example, the 

solar system currently exists in a time–dependent state in which the planets 

move about the sun in an orderly fashion. It is known that if a small 

additional celestial body is introduced into the system, then the original state 

is not disturbed to any significant degree. We say that the original state is 

stable to small perturbations. Similar questions of stability arise in every 

physical problem [19]. The notorious Burgers equation was the subject of 

interest study in different fields such as analytical solutions, numerical 

solutions, mathematical modeling, fluid mechanics, stability and 

bifurcation. Roy and Baker [27] presented and derived the numerical results 

using a nonlinear subgrid embedded (SGM) finite element basis for D1 , 

D2 and D3  verification/benchmark linear and nonlinear convection–

diffusion problems such as Burgers equation in steady state.  

Burns et al [8] considered the numerical stationary solutions for a 

viscous Burgers equation on the interval ( )1,0  with Neumann boundary 

conditions. Roy and Fleming [28] developed a nonlinear subgrid embedded 

(SGM) finite element basis for generating multidimensional solutions for 

convection–dominated computational fluid dynamics (CFD) applications 

and they applied them to a stationary Burgers equation. Balogh and Krstic 

[4] considered the viscous Burgers equation under recently proposed 

nonlinear boundary conditions and they showed that it guarantees global 

asymptotic stabilization and semi global exponential stabilization in 1H  

sense. Balogh et al [5] studied the stationary solutions of a one–parameter 

family of boundary control problems for a forced viscous Burgers equation. 

They assumed that the forcing term possesses a special symmetry.  Allen et 

al [2] studied numerically the equilibrium solutions of Burgers equation. 

Moller [23] studied and conducted some numerical experiments on the D1  

viscous Burgers equation in linear and nonlinear cases with the same 

stationary solution.  

Di Francesco and Markowich [11] studied the large time behavior 

for the viscous Burgers equation with initial data in ( )RL1 . They reduced 

the rescaled Burgers equation to the linear Fokker–Planck equation and then 

employed well known results concerning the decay in relative entropy and 

in Wassertstein metric towards stationary solutions for the Fokker–Planck 
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equation. Holm and Staley [14] studied the exchange of stability in the 

dynamics of solitary wave solutions under changes in the nonlinear balance 

in a 11+  evolutionary PDE related both to shallow water waves and 

turbulence such as Burgers equation.  

Bakhtin [3] considered the existence and uniqueness of stationary 

solutions for D3  Navier–Stokes system in the Fourier space with regular 

forcing given by a stationary in time stochastic process satisfying a 

smallness condition. The method of constructing stationary solutions is 

actually applicable for the Burgers equation. Kowalczyk et al [17] studied in 

details the linear stability analysis of homogeneous solutions to some 

aggregation models such as in viscid Burgers like equations. Konicek et al 

[16] derived a new approximate solution of the inhomogeneous Burgers 

equation for real fluid in stationary state regime using Prandtl’s technique 

and verified the validity of the approximate solution by comparison with the 

numerical one. Roy [26] examined the numerical solutions to D1  Burgers 

equation in unsteady and steady states.  

In this paper, the stability of stationary solutions of viscous Burgers 

equation using Fourier mode stability analysis is investigated.   

2. The Mathematical Model   

          One of the famous nonlinear diffusion equations is the generalized 

Burgers–Huxley (gBH) equation [30]:  

( )( ) )1(1 auuuuuuu xxxt −−=−+    

where aand,,,   are constant parameters 

11,0,0,0,0 − a   

where  is the diffusion coefficient and in fluid flow problems it represents 

the viscosity and is the reciprocal of the Reynolds number. 

Equation (1) is an extended form of the famous Huxley, Newell– 

Whitehead (NW) and Burgers equations [12]. When 0= , equation (1) is 

reduced to the generalized Huxley or generalized Fitzhugh–Nagumo (gFN) 

equation. 

( )( ) )2(1 auuuuu xxt −−=−   

Huxley equation is a particular case of Eq.(1) and (2) when 

1,0 ==   and 1= , respectively [22]. 

( )( ) )3(1 auuuuu xxt −−=−   

which describes nerve pulse propagation in nerve fibers and wall motion in 

liquid crystals. The parameter a  arises in genetics and other fields, the case 
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with 10  a  is what the geneticists refer to as the heterozygote inferiority 

case [15]. Manaa and Moheemmeed studied the stability [20] and the 

numerical solution [21] of this case.  

The standard real Newell–Whitehead (rNW) equation is a special 

case of Eq. (2) and (3) when 1−=a , 1= and 1= , respectively. 

( ) )4(1 2uuuu xxt −=−   

Newell and Whitehead examined this equation in 1969 [24].  

When 0= , Eq. (1) is reduced to the generalized Burgers equation  

)5(0=−+ xxxt uuuu   

The well known viscous Burgers equation is a special case of Eq.(1) 

and (5) when 0= ,  1=  and 1=  ,respectively [18]. 

)6(0=−+ xxxt uuuu   

Burgers equation provides remarkable system that has been studied 

for some time by Bateman in 1915 and was extensively developed by 

Burgers in 1940 and 1948 as a simplified fluid flow model which, 

nonetheless, exhibits some of the important aspects of turbulence. It was 

later derived by Lighthill in 1956 as a second–order approximation to the 

one–dimensional unsteady Navier–Stokes equation [5]. The Burgers 

equation can be seen as a reduction of the Navier– Stokes equation to the 

case of a single space dimension. In this equation,   controls the 

nonlinearity and  stands for viscosity. It is perhaps the simplest nonlinear 

differential second order equations, and it has been considered to describe 

different physical problems such as sound waves in viscous media, the far 

field of wave propagation in nonlinear dissipative systems, shock waves, 

magnetohydrodynamic waves in media with finite electrical conductivity, 

nonlinear heat diffusion and viscous effects in gas dynamics [6]. The study 

of the viscous Burgers equation is naturally related to that of the in viscid 

Burgers equation [11]:  

)7(0=+ xt uuu   

The heat equation corresponds to the linearized Burgers equation 

)8(0=− xxt uu

 It is known that nonlinear diffusion equations (3) and (6) play 

important roles in nonlinear physics. They are of special significance for 

studying nonlinear phenomena. If we take 1=  and 0,0   , 

equation (1) becomes the following Burgers–Huxley (BH) equation: 



Stability Study of Stationary… 
 

 

 23 

( )( ) )9(1 auuuuuuu xxxt −−=−+ 

 Equation (9) shows a prototype model [30] for describing the 

interaction between reaction mechanisms, convection effects and diffusion  

transport. Also, Burgers equation is a particular case of following 

convection–reaction–diffusion equation. 

( ) )10(1   uuuuuu xxxt −=−+

 The equation (10) is the generalized Burgers–Fisher (gBF) equation, 

the generalized Burgers and Burgers equations correspond to the cases 

0=  and 0= , 1= , respectively. When 0= , equation (10) is 

reduced to the generalized Fisher equation 

( ) )11(1  uuuu xxt −=−

 

when 1= , We have Fisher–Kolmogorov–Petrovskii–Piskunov (Fisher–

KPP) or Fisher equation [13]: 

( ) )12(1 uuuu xxt −=−   

The case 1= in Eq.(10) is the Burgers–Fisher equation [30]:  

( ) )13(1 uuuuuu xxxt −=−+ 

 There is another Burgers type equation named the generalized 

Burgers–Korteweg–de Vries equation [31]: 

)14(0=+−+ xxxxxxt uuuuuu  

 

where  and,  are positive real numbers. It reduces to the generalized 

Burgers and Burgers equations for 0,0 ==   and 0,0 ==  , 

1= , respectively. It also reduces to the generalized Korteweg–de Vries 

(gKdV) and standard Korteweg–de Vries (KdV) equations for 0=  and 

,0= 1= , respectively. 

)15(0=++ xxxxt uuuu  

)16(0=++ xxxxt uuuu 

 The Burgers–Korteweg–de Vries or Burgers–KdV equation [18] is 

special case of Eq. (14) when 1= and 0= .   

)17(0=+−+ xxxxxxt uuuuuu 

 which reduces to the Burgers and KdV equations when 0= and 0= , 

respectively.  
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3. Introduction to the Burgers Type Equations 

Burgers type equations are famous nonlinear equations which, 

appear in different scientific fields and play significant role in the study of 

the nonlinear evolution equations in applied mathematics. Satsuma– 

Burgers–Huxley (SBH) equation [9], [10] considers another type of the 

Burgers type equation with reaction term:  

( ) ( )( ) )18(131 3 dbuuuuuu xxxt ++−−=−−−  

where 0, db . Burgers equation corresponds to the case .1=  When 

3/1= , SBH equation reduces to Fitzhugh–Nagumo–Kolmogorov– 

Petrovskii–Piskunov (FN–KPP) equation, which arises in population 

dynamics and other fields 

( ) )19(
3

2

3

1 3 dbuuuu xxt ++−







=








−

 The case 0= , corresponds to the first order equation  

( ) )20(3 dbuuuuu xt ++−=−

  

One of the important models related to both shallow water waves 

and to turbulence is the b–equation [14]:  

)21(0=−++ xxxxt mubmmum

 

 
 

with ...,3,2,1,0,2 =−= buum xx .The equation (21) contains a 

family of equations. For ,0,0 == b equation (21) is reduced to Burgers 

equation. The case 2=b  restricts (21) to the Cammassa–Holm (CH) 

equation 

)22(02 =−++ xxxxt mmuumm

 

The case 3=b  is the Degasperis–Procesi (DP) equation  

)23(03 =−++ xxxxt mmuumm
 

Let us consider the generalized Burgers equation (5), this equation is 

named generalized since it contains the quantity 
u  in the convection term 

.xuu We can get another generalized Burgers equations by changing the 

properties of the nonlinear term .xuu  The generalizations of Burgers and 

Burgers–Huxley equations, for which only relaxation of the assumption of 

Evolutio

n 
Viscosit

y  Stretching Convectio

n 
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weak nonlinearity is made. This means that no change in the original 

equations is made to introduce other effects, like including a new term to 

describe dispersion for instance, but just changing the nonlinear properties 

of the original system, for the generalized Burgers equation, for example, 

the consideration of the dynamics of diffusion in media where nonlinearity 

is not just restricted to the simplest case. If we replace the nonlinear term 

xuu in (5), we get another generalized Burgers equation [6]:  

( ) )24(0=−+ xxxt uuugu
 

where ( )ug  is a smooth function of u . The Burgers equation (6) is 

obtained with the linear function ( ) uug = . Like the Burgers equation (6), 

the generalized Burgers equation (24) also combines nonlinearity and 

diffusion, but now nonlinearity is controlled by ( )ug  and may vary 

according to the model one considers, note that the Burgers equation is 

defined with the simplest nontrivial function ( )ugg = . If we take 

( ) 23 uug =  in (24), we get: 

)25(3 2

xxxt uuuu −+   

This equation is named the modified Burgers equation, since it 

contains nothing but the change 
23uu →  in its nonlinear term. Equation 

(24) can be written in the form: 

)26(0=−+ xxxt ufu
 

and for ( )uff = , we get: 

)27(0=−+ xxxt uu
du

df
u

 This form is interesting since it allows a natural extension to systems 

where two or more configurations interact with each other. The equation 

(27) can be extended to the system of two coupled Burgers type equations  

)28(
0

0





=−+

=−+

xxxt

xxxt

vgv

ufu

where ( ) ( )txvvandtxuu ,, ==  are the two interacting configurations. For 

( ) ( )vuggandvuff ,, == , we can write (28) as: 
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)29(
0

0





=−++

=−++

xxxvxut

xxxvxut

vvgugv

uvfufu

 The generalized Burgers equation (24) can be further extended to the 

following form  

( ) )30(uxxxtxxxt fufuoruhuu
du

df
u  =−+=−+

where ( ) ( )uhhanduff ==  are smooth functions. Equation (30) 

represents another generalized Burgers–Huxley or generalized Burgers–

Fisher equations, which differ from the equations (1) and (10) by changing 

the nonlinear term. If we take ( ) ( )uhuf =  this is very interesting since we 

can relate the equation (30) to relativistic 11+  dimensional systems of 

scalar fields, and so we can get different equations and solutions given in 

terms of different functions ( )uff = . If we take ( ) ( ) ( )2uuuhuf −==   in 

(30), we have: 

( ) ( ) )31(3 22 uuuuuu xxxt −=−−+ 

which is named the modified Burgers–Huxley (mBH) equation. Equation 

(30) can be further generalized to the case where several configurations 

interact with each other. In the case of two configurations ( )txu ,  and 

( )txv , , equation (30) is extended to the following system of pair of coupled 

Burgers–Huxley equations [6]: 

( )

( )
)32(

,

,





=−++

=−++

vufvufvfv

vufuvfufu

xxxuxvt

xxxvxut





 If KdV and Burgers–Huxley equations are added, we get the 

generalized KdV–Burgers–Huxley (gKdVBH) equation [7]: 

( ) )33(uhugfu xxxxxxt =+++ 

where handgf ,  are smooth functions in u. It contains several interesting 

particular cases. For ( ) 0=uh , it corresponds to the generalized KdV–

Burgers (gKdVB) equation: 

)34(00 =+++=+++ xxxxxuuxutxxxxxxt uugufuorugfu 

 For ( ) ( )vuggandvuff ,, == , we get the 

standard (KdVB) equation (17). The (KdV) and Burgers equations were 

first added [7] to describe properties of waves in liquid–filled elastic tubes. 
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For ( ) ( ) ( ) 0,
3

=−== uhanduuguuf  , it represents the modified KdVB 

(mKdVB) equation: 

)35(03 2 =+−+ xxxxxxt uuuuu 
 

 For g  trivial, i.e. 0=g , we get the generalized KdV–Huxley 

(gKdVH) equation since it is similar to the generalized BH equation but 

with diffusion term present in the BH case changed by the dispersion term 

present in the KdV case. The equation (34) can also be extended to a system 

of coupled gKdVB equations in the form [7]: 

)36(
0

0





=+++

=+++

xxxxxxt

xxxxxxt

vgfv

ugfu





 Here ( ) ( )vuggandvuff ,, ==  are odd in u  and even in v , and 

( ) ( )vuggandvuff ,, ==  are even in u and odd in v , in order to preserve 

the symmetries in the ( )vu ,  space of the original equations. These smooth 

functions allow us to write the above equations in the form: 

( )

( )

( )

( )

)37(

0
2

2

2

0
2

2

2














=+++

+++++

=+++

+++++

xxxuxvvvgxvxuuvg

xuuugxxvvgxxuugxvvfxuuftv

xxxuxvvvgxvxuuvg

xuuugxxvvgxxuugxvvfxuuftu





 The nonlinear differential equations in the generic form [25]: 

( ) ( ) )38(uAuuuuPu xxxxxxt =+−+ 

with polynomial functions defined as: 

( ) 
=

=
Np

i

iiupuP
0

)39(

( ) 
=

=
Np

i

iiuauA
0

)40(

 The general form of equation (38) allows the identification of 

several interesting cases. For instance, the gKdVBH equation is recovered 

from Eq.(38) for 

( ) ( ) ( ) ( )uAuhandugugup
du

df
o =−== ,, .  
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Furthermore, the standard KdVB equation corresponds to identifying 

( ) ( ) 0, == uAanduuP  , and the modified KdVB equation [25] requires 

( ) ( ) 0,3 2 == uAanduuP  , with the particular case 0=  accounting 

respectively for the standard and modified KdV equations: 

)41(03 2 =++ xxxxt uuuu 

 Equation (41) represents the mKdV equation. On the other  

hand, the BH equation represents the situation in which 

( ) ( ) ( )uhuAanduuP === ,0,  . 

( ) )42(uhuuuu xxxt =−+

with the case ( ) 0=uh  corresponding to the standard Burgers equation , 

which has an important connection with the deterministic Kardar–Parisi–

Zhang (KPZ) equation in one spatial dimension, known to provide the 

evolution of the profile of a growing interface or a domain wall of general 

nature. Eq.(42) sometimes is named the inhomogeneous Burgers equation or 

Burgers equation with reaction term [29] but when ( ) 0=uh  it is named the 

homogeneous Burgers equation.  

  4. The Non-dimensional Transformations 

For non-dimensional form, we introduce the following non-

dimensional quantities: 

Lx
L

t
t

L

x
x == 0,,


 

By substituting these dimensionless quantities in (6), we get: 

10,0
Re

1
=−+  xuuuu xxxt  

Here /L  represents the Reynolds number if we set = /Re L  and omit 

the primes in the equation in above, we get: 

)43(0
Re

1
=−+ xxxt uuuu

( ) ( ) 0,10,,1,,0 −== axatuatu  

The equation (43) with the boundary conditions represents the non-

dimensional Burgers equation in x  and t . 

5. Fourier Mode Stability Analysis 

 Let the solution of equation (43) has the following form [19]: 



Stability Study of Stationary… 
 

 

 29 

( ) ( ) ( ) )44(,, 21 txuxutxu +=

where ( )xu1  is the steady state solution and ( )txu ,2  is the disturbance or 

perturbation . 

Substitute (44) in (43), with its boundary condition, we have: 

( ) )45(0
Re

1

Re

1
2

2

2

2

1

2

21
21

2 =



−−












+++





x

u

dx

ud

x

u

dx

du
uu

t

u

0
2

2
2

Re

1

2

1
2

Re

12
2

1
2

2
1

1
1

2
=




−−




++




++






x

u

dx

ud

x

u
u

dx

du
u

x

u
u

dx

du
u

t

u
 

If we separate the two cases, we obtain the following two equations: 

)46(0
Re

1
2

2

2

2
2

1
2

2
1

2 =



−




++




+





x

u

x

u
u

dx

du
u

x

u
u

t

u

)47(0
Re

1
2

1

2

1
1 =−

dx

ud

dx

du
u

 ( ) ( ) 10,1,0 11 −== xauau   

By linearizing equation (46), we have: 

)48(0
Re

1
2

2

2

1
2

2
1

2 =



−+




+





x

u

dx

du
u

x

u
u

t

u

Equation (47) represents the stationary or steady state viscous Burgers 

equation. The analytical solution of equation (47) is: 

( ) ( )( ) ( )( ) ( ) )49(0,1/1 Re5.0Re5.0Re

1 ++−= −−− aeOeeaxu axaxa

where ( )ReaeO −  is the order of exponentially small error terms [23] in 

satisfying the boundary conditions . Equation (49) represents the steady 

state or stationary solution of Burgers equation. Under certain boundary 

conditions, the solution of the viscous Burgers equation, Eq. (6) approaches 

a unique stationary solution, ( )xu1 , if the initial conditions ( )0,xu  are 

sufficiently close. The equilibrium solution takes the form of a viscous 

shock located at the center of the domain.  

 The rate of convergence is determined by the eigen values j  of the 

associated linearized problem. 

( ) )50(...Re,0 32

Re

1 −=− −  beO

where 0b  is a constant independent of  . The solution will approach the 

steady state approximately as 
t

e 1
, hence for small values of , this will 
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become an extremely slow process. The equation (47) has another constant 

solution DDu ,1 =  is constant. The unsteady state solution of Burgers 

equation after dimensionalizing and scaling by   is [26]: 

( ) ( ) ( )( ) ( ) ( )( ) )51(/exp/cosh//sinh/2, 22 LtLxLxLtxu −+−= 

5.1. Stability Analysis in the Case of Constant Amplitude 

We assume that the perturbation has the following form [19]: 

( ) ( ) )52(,2

ctxikeAtxu −=

1,,0,0 21 −=+= iiccckA  

where A is the wave amplitude , k  is the wave, number c  is the wave 

velocity . If 02 c  the disturbance will decay as →t  and the solution is 

stable, but if 02 c  the disturbance will grow as →t  and the solution is 

unstable. The case 02 =c , gives the neutral stability curve, which separates 

between the stable and unstable regions, 2c  is called the stability indicator 

[22]. 

Substitute (52) in (48), and after some mathematical manipulation, we get:   

Re

1 1
121

k

dx

du

k
iucic −−−=+−  

Equating the real and imaginary parts , we have : 

)53(Re/Re 12

2

11

















+−=

=

k
dx

du
kc

uc

Now, we shall study the following two cases: 

(a) When Du =1 , where D  is constant, this leads to 01 =
dx

du
, substitute in 

(53), we get: 

( ) )54(0Re/2 −= kc

Hence, the constant stationary solution Du =1  is always stable. 

(b) When ( ) ( ) ( )( ) ( )( )5.0Re5.0Re

11 1/1 −− +−== xaxa eeaxuxu  as shown in Fig.(1),  

then ( ) ( )( )( )25.0Re5.0Re21 1/Re2 −− +−= xaxa eea
dx

du
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Figure (1) shows the stationary solution ( )xuu 11 =  when 

10,1Re,1 == xa  

 

Here, in above we neglect the error term since it is small [23].   

For simplicity, we put ( )xf
dx

du
−=1  in (53), we have: 

( )( )  )55(Re/Re2

2 kxfkc −−=

 where ( ) ( ) ( )( )( ) 01/Re2
25.0Re5.0Re2 += −− xaxa eeaxf  

From Equation (55), we have  

(i) If ( )xfk Re2  , then 02 c  and the solution is unstable.  

(ii) If ( )xfk Re2  , then 02 c  and the solution is stable.  

(iii) If ( )xfk Re2 = , then 02 =c , which gives the neutral stability curve as 

shown in Fig. (2): 

( ) ( ) ( )( )( ) )56(1/Re)(2Re
25.0Re5.0Re2 −− +== xaxa eeaxfk
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 Figure (2) 

The neutral stability curve in (56) for the stationary solution  ( )xuu 11 =  

when  10,1Re,1 == xa  
 

5.2. Stability Analysis in the Case of Variable Amplitude 

We assume the disturbance to have the following form [19], [1]: 

( ) ( ) ( ) )57(,2

ctxikexAtxu −=

 Substitute (57) in (48), and neglect the imaginary part in the 

resulting equation, we have: 

( ) ( ) ( ) )58(0ReReRe 2
12

1 =







++−− xAkc

dx

du
kxAuxA

 Equation (58) can be written in the following form: 

( ) ( ) ( ) )59(0Re 1 =−− xAxAuxA 

( ) ( ) aAaA −== 1,0    

2
12 ReRe kc

dx

du
k ++=  

The characteristic equation of Eq. (59) is:  

)60(0Re 1

2 =−− mum

which has the following solutions: 
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( ) )61(2/4ReRe
2

111 




 +−= uum

( ) )62(2/4ReRe
2

112 




 ++= uum

 According to the sign of   Eq. (59) has the following three 

analytical solutions: 

          (i) If  ,0,..0 = HHei   then (61) and (62) become: 

( ) 2/4ReRe
2

111 




 +−= Huum  

( ) 2/4ReRe
2

112 




 ++= Huum  

The general solution of Eq. (59) in this case is: 

( ) xmxm
CeBexA 21 +=  

Now, we have the following two cases:  

(a) When DDu ,1 =  is constant by using the boundary conditions, we get: 

)63(
21





−=+

=+

aCeBe

aCB

mm

 

By solving the algebraic system (63), we have: 

( ) ( )( ) ( ) ( )( ) 21211212 ,/1,/1
mmmmmmmm

eeeeeaCeeeaB −+=−+−=  

( ) ( )( ) ( ) ( )( ) )64(11/ 122121 xmmxmmmm
eeeeeeaxA +−+−=

(b) When ( ) ( )( ) ( )( ))1/(1 5.0Re5.0Re

11

−− +−== xaxa
eeaxuu  

( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( ) ( )( ) 2/40Re0Re0,2/40Re0Re0

1/11,1/10

2

112

2

111

Re5.0Re5.0

1

Re5.0Re5.0

1






 ++=





 +−=

+−=+−= −−

HuumHuum

eeaueeau aaaa

( ) ( ) ( )( ) ( ) ( ) ( )( ) 2/41Re1Re1,2/41Re1Re1
2

112

2

111 




 ++=





 +−= HuumHuum

 By using the boundary conditions, we obtain:  
( )( ) ( ) ( )( )( ) ( )( ) ( ) ( )( )( ) ( ) ( )11111111 21211212 ,/1,/1

mmmmmmmm
eeeeeaCeeeaB −+=−+−=

In this case the general solution has the form:  

( ) ( ) ( )( )( ) ( )( ) ( )( )( ) )65(11/ 122121 1111 xmmxmmmm
eeeeeeaxA +−+−=  

(ii) If 0= , then 121 Re,0 umm ==  

The general solution is:  

( ) xu
eCBxA 1Re

+=  
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By using the boundary conditions, we get: 

)66(
1Re





−=+

=+

aeCB

aCB

u

By solving the system (66), we have: 

( ) ( )( ) ( )( ) 1,1/2,1/1 1111 ReReReRe
−=−+−=

uuuu
eeaCeeaB  

(a) When Du =1 , the general solution is: 

( ) ( ) ( )( ) ( )( ) 1,1/21/1 ReReReReRe −+−+−= DDxDDD
eeeaeeaxA  

 (b) When ( )( ) ( )( )5.0Re5.0Re

1 1/1 −− +−= xaxa eeau , the general solution is: 

( ) ( )( ) ( )( )( ) ( )( )( ) ( ) ( )
1,1/21/1

1Re1Re1Re1Re1Re 11111 −+−+−=
uxuuuu

eeeaeeaxA
 

The case 0=  is the case of the constant amplitude, which is 

discussed in (5.1).   

(iii) If 0 , let 0, −= RR , then we have the following cases: 

(1) When ( ) Ru 4Re
2

1  , then the solution as in the case (i). 

(2) When, ( ) Ru 4Re
2

1 =  then the general solution is:  

( ) 2

Re

2

Re 11 xuxu

eCxeBxA +=  

By using the boundary conditions, we obtain: 

( ) 2

Re

2

Re

2

Re

2

Re

2

Re 11111

/11,/1,

xuuuuu

exeeaxAeeaCaB









































+−=




























+−==

 

(a) When Du =1 , then the general solution is: 

( ) 2

Re

2

Re

2

Re

/11

DxDD

exeeaxA









































+−=  

(b) When ( )( ) ( )( ))1/(1 5.0Re5.0Re

1

−− +−= xaxa
eeau , then 

 
( )

( ) ( )

2

1Re

2

11Re

/2

11Re

11

xu

ex

u

e

u

eaxA























































+−=
 

(3) When ( ) Ru 4Re
2

1  , let ( ) 0,4Re
2

1 −=− EERu , then  

( ) ( ) 2/Re,2/Re 1211 iEumiEum +=−=  

The general solution is: 
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( ) ( )( ) ( )( )xEeCxEeBxA

xuxu

2/sin2/cos 2

Re

2

Re 11

+=  

By using the boundary conditions, we have: 

( ) ( )( ) aECEaeaB

u

−=+= 2/sin2/cos, 2

Re 1

 

For simplicity and to determine the value of 2c , we take 1,1 == aC  and 

after some mathematical manipulation, we get: 

( )( )2Re1 1sin 1 −=
−− u

eE  

( )( ) ( ) ( ) −







++=−=−=

−− 2

12
122

1

2Re1 ReReRe4Re41sin 1 ukc
dx

du
kuReE

u
 

( )( ) ( ) )67(Re4/Re1sinRe44
2

1

2Re112

2
1

















−−−+−=

−− kue
dx

du
kc

u

Equation (67) has the following three cases:  

(i) If ( )( ) ( )2

1

2Re112 Re1sinRe44 1 ue
dx

du
k

u
+−+

−− , then 02 c  and the 

solution is unstable.  

(ii) If ( )( ) ( )2

1

2Re112 Re1sinRe44 1 ue
dx

du
k

u
+−+

−− , then 02 c  and the 

solution is stable.  

(iii) If ( )( ) ( )2

1

2Re112 Re1sinRe44 1 ue
dx

du
k

u
+−=+

−− , then 02 =c  , which 

gives the neutral stability curve: 

( )( ) ( )

( )( ) ( )
dx

du
ue

dx

du
uek

u

u

12

1

2Re1

12

1

2Re1

Re4Re1sin

)68(4/Re4Re1sin

1

1

+−









−+−=

−−

−−

Now, we shall apply the results in above to the following two cases: 

(a) When ( ) DDxu ,1 =  is constant, we have                                                                                                                                                        

( )( ) ( )( )  )69(Re4/Re1sin4
22Re12

2 kDekc D −−−−= −−

From equation (69), we have the following three cases: 

(i) If ( )( ) ( )22Re12 Re1sin4 Dek
D +− −−

, then 02 c  and the solution is 

unstable.  
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(ii) If ( )( ) ( )22Re12 Re1sin4 Dek
D +− −− , then 02 c  and the solution is 

stable.  

(iii) If ( )( ) ( )22Re12 Re1sin4 Dek
D +−= −− , then 02 =c , which gives the 

neutral stability curve as shown in Fig. (3):  

( )( ) ( )( ) )70(4/Re1sin
22Re1 Dek D +−= −−  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure (3) 

The neutral stability curve in (70) for the stationary solution  

( ) Dxu =1  when  10,1Re,1 == xD  

 

(b) When  ( ) ( )( ) ( )( )( ))1(/1 5.0Re5.0Re

11

−− +−== xx
eexuu , we have       

( ) ( )( )( ) ( )( ) )71(Re4/Re1sinRe44
2

1

2Re112

2
1

















−−−+−=

−− kxue
dx

xdu
kc

xu

From equation (71), we have the following three cases: 

 (i) If 
( ) ( )( )( ) ( )( )2

1

2Re112 Re1sinRe44 1 xue
dx

xdu
k

xu
+−+

−− , then 02 c  

and the solution is unstable.  

(ii) If 
( ) ( )( )( ) ( )( )2

1

2Re112 Re1sinRe44 1 xue
dx

xdu
k

xu
+−+

−− , then 02 c  

and the solution is stable.  
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(iii) If 
( ) ( )

( )( )2
1Re

2

11Re1
sin

1
Re4

2
4 xu

xu
e

dx

xdu
k +−

−−
=+ 
















, then 02 =c , 

which gives the neutral stability curve 

( )( )( ) ( )( )
( )

( )( )( ) ( )( )
( )

dx

xdu
xue

dx

xdu
xuek

xu

xu

12

1

2Re1

12

1

2Re1

Re4Re1sin

)72(4/Re4Re1sin

1

1

+−









−+−=

−−

−−

 

6. Conclusions  

The main conclusions from this study in the case of constant 

amplitude are:  

(1) The steady state solution Du =1 , where D  is constant, is always stable.  

(2) The stationary solution ( ) ( )( ) ( )( ))1/(1 5.0Re5.0Re

11

−− +−== xaxa
eeaxuu  is 

stable if ( ) ( )( )( )25.0Re5.0Re22 1/Re)(2 −− + xaxa
eeak  i.e. the solution 

( )xuu 11 =  in above is conditionally stable and the neutral stability curve is:  

( ) ( )( )( )25.0Re5.0Re2 1/Re)(2 −− += xaxa eeak  

The results in the case of variable amplitude are:  

(1) The equilibrium solution Du =1 , where D  is constant, is stable if:  

( )( ) ( )22Re12 Re1sinRe4 Dek
D +− −−  and the neutral stability curve is:  

( )( ) ( )( ) 4/Re1sin
22Re1 Dek D +−= −−  

(2) The equilibrium state solution ( ) ( )( ) ( )( )( )5.0Re5.0Re

11 1/1 −− +−== xx eexuu  is 

stable if 
( ) ( )( )( ) ( )( )2

1

2Re112 Re1sinRe44 1 xue
dx

xdu
k

xu
+−+

−−  and the neutral 

stability curve is:  

( )
( )( )

( )

( )
( )( )

( )

dx

xdu
xu

xu
e

dx

xdu
xu

xu
ek

1
Re4

2
1Re

2

11
Re1

sin

4/
1

Re4
2

1Re

2

11
Re1

sin

+−
−−

−+−
−−

=
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