A New Restarting Criterion for FR-CG Method with Exact and Inexact Line Searches

Maha S. Younis

College of Education University of Mosul, Iraq

Received on: 11/09/2007

Accepted on: 04/03/2008

ABSTRACT

A new restarting criterion for FR-CG method is derived and investigated in this paper. This criterion is globally convergent whenever the line search fulfills the Wolfe conditions. Our numerical tests and comparisons with the standard FR-CG method for large-scale unconstrained optimization are given, showining significantly improvements.

Keywords: Unconstrained optimization, FR-CG method, restarting criterion, line search, Wolfe conditions.

مقياس استرجاع جديد لطريقة FR-CG بخطوط بحث تامة وغير تامة

مها يونس

كلية التربية، جامعة الموصل

تارىخ القبول: 2008/03/04

تاريخ الاستلام: 2007/09/11

الملخص

تم في هذا البحث اشتقاق مقياس استرجاع جديد لطريقة FR-CG. هذا المقياس له تقارب شامل باستخدام خط بحث يحقق شروط Wolfe . وقد اثبتت التجارب العلمية مقارنة بطريقة FR القياسية وللمسائل ذات الابعاد الكبيرة نجاح هذا المقياس.

الكلمات المفتاحية: أمثلية غير مقيدة، طريقة FR-CG، مقياس استرجاع، خط بحث، شروط Wolfe.

1. INTRODUCTION:

The classical conjugate gradient method to minimize a non linear function f(x) of the vector variable

 $x = (x_1, x_2, \dots, x_n)^T$ is an iterative method defined by

$$\mathbf{x}_{i+1} = \mathbf{x}_i + \alpha_i \mathbf{d}_i \qquad \dots (1)$$

$$d_1 = -g_1$$
 ...(2)

and

$$d_{i+1} = -g_{i+1} + \beta_i d_i$$
 ...(3)

where $g_i = \nabla f(x_i)$, α_i is a line search parameter, and

$$\beta_i^{HS} = y_i^T g_{i+1} / d_i^T y_i$$
 ...(4)

with $y_i = g_{i+1} - g_i$ the method was originally proposed by Hestenes and Stiefel [Hestenes and Stiefel, 1952] to solve a systems of linear equations, and first applied to nonlinear optimization problems by Fletcher and Reeves [Fletcher and Reeves, 1964].

In the original Fletcher-Reeves paper, the parameter β_i defined by (4) is redefined by:

$$\beta_{i}^{FR} = g_{i+1}^{T} g_{i+1} / g_{i}^{T} g_{i} \qquad \dots (5)$$

The definitions (4) and (5) are identical if α_i is chosen to minimize f(x) along d_i and f(x) is quadratic.

Polak and Ribiere [Polak and Ribiere, 1969] suggested a β_i defined by :

$$\beta_{i}^{PR} = g_{i+1}^{T} y_{i+1} / g_{i}^{T} g_{i}$$
 ...(6)

which is identical to (4) whenever $a\alpha_i$ is chosen to minimize f(x) along d_i , independent of any assumption.

Shanno [Shanno, 1978] noted that the search direction (3) was equivalent to:

$$d_{i+1} = -\left(I - \frac{\delta_{i} y_{i}^{T} + y_{i} \delta_{i}^{T}}{\delta_{i}^{T} y_{i}} + \left(1 + \frac{y_{i}^{T} y_{i}}{\delta_{i}^{T} y_{i}}\right) \frac{\delta_{i} \delta_{i}^{T}}{\delta_{i}^{T} y_{i}}\right) g_{i+1} \qquad ...(7)$$

 $\delta_i = \alpha_i d_i$, whenever $d_i^T g_{i+1} = 0$ The last condition is simply the condition that a α_i minimize f(x) along d_i , an advantage of (7) over (3) is that under much looser line search criteria than exact line minimization, the direction is a descent direction, while all the above algorithms reduce to the same algorithm under the assumption of exact line minimization and a quadratic f(x). A complicated algorithm based on (7), using self scaling, Beale restarts [Beale, 1972] and Powell's restart criterion [Powell, 1977] has been implemented [Shanno and Phua, 1980], and shown to be generally numerically far more efficient than any of the standard algorithms using (3) with various choices of β_i .

Further, the algorithm has been shown to converge to a stationary point of f(x) [Shanno, 1978] under loose line search criteria for convex functions, but has not been shown convergent for general functions satisfying the conditions that:

F(x) has continuous second partial derivatives ... (8)

And the set x defined by:

$$\{ x \mid f(x) < f(x_1) \} \text{ is bounded} \qquad ...(9)$$

Zoutendijk (1970) showed convergence of the Fletcher-Reeves conjugate gradient method, corresponding to the choice of β_i defined by (5), for such functions which have also recently been shown by Powell (1983).

Powell's paper, however, also shows that for β_i chosen to satisfy (4) rather than (5), even with exact line searches, there exist functions satisfying (8) and (9) where the sequence (1)-(3) cycles infinitely.

Furthermore, on the sequence of points for which cycling occurs, g(x) is bounded away from zero.

It is the purpose of this note to show that convergence proof for the Fletcher-Reeves method may be used to guarantee convergence to stationary point for any conjugate gradient method. Numerical results testing the proposed modification on the algorithm of Shanno and Phua show that the efficiency of the modified algorithm is no worse than the original algorithm, and is sometimes better.

Further, test results indicate potential real improvement of the original algorithm may be achieved for at least some large problems. As large problems are the problems for which conjugate gradient methods have been devised, the test appears to have computational as we as theoretical utility [Shanno, 1985].

The work of Hestenes and Stiefel,(1952) presents achoice for β_i closely related to the Polak and Ribiere scheme :

$$\beta_{i}^{HS} = y_{i}^{T} g_{i+1} / y_{i}^{T} d_{i}$$
 ...(10)

If α_i is obtained by an exact line search, then by (3) we have:

$$y_i^T d_i = (g_{i+1} - g_i)^T d_i = -g_i^T d_i = g_i^T g_i$$
 ...(11)

Hence $\beta_i^{HS} = \beta_i^{PR}$ when α_i is obtained by an exact line search.

More recent nonlinear conjugate gradient algorithms include the conjugate descent algorithm of Fletcher (1987) the scheme of Liu and Storey [1991], and the scheme of Dai and Yuan, (1999), (See also the survey article of Hager and Zhang, (2006). The scheme of Dai and Yuan corresponds to the following choice for the update parameter [Hager and Zhang, 2006]. By:

$$\beta_{i}^{DY} = \frac{\|g_{i+1}\|^{2}}{d_{i}^{T} y_{i}} \qquad ...(12)$$

2. Restarting Criteria for a CG-Algorithm:

In the implementation of many CG-algorithms, one may often meet the difficulty that the search direction of some iteration is very poor. For example, the Newton direction is not well-defined if the Hessian of the objective function is singular but not positive, the Newton's direction is not necessarily a descent direction. Also PR-CG is now believed to be one of the most efficient CG-methods even for strictly convex quadratic function. however, PR-CG method with strong Wolfe condition may produce an uphill search direction is poor, a simple way is to restart. The method with g_k is to guarantee the global convergence of the method. In this section, we can investigate and derive a new restarting criterion restart FR-CG and still obtain the global convergence property.

CG-methods are usually implemented with restarts after n iterations, to match the quadratic model and in order to avoid the effects of an accumulation of errors. It was shown by Cohen (1972) that several restarted CG-methods have n-step quadratic convergence. It was established by Crounder and Wolfe (1972) that if restating is not employed for general functions, the convergence of CG-methods will only be linear: they also came to the conclusion that convergence is not better than linear for quadratic functions. Again Powell (1976) showed that for a convex quadratic function the convergence rate is linear. Fletcher and Reeves (1964) suggested restarting their algorithm every n iterations where n is the number of variables. Their standard reset was:

$$d_i=-g_i$$
 for $i=1, n, 2n, ...$...(13)

The following remarks show that the Fletcher-Reeves algorithm may be inefficient for several iterations if a search direction d_i occurs that is almost orthogonal to the steepest decent direction $\mathsf{-g}_i.$ We let θ_i be the angle between d_i and $\mathsf{-g}_i,$ the definition :

$$d_{i}=-g_{i}+\beta_{i}d_{i-1}$$
 ...(14)

and the orthogonality of g_i to $d_{i\text{--}1}$. This is useful because it gives the equation :

$$\|\mathbf{d}_{\mathbf{i}}\| = \sec \theta_{\mathbf{i}} \|\mathbf{g}_{\mathbf{i}}\| \qquad \dots (15)$$

Further, if i is replaced by (i + 1) in the figure, we find the identity:

$$\beta_{i+1} \| \mathbf{d}_i \| = \tan \theta_{i+1} \| \mathbf{g}_{i+1} \|$$
 ...(16)

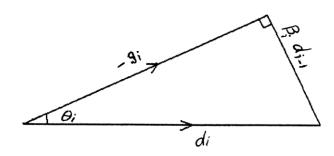


Fig.(1)...The definition of θ_i

We may eliminate $\|\mathbf{d_i}\|$ from equations (15) and (16) and substitute the definition $(\beta_i = \|\mathbf{g_i}\|^2 / \|\mathbf{g_{i+1}}\|^2)$ to deduce the inequality:

$$\tan \theta_{i+1} = \sec \theta_i \| g_{i+1} \| / \| g_i \| \\
> \tan \theta_i \| g_{i+1} \| / \| g_i \| \qquad ...(17)$$

Now if θ_i is close to $1/2\pi$, the iteration may take a very small step in which case the change $(g_{i+1}-g_i)$ is small also. Thus the ratio $\|g_{i+1}\|/\|g_i\|$ is close to one. It follows from inequality (17) that θ_{i+1} is close to $1/2\pi$, so slow progress may occur again on the next iteration.

Numerical calculations, show that this inefficient behavior can continue for several iterations when β_i is defined by equation

$$(\beta_i^{FR} = \|g_i\|^2 / \|g_{i-1}\|^2)$$
 demonstration of this effect.

Suppose that the early iterations of the algorithm have made θ_i positive, but that a region in the space of the variables has been reached where f(x) is the quadratic function:

$$f(x) = x_1^2 + x_2^2 \qquad ...(18)$$

In this case the line search along d_i makes the ratio $\|g_{i+1}\|/\|g_i\|$ equal to $\sin \theta_i$

Therefore the first line of expression (17) shows that θ_{i+1} is equal to θ_i . Thus the angle between the search direction and the steepest descent direction remains constant for all iterations, which is highly inefficient if θ_i is close to $1/2\pi$. Note that this inefficient behavior is corrected by a steepest descent restart.

Alternatively, if expression $\beta_i = g_i^T \left[g_i - g_{i-1} \right] / \left\| g_{i-1} \right\|^2$ is used to define β_i then the iterations of the conjugate gradient method have never seemed to be less efficient than those of the steepest descent method. We used equations (15) and (16) to show that the behavior described in the last two paragraphs does not occur.

Now the definition of β_i provides the bound:

$$\beta_{i+1} < \|\mathbf{g}_{i+1}\| \|\mathbf{g}_{i+1} - \mathbf{g}_{i}\| / \|\mathbf{g}_{i}\|^{2}$$
 ... (19)

So the elimination of $\|\mathbf{d}_{\mathbf{i}}\|$ from the two equations gives the inequality.

$$\tan \theta_{i+1} < \sec \theta_i \|g_{i+1} - g_i\| / \|g_i\|$$
 ...(20)

It follows that, if θ_i is close to $1/2 \pi$ and if this causes the step from x_i to X_{i+1} to be so small that the change $(g_{i+i} - g_i)$ is much less than $\|g_i\|$, then the tan θ_{i+1} is much less than sec θ_i .

Thus the search direction d_{i+1} is turned towards the steepest descent direction. Inequality (20) is sufficiently powerful to prove the following convergence theorem which, in contrast to a similar theorem given by Polak (1971) does not require f(x) to satisfy any convexity conditions.

2.1 A new restarting criterion for FR-CG method

In this section we are going to introduce a new descent condition to FR-CG method as:

Theorem 2.1: If
$$d_i^T y_i \neq 0$$
 and $d_{i+1} = -g_{i+1} + \tau d_i$, ...(21) $d_o = -g_o$ for any $\tau \in [\beta_i^{FR}, \max{\{\beta_i^{FR}, 0\}}]$,

then
$$g_{i+1}^T d_{i+1} \le -\|g_{i+1}\|^2 + \frac{1}{8} \frac{\|g_{i+1}\|^2}{\|g_i\|}$$
 ...(22-a)

and inexact line search

$$g_{i+1}^{T} d_{i+1} \le -\|g_{i+1}\|^{2} + \frac{\|g_{i+1}\|^{2}}{\|g_{i}\|^{2}} \left[1/8 \|g_{i}\| + \frac{2(g_{i+1}^{T} d_{i})^{2}}{\|g_{i}\|} \right] \qquad \dots (22-b)$$

Proof:

$$d_{i+1} = -g_{i+1} + \beta_i d_i$$

$$g_{i+1}^T d_{i+1} = -\|g_{i+1}\|^2 + g_{i+1}^T d_i \frac{\|g_{i+1}\|^2}{\|g_i\|^2} \dots (23)$$

Where β_i of Fletcher-Reeve:

$$= \frac{-\|g_{i+1}\|^2 \|g_i\|^2 + g_{i+1}^T d_i \|g_{i+1}\|^2}{\|g_i\|^2}$$

Let $u = 1/2 \|g_{i+1}\| \|g_i\|$ and $v = 2g_{i+1}^T d_i \|g_{i+1}\|$

We apply the inequality:

$$\begin{split} &u^{T}v \leq 1/2 \; (\|u\|^{2} + \|v\|^{2}) \\ &1/2 \; \left\|g_{i+1}\right\| \left\|g_{i}\right\| 2 \, g_{i+1}^{T} \, d_{i} \, \left\|g_{i+1}\right\| \leq \\ &1/2 \; \left[1/4 \left\|g_{i+1}\right\|^{2} \left\|g_{i}\right\|^{2} + 4 \left(g_{i+1}^{T} \, d_{i}\right)^{2} \left\|g_{i+1}\right\|^{2} \; \right] \\ & \therefore \; g_{i+1}^{T} \, d_{i} \, \left\|g_{i+1}\right\|^{2} \left\|g_{i}\right\| \leq 1/8 \left\|g_{i+1}\right\|^{2} \left\|g_{i}\right\|^{2} + 2 \left(g_{i+1}^{T} \, d_{i}\right)^{2} \left\|g_{i+1}\right\|^{2} \\ & \therefore \; g_{i+1}^{T} \, d_{i} \, \left\|g_{i}\right\| \leq 1/8 \left\|g_{i}\right\|^{2} + 2 \left(g_{i+1}^{T} \, d_{i}\right)^{2} \end{split}$$

Hence

$$g_{i+1}^{T} d_{i} \le 1/8 \|g_{i}\| + \frac{2(g_{i+1}^{T} d_{i})^{2}}{\|g_{i}\|}$$
 ...(24)

Substitute (24) in the eq. (23) we get

$$g_{i+1}^{T} d_{i+1} \le -\|g_{i+1}\|^{2} + \frac{\|g_{i+1}\|^{2}}{\|g_{i}\|^{2}} \left[1/8 \|g_{i}\| + \frac{2(g_{i+1}^{T} d_{i})^{2}}{\|g_{i}\|} \right] \qquad \dots (25)$$

In the ELS $g_{i+1}^T d_i = 0$ this implies that

$$g_{i+1}^T d_{i+1} \le -\|g_{i+1}\|^2 + 1/8 \frac{\|g_{i+1}\|^2}{\|g_i\|}$$

Hence we get eq. (22-a) but in the ILS the restart is represented by the eq. (22-b).

3. Numerical Results:

The numerical performance of the CG-methods is greatly improved by using restarts. The disadvantages of restarting according to (13) is that the immediate reduction in the objective function is usually less than that what it would be without restarts, Moreover it is inefficient of errors and has already affected the conjugacy property.

A restart direction different from (13) was proposed by Beale, (1972), which can be used to derive a sophisticated restart procedure. The merit of Beale's restarting direction is that it allows an increase in the immediate reduction of the function value when using CG-method to minimize a non quadratic function.

Powell (1977), also developed a new procedure for restarting CG-methods. He suggested a restart criterion whenever:

$$\left| g_i^T g_{i+1} \right| \le 0.2 \left| g_{i+1}^T g_{i+1} \right| \dots (26)$$

The rationale behind this check is that successive gradients will be close to orthogonality. He also checked that the new search direction d_{i+1} will be sufficiently downhill, using the formula:

$$d_{i+1}^T g_{i+1} \le -0.8(g_{i+1}^T g_{i+1}) \qquad \dots (27)$$

or again a restart will be initiated. Numerical experiments performed by Powell justified the parameter values of 0.2 and -0.8 quoted in (26) and (27).

However, Boland, et al. (1979) used Powell's restarting criterion, (26) or (27) to restart his polynomial model:

$$f[q(x)] = \frac{\gamma_1 q(x) + 1}{\gamma_2 q(x)}$$
, $\gamma_2 < 0$...(28)

obtained by a special nonlinear scaling of a quadratic function has been considered by Tassopoulos and Story (1984), with an arbitrary search direction other than the steepest descent with evident success (Al-Bayati, 1993).

And we define some symbols we use in the tables:

NOI = The number of iterations.

NOF = The number of function evaluations.

ELS = Exact Line Searches.

ILS = Inexact Line Searches.

Finally, from our numerical results: Table (3.1) indicates that there are no improvement for the new proposed algorithm (for both exact and inexact line searches) either for NOI or NOF because the dimensions for these test functions are small (N=4).

From Table (3.2) we have the percentage performance of the new proposed technique against 100% F/R for $(100 \le N \le 500)$

F/R	ENR	INR		
N0I NOF	N0I NOF	N0I NOF		
7621 37083	1799 5206	1607 4106		
100% 100%	23.5% 14%	21% 11%		

Also, from Table (3.3) we have: the percentage performance of the new proposed technique against 100% F/R for ($600 \le N \le 1000$)

F/R		EN	NR	INR		
N0I	NOF	NOI	NOF	N0I	NOF	
7621	37083	1946	5839	1652	4247	
100%	100%	21.5%	15.7%	21.6%	11.5%	

Table (3.1): Comparison for FR-CG method with standard a new restarting criteria for (N = 4) only

Fun.	NT	F/R		ENR		INR	
	N	NOI	NOF	NOI	NOF	NOI	NOF
Wood	4	40	108	62	150	47	107
Wolfe	4	11	24	13	27	13	27
Non-Dia.	4	19	67	20	71	23	54
Edger	4	6	21	11	29	4	10
Rosen	4	27	102	54	191	38	94
Recip	4	6	18	7	20	7	22
Powell	4	18	38	42	85	19	41
Sum	4	6	61	6	61	4	28
Cubic	4	14	49	13	43	25	62
Helical	4	36	74	41	88	79	161
Total		183	562	269	765	259	606

Table (3.2): Comparison for FR-CG method with standard a new restarting criteria for $(100 \le N \le 500)$

	N T	F	//R	E	NR	INR		
Fun.	N	NOI	NOF	NOI	NOF	NOI	NOF	
	100	258	962	68	162	47	107	
	200	405	1662	76	178	47	107	
Wood	300	974	4959	78	182	47	107	
	400	1492	8429	80	186	47	107	
	500	1153	6064	81	188	47	107	
	100	49	101	38	79	47	95	
	200	52	107	40	83	44	89	
Wolfe	300	56	116	38	82	44	89	
	400	60	126	39	84	43	87	
	500	65	137	42	91	43	87	
	100	30	100	26	98	39	114	
	200	31	101	27	98	37	108	
Non-Dia.	300	19	78	31	106	33	99	
	400	38	114	33	107	32	97	
	500	36	111	33	107	46	121	
	100	13	33	13	33	5	12	
	200	13	33	13	33	5	12	
Edger	300	13	33	13	33	5	12	
	400	13	33	13	33	5	12	
	500	13	33	13	33	5	12	
	100	77	287	60	203	38	94	
	200	77	287	60	203	38	94	
Rosen	300	78	289	60	203	38	94	
	400	78	289	60	203	38	94	
	500	82	297	60	203	38	94	
	100	7	20	7	20	7	22	
	200	7	20	7	20	7	22	
Recip	300	8	22	8	22	7	22	
	400	8	22	8	22	7	22	
	500	8	22	8	22	7	22	
	100	48	97	48	97	19	41	
Powell	200	49	99	49	99	19	41	
1 OWEII	300	52	105	52	105	19	41	
	400	52	105	52	105	20	43	
	500	52	105	52	105	21	45	

Fun.	N	F	'/ R	ENR		INR	
run.	17	NOI	NOF	NOI	NOF	NOI	NOF
	100	17	155	15	125	13	82
	200	19	149	20	145	20	133
Sum	300	21	174	23	173	21	136
	400	23	199	27	206	18	123
	500	27	238	28	214	19	135
	100	14	45	14	45	25	62
	200	14	45	14	45	25	62
Cubic	300	14	45	14	45	25	62
	400	14	45	14	45	25	62
	500	14	45	14	45	25	62
	100	105	211	46	98	80	163
	200	200	401	46	98	80	163
Helical	300	202	405	46	98	80	163
	400	205	411	46	98	80	163
	500	206	413	46	98	80	163
Total		6561	28379		1799	1607	4106
10141	<u> </u>				5206		

Table (3.3) : Comparison for FR-CG method with standard a new restarting criteria for (600 $\leq N \leq$ 1000)

10	N .T	F	/R	R ENR		INR		
Fun.	N	NOI	NOF	NOI	NOF	NOI	NOF	
	600	718	4189	82	190	47	107	
***	700	904	5171	82	190	47	107	
Wood	800	1164	6305	82	190	47	107	
	900	1065	6695	82	190	47	107	
	1000	1035	7156	83	192	47	107	
	600	70	146	43	91	43	87	
	700	76	160	43	94	42	85	
Wolfe	800	83	180	44	98	42	85	
	900	91	199	46	103	42	85	
	1000	100	219	48	105	42	85	
	600	30	100	33	107	46	121	
	700	37	112	33	107	45	119	
Non-Dia.	800	48	135	33	107	45	119	
	900	61	160	33	107	40	110	
	1000	76	190	33	107	43	115	
	600	14	35	14	35	5	12	
	700	14	35	14	35	5	12	
Edger	800	14	35	14	35	5	12	
	900	14	35	14	35	5	12	
	1000	14	35	14	35	5	12	
	600	82	297	60	203	38	94	
	700	82	297	60	203	38	94	
Rosen	800	82	297	60	203	38	94	
	900	82	297	60	203	39	96	
	1000	82	297	60	203	39	96	
	600	8	22	8	22	7	22	
	700	8	22	8	22	7	22	
Recip	800	9	26	9	26	7	22	
	900	9	26	9	26	7	22	
	1000	9	26	9	26	7	22	
	600	52	105	52	105	21	45	
	700	53	107	53	107	21	45	
Powell	800	53	107	53	107	21	45	
	900	53	107	53	107	22	47	
	1000	53	107	53	107	22	47	

Fun.	N	F	'/ R	ENR		INR	
	17	NOI	NOF	NOI	NOF	NOI	NOF
	600	30	263	31	237	20	142
	700	31	251	33	255	22	147
Sum	800	33	267	34	270	20	133
	900	34	276	35	267	19	128
	1000	35	278	35	270	22	153
	600	14	45	14	45	25	62
	700	14	45	14	45	25	62
Cubic	800	14	45	14	45	25	62
	900	14	45	14	45	25	62
	1000	14	45	14	45	25	62
	600	212	425	46	98	80	163
	700	209	419	46	98	80	163
Helical	800	208	417	46	98	80	163
	900	207	415	46	98	80	163
	1000	207	415	47	100	80	163
Tota	l	7621	37083	1946	5839	1652	4247

4. Conclusions:

According to our numerical results we have concluded that using the new restarting criteria (eqs. (22-a)and(22-b)) from both exact (ELS) and inexact line searches (ILS) instate of the standard restarting criterion (K=N) for F/R-CG method are very useful technique only for medium and large dimensionality test functions namely there are (75-85)% NOI improvement and (75-80)% NOF improvement for medium and large test functions.

<u>REFERENCES</u>

- [1] Al-Bayati, A. Y. "A new family of self-scaling variable metric algorithms for unconstrained optimization", J. Educ. & Sci. 12, (1991).
- [2] Al-Bayati, A. Y. "A New Nonquadratic Model for Unconstrained Nonlinear Optimization", Mu'tah Journal for Research and Studies, 8, (1995), pp.131-155.
- [3] Beale, E. M. L. "A derivation of conjugate gradients", in: F. A. Lootsma, ed.. Numerical methods for nonlinear optimization Academic Press, London, (1972), 39-43.
- [4] Boland, W. R. and Kowalik, J. S. "Extended conjugate gradient methods with restarts". Journal of Optimization Theory and Applications, 28, (1979), 1-9.
- [5] Cohen, A. I. "Rate of Convergence of Several conjugate gradient algorithms", SIAM Journal of Numerical Analysis, 9, (1972), 248-259.
- [6] Crowder, H. and Wolfe, P. "Linear Convergence of The conjugate gradient method", IBM Journal of Research and Development, 16, (1972), 431-433
- [7] Dai, Y. H. and Yuan, Y. "A nonlinear conjugate gradient method with astrong global convergence property⁹⁵, SIAM J. Optim. 10, (1999) 177-182.
- [8] Fletcher, R. and Reeves, C. M. "Function minimization by conjugate gradients". Computer Journal 7 (1964) 148-154.
- [9] Hager, W.W. and Zhang, H. "Algorithm 851: CG-Descent, a conjugate gradient method with Guaranteed Descent", ACM Transactions on Mathematical Software, 32, (2006), 113-137.
- [10] Hestenes, M. R. and Stiefel, E. "Methods of conjugate gradients for solving linear systems". Journal of Research of the National Bureau of Standard See., 48, (1952), 405 436.
- [11] Polak, E. "Computational methods in optimization a unified approach". Academic Press, London, (1971).

- [12] Polak, E. and Ribiere, G. "Note suria convergence de methods de directions conjuguees", RAIRO 16, (1969), 35-43.
- [13] Powell, M. J. D. "Nonconvex minization calculation and the conjugate gradient method", DAMTP. 1983 INA 14, Dept. of Applied Mathematics and Theoretical Physics, University of Cambridge, England, (1983).
- [14] Powell, M. J. D. "restart procedures for the conjugate gradient method, Mathematical Programming 12, (1977), 241-254.
- [15] Powell, M. J. D. "Some Converence Properties of the conjugate gradient method". Mathematical Programming 11, (1976), 42-49.
- [16] Shanno, D. F. "Conjugate gradient methods with inexact searches", Mathematics of Operations Research 3, (1978), 244-256.
- [17] Shanno, D.F. "Globally Convergent Conjugate Gradient Algorithms", Mathematical Programming , North-Holland 33, (1985), 61-67.
- [18] Shanno, D.F. "The Convergence of a new conjugate gradient algorithm", SIAM Journal of Numerical Analysis 15, (1978), 1247 1257.
- [19] Shanno, D.F. and Phua, K. H. "Remark on algorithm 500", Transactions on Mathematical software 6, (1980), 618-622.
- [20] Tassopulos, A. and Story, C. "Use of a non-quadratic model in a conjugate gradient method of optimization with inexact line search", Journal of Optimization Theory and Application, 43, (1984), 357-370.
- [21] Zoutendijk, G. "Nonlinear programming, computational methods", in : J. Abadie, ed.. Integer and nonlinear programming North Holland, Amsterdam, (1970), 37-86.

Appendix:

All the test function used in this paper are from general literature:

1. Cubic Function (n = 2):

$$f = 100 (x_2 - x_1^3)^2 + (1 - x_1)^2$$

$$x_0 = (-1.2, 1)^T$$

2. Recipe Function (n = 3):

$$f = (x_1-5)^2 + x_2^2 + x_3^2/(x_2-x_1)^2$$

$$x_0 = (2, 5, 1)^T$$

3. Helical Valley Function (n = 3):

$$f = 100 [(x_3 - 10\theta)^2 + (4 - 1)^2] + x_2^3$$

$$\theta = \begin{bmatrix} (2\Pi)^{-1} \tan^{-1}(x_2/x_1) & \text{for } x_1 > 0 \\ 0.5 + (2\Pi)^{-1} \tan^{-1}(x_2/x_1) & \text{for } x_1 < 0 \end{bmatrix}$$

$$r = (x_1^2 + x_2^2)^{1/2}$$
 and $x_0 = (-1, 0, 0)^T$

4. Powell Three Variable Function (n = 3):

$$f = 3 - [1 / \{1 + (x_1 - x_2)^2\}] - \sin(\Pi x_2 x_3 / 2) - \exp\{-\{((x_1 + x_3) / x_2) - 2\}^2\}]$$

$$x_0 = (0, 1, 2)^T$$

5. Oren and Spedicato Power Function (n=10, 30,50,100):

$$f = \left[\sum_{i=1}^{n} i x_i^2\right]^2$$

$$x_0 = (1;)^T$$

6. Sum of Quadratics Function (n = 25, 70):

$$f = \left[\sum_{i=1}^{n} x_i - 1\right]^4$$

$$x_0 = (2;)^T$$

7. Non-Diagonal Variant of Rosenbrock Function (n = 20, 90):

$$f = \sum_{i=2}^{n} [100(x_i - x_i^2)^2 + (1 - x_i)^2]; n > 1$$

$$x_0 = (-1;)^T$$

8. Generalized Rosenbrock Function (n=2,20,60,100):

$$f = \sum_{i=1}^{n/2} [100(x_{2i} - x_{2i-1}^2)^2 + (1 - x_{2i-1})^2]$$

$$x_0 = (1.2, 1;)^T$$

9. Generalized Wood Function (n=4,20, 60,100):

$$f = \sum_{i=1}^{n/4} 100[(x_{4i-2} - x_{4i-3}^2)^2 + (1 - x_{4i-3})^2 + 90(x_{4i} - x_{4i-1}^2)^2 + (1 - x_{4i-1})^2 + 10.1[(x_{4i-2} - 1)^2 + (x_{4i} - 1)^2] + 19.8(x_{4i-2} - 1)(x_{4i} - 1),$$

$$\mathbf{x}_0 = (-3, -1, -3, -1; \dots)^{\mathrm{T}}$$

10. Wolfe Function (n=80):

$$f = [x_1(3-x_1/2)+2x_2-1]^2 + \sum_{i=1}^{n-1} [x_{i-1} - x_i(3-x_1/2)+2x_{i+1}-1]^2 + [x_{n-1} - x_n(3-x_n/2)-1]^2$$

$$x_o = (-1;)^T$$