Hosoya Polynomials of Steiner Distance of Complete m-partite Graphs and Straight Hexagonal Chains ${ }^{(*)}$

Ali Aziz Ali
aliazizali1933@yahoo.com
College of Computer Sciences and Mathematics, University of Mosul, Iraq

Received on: 13/05/2007

Herish Omer Abdullah
herish_omer@yahoo.com College of Sciences, University of Salahaddin.

Accepted on: 28/06/2007

ABSTRACT
The Hosoya polynomials of Steiner distance of complete m-partite graphs $K\left(p_{1}, p_{2}, \ldots p_{m}\right)$ and Straight hexagonal chains \mathbf{G}_{m} are obtained in this paper. The Steiner n-diameter and Wiener index of Steiner n-distance of $K\left(p_{1}, p_{2}, \ldots p_{m}\right)$ and \mathbf{G}_{m} are also obtained.
Keywords: Steiner distance, Hosoya polynomial, Steiner n-diameter, Wiener index.

الملخص
تضمن هذا البحث ايجاد متعددات حدود هوسويا لـسافة ستينر -n لكل من بيانات التجزئة-m التام، m ($1, p_{1}, \ldots . p_{m}$ وبيان سلسلة سداسية مستقيمة ${ }^{\text {(}}$. كما اوجدنا القطر -n و

الكلمات المفتاحية: مسافة ستينر، متعددة حدود هوسويا، قطر ستينر -n ، دليل وينر .

1. Introduction

We follow the terminology of $[2,3]$. For a connected graph $G=(V, E)$ of order p, the Steiner distance [8,7] of a non-empty subset $S \subseteq V(G)$ denoted by $d_{G}(S)$ or simply $d(S)$, is defined to be the size of the smallest connected subgraph $T(S)$ of G that contains $S, T(S)$ is called a Steiner tree of S. If $|S|=2$, then the definition of the Steiner distance of S yields the (ordinary) distance between the two vertices of S. For $2 \leq n \leq p$ and $|S|=n$, the Steiner distance of S is called Steiner n-distance of S in G.

The Steiner n-diameter of G (or the diameter of the Steiner n distance), denoted by $\operatorname{diam}_{n}^{*} G$ or $\delta_{n}^{*}(G)$, is defined to be the maximum Steiner n-distance of all n-subsets of $V(G)$, that is

$$
\operatorname{diam}_{n}^{*} G=\max \left\{d_{G}(S): S \subseteq V(G),|S|=n\right\} .
$$

Remark 1.1. It is clear that

(1) If $n \geq m$, then $\operatorname{diam}_{n}^{*} G \geq \operatorname{diam}_{m}^{*} G$.
(2) If $S^{\prime} \subseteq S$, then $d_{G}\left(S^{\prime}\right) \leq d_{G}(S)$.

The average Steiner n-distance of a graph G, denoted by $\mu_{n}^{*}(G)$, or average n-distance of G is the average of the Steiner n-distances of all n subsets of $V(G)$, that is
$\mu_{n}^{*}(G)=\binom{p}{n}_{\substack{-1}}^{\substack{S \in V \\|S|=n}} d_{G}(S)$.
If G represents a network, then the Steiner n-diameter of G indicates the number of communication links needed to connect n processors, and the average n-distance indicates the expected number of communication links needed to connect n processors [8].

The Steiner n-eccentricity [7] of a vertex $v \in V(G)$, denoted by $e_{n}^{*}(v)$, is defined as the maximum of the Steiner \boldsymbol{n}-distances of all n-subsets of $V(G)$ containing v. The Steiner n-radius of G, denoted by $\operatorname{rad}_{n}^{*}(G)$, is the minimum of Steiner n-eccentricities of all vertices in G.

The Steiner n-distance of a vertex $v \in V(G)$, denoted by $W_{n}^{*}(v, G)$ is the sum of the Steiner n-distances of all n-subsets of $V(G)$ containing v.

The sum of Steiner n-distances of all n-subsets of $V(G)$ is denoted by $d_{n}(G)$ or $W_{n}^{*}(G)$. Notice that

$$
\begin{equation*}
W_{n}^{*}(G)=\sum_{\substack{S \subseteq V /(G),|S|=n}} d_{G}(S)=n^{-1} \sum_{v \in V(G)} W_{n}^{*}(\nu, G)=\binom{p}{n} \mu_{n}^{*}(G) . \tag{1.1}
\end{equation*}
$$

The graph invariant $W_{n}^{*}(G)$ is called the Wiener index of the Steiner n-distance of the graph G.

Bounds for the average Steiner n-distance of a connected graph G of order p are given by Danklemann, Oellermann and Swart [4].

Definition 1.2[1] Let $C_{n}^{*}(G, k)$ be the number of n-subsets of distinct vertices of G with Steiner n-distance k. The graph polynomial defined by

$$
\begin{equation*}
H_{n}^{*}(G ; x)=\sum_{k=n-1}^{\delta_{n}^{*}} C_{n}^{*}(G, k) x^{k}, \tag{1.2}
\end{equation*}
$$

where δ_{n}^{*} is the Steiner n-diameter of G; is called the Hosoya polynomial of Steiner n-distance of G.[1].
Then the \boldsymbol{n}-Wiener index of $\boldsymbol{G}, W_{n}^{*}(G)$ will be

$$
\begin{equation*}
W_{n}^{*}(G)=\sum_{k=n-1}^{\delta_{n}^{*}} k C_{n}^{*}(G, k) \tag{1.3}
\end{equation*}
$$

The following proposition summarizes some properties of $H_{n}^{*}(G ; x)$.
Proposition 1.2. For $2 \leq n \leq p(G)$,
(1) $\operatorname{deg} H_{n}^{*}(G ; x)$ is equal to the Steiner n-diameter of G.
(2) $H_{n}^{*}(G ; 1)=\sum_{k=n-1}^{\delta_{n}} C_{n}^{*}(G, k)=\binom{p}{n}$,
(3) $W_{n}^{*}(G)=\left.\frac{d}{d x} H_{n}^{*}(G ; x)\right|_{x=1}$.
(4) For $n=2, H_{2}^{*}(G ; x)=H(G ; x)-p$,
where $H(G ; x)$ is the ordinary Hosoya polynomial of G.
(5) Each end-vertex of a Steiner tree $T(S)$ must be a vertex of S.

For $1 \leq n \leq p$, let $C_{n}^{*}(u, G, k)$ be the number of n-subsets S of distinct vertices of G containing u with Steiner n-distance k. It is clear that

$$
C_{1}^{*}(u, G, 0)=1 .
$$

Define

$$
\begin{equation*}
H_{n}^{*}(u, G ; x)=\sum_{k=n-1}^{\delta_{n}^{*}} C_{n}^{*}(u, G, k) x^{k} . \tag{1.7}
\end{equation*}
$$

Obviously, for $2 \leq n \leq p$

$$
\begin{equation*}
H_{n}^{*}(G ; x)=\frac{1}{n} \sum_{u \in V(G)} H_{n}^{*}(u, G ; x) . \tag{1.8}
\end{equation*}
$$

Ali and Saeed [1] were first who studied this distance-based polynomial for Steiner n-distances, and established Hosoya polynomials of Steiner n-distance for some special graphs and graphs having some kind of regularity, and for Gutman's compound graphs $G_{1} \bullet G_{2}$ and $G_{1}: G_{2}$ in terms of Hosoya polynomials of G_{1} and G_{2}.

In this paper, we obtain the Hosoya polynomial of Steiner n-distance of a complete m-partite graph $K\left(p_{1}, p_{2}, \ldots . p_{m}\right)$; and we determine the Hosoya polynomial of Steiner 3-distance of a straight hexagonal chain \mathbf{G}_{m}. Moreover, $\operatorname{diam}_{n}^{*} K\left(p_{1}, p_{2}, \ldots p_{m}\right)$ and $\operatorname{diam}_{n}^{*} \mathbf{G}_{m}$ are also determined.

2. Complete m-partite Graphs

A graph G is m-partite graph [3], $m \geq 1$, if it is possible to partition $V(G)$ into m subsets $V_{1}, V_{2}, \ldots, V_{m}$ (called partite sets) such that every edge e of G joins a vertex of V_{i} to a vertex of $V_{j}, i \neq j$. A Complete m-partite graph G is an m-partite graph with partite sets $V_{1}, V_{2}, \ldots, V_{m}$ having the added property that if $u \in V_{i}$ and $v \in V_{j}, i \neq j$, then $u v \in E(G)$. If $\left|V_{i}\right|=p_{i}$, then this graph is denoted by $K\left(p_{1}, p_{2}, \ldots p_{m}\right)$.

It is clear that the order, the size and the diameter of $K\left(p_{1}, p_{2}, \ldots, p_{m}\right)$ are $\sum_{i=1}^{m} p_{i}, \sum_{i \neq j} p_{i} p_{j}$, and 2 , respectively.

The following proposition determines the diameter of Steiner n distance of $K\left(p_{1}, p_{2}, \ldots, p_{m}\right)$.
Proposition 2.1. For $n \geq 2, m \geq 2$, let $p^{\prime}=\max \left\{p_{1}, p_{2}, \ldots p_{m}\right\}$, then

$$
\text { diam }_{n}^{*} K\left(p_{1}, p_{2}, \ldots p_{m}\right)= \begin{cases}n, & \text { if } 2 \leq n \leq p^{\prime}, \\ n-1, & \text { if } p^{\prime}<n \leq p\end{cases}
$$

Proof. Let S be any n-subset of the vertices of $K\left(p_{1}, p_{2}, \ldots, p_{m}\right)$. If S contains u, v such that $u \in V_{i}$ and $v \in V_{j}, i \neq j$, then $\langle S\rangle$ is connected, and so $d(S)=n-1$.
If $S \subseteq V_{i}$, for $1 \leq i \leq m$, then $d(S)=n$, namely, the size of $T(S)(\cong K(1, n))$. Therefore, taking $S \subseteq V_{p^{\prime}}$ and $2 \leq n \leq p^{\prime}$, we get $\operatorname{diam}_{n}^{*} K\left(p_{1}, p_{2}, \ldots, p_{m}\right)=n$.
If $n>p^{\prime}$, then S must contain vertices from at least two different partite sets. This completes the proof. $T(S) \cong K(1, n))$
Theorem 2.2. For $n, m \geq 2$,

$$
H_{n}^{*}\left(K\left(p_{1}, p_{2}, \ldots, p_{m}\right) ; x\right)=C_{1} x^{n-1}+C_{2} x^{n},
$$

in which

$$
C_{1}=\binom{p}{n}-\sum_{i=1}^{m}\binom{p_{i}}{n}, C_{2}=\sum_{i=1}^{m}\binom{p_{i}}{n} .
$$

Proof. From Proposition 2.1, for each n-subset S,

$$
n-1 \leq d(S) \leq n .
$$

For each n-subset $S \subseteq V_{i}, 1 \leq i \leq m, d(S)=n$, thus the numbers of such n subset is C_{2}. Since, the number of all n-subsets is $\binom{p}{n}$, then C_{1} is as given in the statement of this theorem.

The next corollary follows directly from Theorem 2.2.
Corollary 2.3. For $n, m \geq 2$,

$$
\begin{aligned}
& W_{n}^{*}\left(K\left(p_{1}, p_{2}, \ldots, p_{m}\right)\right)=(n-1)\binom{p}{n}+\sum_{i=1}^{m}\binom{p_{i}}{n}, \\
& \mu_{n}^{*}\left(K\left(p_{1}, p_{2}, \ldots, p_{m}\right)\right)=n-1+\frac{\sum_{i=1}^{m}\binom{p_{i}}{n}}{\binom{p}{n}} .
\end{aligned}
$$

Remark. By combinatorial argument one can easily show that

$$
\sum_{i=1}^{m}\binom{p_{i}}{n}<\binom{p}{n}, m \geq 2
$$

Thus for $m \geq 2$,

$$
\mu_{n}^{*}\left(K\left(p_{1}, p_{2}, \ldots, p_{m}\right)<n .\right.
$$

A complete m-partite graph is called a regular compete m-partite $\operatorname{graph}[3]$, if $p_{i}=t$ for all i, and it will be denoted by $K_{m(t)}$. The Hosoya polynomial and the Wiener index of Steiner n-distance of $K_{m(t)}$ are given in the following corollary. Its proof follows easily from Theorem 2.2.

Corollary 2.4. For $2 \leq n \leq p=m t$
(1) $H_{n}^{*}\left(K_{m(t)} ; x\right)=m\binom{t}{n} x^{n}+\left[\binom{m t}{n}-m\binom{t}{n} x^{n-1}\right.$.
(2) $W_{n}^{*}\left(K_{m(t)}\right)=(n-1)\binom{m t}{n}+m\binom{t}{n}$.

3. Straight Hexagonal Chains

A cycle of length 6 can be drawn as a regular hexagon. A Straight Hexagonal Chains $\mathbf{G}_{m}, m \geq 2$, is a graph consisting of a chain of m hexagons such that every two successive hexagons have exactly one edge in common in the form shown in Fig. 3.1.
It is clear that

$$
\begin{equation*}
p\left(\mathbf{G}_{m}\right)=4 m+2, q\left(\mathbf{G}_{m}\right)=5 m+1 \tag{3.1}
\end{equation*}
$$

One can easily show that
$\operatorname{diam} \mathbf{G}_{m}=2 m+1$.
The graph \mathbf{G}_{m} is known to Chemists [5,6] as benzenoid chain of m hexagonal rings.

We shall find a formula for the diameter of the Steiner n-distance of the graph \mathbf{G}_{m} for some values of n. The vertices of \mathbf{G}_{m} are labeled as shown in Fig. 3.1.

Fig. 3.1 \mathbf{G}_{m}

Proposition 3.1. For $m \geq 1,2 \leq n \leq m+2$,

$$
\operatorname{diam}_{n}^{*} \mathbf{G}_{m}=2 m+n-1 .
$$

Proof. It is clear that for $n=2$,

$$
\operatorname{diam} \mathbf{G}_{m}=d\left(u_{1}, u_{2 m+1}^{\prime}\right)=2 m+1 .
$$

If $n=3$, we find that a 3 -subset S^{\prime} of maximum Steiner distance is

$$
S^{\prime}=\left\{u_{1}, u_{2 m+1}, u_{2 m}^{\prime}\right\},
$$

and so,

$$
\operatorname{diam}_{3}^{*} \mathbf{G}_{m}=d_{3}\left(S^{\prime}\right)=2 m+2 .
$$

For $n=4$, we notice that a 4 -subset $S^{\prime \prime}$ of maximum Steiner distance is

$$
S^{\prime \prime}=\left\{u_{1}, u_{2 m+1}^{\prime}, u_{2 m}, v\right\},
$$

in which

$$
v \in\left\{u_{2}^{\prime}, u_{4}^{\prime}, \ldots, u_{2 m-2}^{\prime}\right\} .
$$

Thus

$$
\operatorname{diam}_{4}^{*} \mathbf{G}_{m}=d_{4}\left(S^{\prime \prime}\right)=2 m+3
$$

Hence, in general for an n-subset $S, 2 \leq n \leq m+2$, of maximum Steiner n-distance, we have the following cases:
(1) If n is even, then S consists of the first n vertices from the sequence:

$$
u_{1}, u_{2 m+1}^{\prime}, u_{2 m}, u_{2 m-2}^{\prime}, u_{2 m-4}, u_{2 m-6}^{\prime}, \ldots,\left\{\begin{array}{l}
u_{2}^{\prime}, \text { if } m \text { is even }, \\
u_{4}^{\prime},
\end{array} \text { if } m \text { is odd } .\right.
$$

When m is even, a Steiner tree, $T(S)$ of such S consists of a ($2 m+1$)-path, say, $u_{1}, u_{2}, u_{3}, \ldots, u_{2 m+1}, u_{2 m+1}^{\prime}$ together with $\frac{n-2}{2}$ paths each of length 2 , namely $\left(u_{2 m-1}, u_{2 m-1}^{\prime}, u_{2 m-2}^{\prime}\right),\left(u_{2 m-5}, u_{2 m-5}^{\prime}, u_{2 m-6}^{\prime}\right), \ldots$. Therefore, the size of $T(S)$ is

$$
(2 m+1)+2\left(\frac{n-2}{2}\right)=2 m+n-1 .
$$

When m is odd $T(S)$ has the same structure as for the case of even m, and so have size $2 m+n-1$.
(2) If n is odd, then S consists of the first n vertices from sequence:

$$
u_{1}, u_{2 m+1}, u_{2 m}^{\prime}, u_{2 m-2}, u_{2 m-4}^{\prime}, u_{2 m-6}, u_{2 m-8}^{\prime}, \ldots,\left\{\begin{array}{l}
u_{2}^{\prime}, \text { if } m \text { is odd }, \\
u_{4}^{\prime},
\end{array} \text { if } m \text { is even } .\right.
$$

When m is odd, a Steiner tree $T(S)$ of such S consists of a $2 m$-path, say, $\left(u_{1}, u_{2}, \ldots, u_{2 m}, u_{2 m+1}\right)$ together with $\frac{n-1}{2}$ paths each of length 2 , namely $\left(u_{2 m+1}, u_{2 m+1}^{\prime}, u_{2 m}^{\prime}\right),\left(u_{2 m-3}, u_{2 m-3}^{\prime}, u_{2 m-4}^{\prime}\right), \ldots$ Therefore, the size of $T(S)$ is

$$
2 m+2\left(\frac{n-1}{2}\right)=2 m+n-1 .
$$

When m is even, $T(S)$ has the same structure as for odd case of m, and so has size $2 m+n-1$.

Proposition 3.2. For $m \geq 3, m+3 \leq n \leq 2 m$,

$$
\operatorname{diam}_{n}^{*} \mathbf{G}_{m}=3 m+\left\lfloor\frac{n-m}{2}\right\rfloor .
$$

Proof. An n-subset S of vertices, $m+3 \leq n \leq 2 m$ which has maximum Steiner n-distance consists of $m+2$ vertices described in the proof of Proposition 3.1 together with other $n-m-2$ vertices chosen in pairs, each pair consists of 2 vertices, belonging to a hexagon, one of degree 2 and the other of degree 3 . For instance, when n and m are even, the added ($n-m-2$) vertices are $u_{2 m}^{\prime}, u_{2 m-1} ; u_{2 m-2}, u_{2 m-3}^{\prime} ; \ldots$. Each such pair of vertices gives one edge added to the size of $T\left(S^{\prime}\right),\left|S^{\prime}\right|=m+2$. Therefore the Steiner n-distance of S is

$$
2 m+(m+2-1)+\left\lfloor\frac{n-m-2}{2}\right\rfloor .
$$

Remark. For $m \geq 2, n=p-2$,

$$
\operatorname{diam}_{n}^{*} \mathbf{G}_{m}=n=4 m .
$$

Thus, for $2 m+1 \leq n \leq 4 m$,

$$
3 m+\left\lfloor\frac{n-m}{2}\right\rfloor \leq \operatorname{diam}_{n}^{*} \mathbf{G}_{m} \leq p-2
$$

and

$$
\operatorname{diam}_{n}^{*} \mathbf{G}_{m}=p-1, \text { for } n=p-1 \text { or } p .
$$

We now find the Hosoya Polynomial of the Steiner 3-distance of \mathbf{G}_{m}.
Theorem 3.3. For $m \geq 3$, we have the following reduction formula for $H_{3}^{*}\left(\mathbf{G}_{m} ; x\right)$,

$$
H_{3}^{*}\left(\mathbf{G}_{m} ; x\right)=2 H_{3}^{*}\left(\mathbf{G}_{m-1} ; x\right)-H_{3}^{*}\left(\mathbf{G}_{m-2} ; x\right)+F_{m}(x),
$$

where $F_{m}(x)=2 x^{2(m-1)}\left[(2 m-3)+(9 m-11) x+(13 m-9) x^{2}+(7 m-1) x^{3}+m x^{4}\right]$
Proof. Let S be any 3-subset of $V\left(\mathbf{G}_{m}\right)$. We refer to Fig 3.1, and denote

$$
\begin{aligned}
& A=\left\{u_{1}, u_{2}, u_{1}^{\prime}, u_{2}^{\prime}\right\}, A^{\prime}=\left\{u_{2 m}, u_{2 m+1}, u_{2 m}^{\prime}, u_{2 m+1}^{\prime}\right\}, \\
& B=\left\{u_{3}, u_{5}, \ldots, u_{2 m-1}\right\}, B^{\prime}=\left\{u_{3}^{\prime}, u_{5}^{\prime}, \ldots, u_{2 m-1}^{\prime}\right\}, \\
& C=\left\{u_{4}, u_{6}, \ldots, u_{2 m-2}\right\} \text { and } C^{\prime}=\left\{u_{4}^{\prime}, u_{6}^{\prime}, \ldots, u_{2 m-2}^{\prime}\right\} .
\end{aligned}
$$

For all possibilities of $S \subseteq V\left(\mathbf{G}_{m}\right)-A$ (or $S \subseteq V\left(\mathbf{G}_{m}\right)-A^{\prime}$), we have the corresponding polynomial $H_{3}^{*}\left(\mathbf{G}_{m-1} ; x\right)$. And for all possibilities of $S \subseteq V\left(\mathbf{G}_{m}\right)-\left\{A \bigcup A^{\prime}\right\}$, the corresponding polynomial is $H_{3}^{*}\left(\mathbf{G}_{m-2} ; x\right)$.
Thus

$$
H_{3}^{*}\left(\mathbf{G}_{m} ; x\right)=2 H_{3}^{*}\left(\mathbf{G}_{m-1} ; x\right)-H_{3}^{*}\left(\mathbf{G}_{m-2} ; x\right)+F_{m}(x),
$$

in which $F_{m}(x)$ is the Hosoya polynomial corresponding to all 3-subsets of vertices that each contains at least one vertex from A and at least one vertex from A^{\prime}. Therefore $F_{m}(x)$ can be spilt into two polynomials $F_{1}(x)$ and $F_{2}(x)$, where $F_{1}(x)$ is the Hosoya Polynomial of all 3-subsets S that each contains one vertex from A, one vertex from A^{\prime} and one vertex from $W=B \cup B^{\prime} \cup C \cup C^{\prime}$, and $F_{2}(x)$ is the Hosoya polynomial corresponding to all 3-subsets S such that $S \subseteq A \cup A^{\prime}, S \cap A \neq \varphi$ and $S \cap A^{\prime} \neq \varphi$.
(I) Now, to find $F_{1}(x)$, we consider the following subcases:
(a) If $S=\left\{u_{1}, u_{2 m}, y\right\}$ or $\left\{u_{1}^{\prime}, u_{2 m}^{\prime}, y\right\}$, then
(1) When $y \in B \cup C$, there are (2m-3) such subsets S each of 3-distance (2m-1).
(2) When $y \in B^{\prime}$, there are $(m-1)$ such subsets S, each of 3-distance $2 m$.
(3) When $y \in C^{\prime}$, there are $(m-2)$ such subsets S, each of 3-distance $2 m+1$.

Therefore, for all such possibilities of $S, S=\left\{u_{1}, u_{2 m}, y\right\}$ or $\left\{u_{1}^{\prime}, u_{2 m}^{\prime}, y\right\}, y \in W$, the corresponding polynomial is

$$
P_{1}(x)=2 x^{m-1}\left[(2 m-3)+(m-1) x+(m-2) x^{2}\right]
$$

(b) If $S=\left\{u_{1}, u_{2 m+1}, y\right\}$ or $\left\{u_{1}^{\prime}, u_{2 m+1}^{\prime}, y\right\}$, for all $y \in W$, then the corresponding polynomial can be obtained by a similar way of (a) as given below

$$
P_{2}(x)=2 x^{m}\left[(2 m-3)+(m-1) x+(m-2) x^{2}\right]
$$

(c) If $S=\left\{u_{1}, u_{2 m}^{\prime}, y\right\}$ or $\left\{u_{1}^{\prime}, u_{2 m}, y\right\}, y \in W$, then the corresponding polynomial is

$$
P_{3}(x)=4(2 m-3) x^{2 m} .
$$

(d) If $S=\left\{u_{1}, u_{2 m+1}^{\prime}, y\right\}$ or $\left\{u_{1}^{\prime}, u_{2 m+1}, y\right\}, y \in W$, then the corresponding polynomial is

$$
P_{4}(x)=4(2 m-3) x^{2 m+1} .
$$

(e) If $S=\left\{u_{2}, u_{2 m}, y\right\}$ or $\left\{u_{2}^{\prime}, u_{2 m}^{\prime}, y\right\}$, for all $y \in W$, then the corresponding polynomial is

$$
P_{5}(x)=2 x^{2 m-2}\left[(2 m-3)+(m-1) x+(m-2) x^{2}\right] .
$$

(f) If $S=\left\{u_{2}, u_{2 m+1}, y\right\}$ or $\left\{u_{2}^{\prime}, u_{2 m+1}^{\prime}, y\right\}$, for all $y \in W$, then the corresponding polynomial is

$$
P_{6}(x)=2 x^{2 m-1}\left[(2 m-3)+(m-1) x+(m-2) x^{2}\right] .
$$

(g) If $S=\left\{u_{2}, u_{2 m}^{\prime}, y\right\}$ or $\left\{u_{2}^{\prime}, u_{2 m}, y\right\}$, for all $y \in W$, then the corresponding polynomial is

$$
P_{7}(x)=4(2 m-3) x^{2 m-1} .
$$

(h) If $S=\left\{u_{2}, u_{2 m+1}^{\prime}, y\right\}$ or $\left\{u_{2}^{\prime}, u_{2 m+1}, y\right\}$, for all $y \in W$, then the corresponding polynomial is

$$
P_{8}(x)=4(2 m-3) x^{2 m} . \text { Therefore }
$$

$$
F_{1}(x)=\sum_{i=1}^{8} P_{i}(x)
$$

$$
\begin{aligned}
& =2 x^{2 m-2}\left[(2 m-3)+(2 m-13) x+(13 m-19) x^{2}+(7 m-11) x^{3}\right. \\
& \left.+(m-2) x^{4}\right] .
\end{aligned}
$$

(II) To find $F_{2}(x)$, let S consists of two vertices from A and one vertex from A^{\prime}, or one vertex from A and two vertices from A^{\prime}. Thus we have
$2\binom{4}{2}\binom{4}{1}=2(24)$ possibilities for the 3 -subsets $S, 24$ of them give the same
Hosoya polynomials for the other 24 cases. These 24 cases are listed in the following table with their Steiner 3-distances:

Table 3.1

no.	3-subsets S	Steiner distances	no.	3-subsets S	Steiner distances
1.	$\left\{u_{1}, u_{2}, u_{2 m}\right\}$	$2 m-1$	13.	$\left\{u_{1}^{\prime}, u_{2}^{\prime}, u_{2 m}^{\prime}\right\}$	$2 m-1$
2.	$\left\{u_{1}, u_{2}, u_{2 m+1}\right\}$	$2 m$	14.	$\left\{u_{1}^{\prime}, u_{2}^{\prime}, u_{2 m+1}\right\}$	$2 m$
3.	$\left\{u_{1}, u_{2}, u_{2 m}^{\prime}\right\}$	$2 m$			
4.	$\left\{u_{1}, u_{2}, u_{2 m+1}^{\prime}\right\}$	$2 m+1$	15.	$\left\{u_{1}^{\prime}, u_{2}^{\prime}, u_{2 m}^{\prime}\right\}$	$2 m$
16.	$\left\{u_{1}, u_{1}^{\prime}, u_{2 m}\right\}$	$2 m$	$\left\{u_{1}^{\prime}, u_{2}^{\prime}, u_{2 m+1}^{\prime}\right\}$	$2 m+1$	
6.	$\left\{u_{1}, u_{1}^{\prime}, u_{2 m+1}\right\}$	$2 m+1$	17.	$\left\{u_{2}, u_{2}^{\prime}, u_{2 m}\right\}$	$2 m$
7.	$\left\{u_{1}, u_{1}^{\prime}, u_{2 m}^{\prime}\right\}$	$2 m$	$\left\{u_{2}, u_{2}^{\prime}, u_{2 m+1}\right\}$	$2 m+1$	
8.	$\left\{u_{1}, u_{1}^{\prime}, u_{2 m+1}^{\prime}\right\}$	$2 m+1$	19.	$\left\{u_{2}, u_{2}^{\prime}, u_{2 m}^{\prime}\right\}$	$2 m$
9.	$\left\{u_{1}, u_{2}^{\prime}, u_{2 m}\right\}$	$2 m+1$	$\left\{u_{2}, u_{2}^{\prime}, u_{2 m+1}^{\prime}\right\}$	$2 m+1$	
10.	$\left\{u_{1}, u_{2}^{\prime}, u_{2 m+1}\right\}$	$2 m+2$	21.	$\left\{u_{1}^{\prime}, u_{2}, u_{2 m}\right\}$	$2 m+1$
11.	$\left\{u_{1}, u_{2}^{\prime}, u_{2 m}^{\prime}\right\}$	22.	$\left\{u_{1}^{\prime}, u_{2}, u_{2 m+1}\right\}$	$2 m+2$	
12.	$\left\{u_{1}, u_{2}^{\prime}, u_{2 m+1}^{\prime}\right\}$	$2 m+1$	23.	$\left\{u_{1}^{\prime}, u_{2}, u_{2 m}^{\prime}\right\}$	$2 m$
	24.	$\left\{u_{1}^{\prime}, u_{2}, u_{2 m+1}^{\prime}\right\}$	$2 m+1$		

Therefore, there are 4 subsets S of 3-distance (2m-1), 20 of 3distance $2 m, 20$ subsets of 3 -distance $(2 m+1)$ and 4 subsets of 3 -distance $(2 m+2)$. Thus,

$$
F_{2}(x)=4 x^{2 m-1}\left(1+5 x+5 x^{2}+x^{3}\right) .
$$

Adding $F_{1}(x)$ to $F_{2}(x)$ we get $F_{m}(x)$ as given in the statement of the theorem.
Remark. Hosoya Polynomials of Steiner 3-distance of \mathbf{G}_{1} and \mathbf{G}_{2} are obtained by direct calculation as shown below:

$$
H_{3}^{*}\left(\mathbf{G}_{1} ; x\right)=6 x^{2}+12 x^{3}+2 x^{4}
$$

and

$$
H_{3}^{*}\left(\mathbf{G}_{2} ; x\right)=15 x^{2}+36 x^{3}+38 x^{4}+27 x^{5}+4 x^{6} .
$$

The reduction formula given in Theorem 3.3 can be solved to obtain the following useful formula.

Corollary 3.4. For $m \geq 3$

$$
\begin{aligned}
& H_{3}^{*}\left(\mathbf{G}_{m} ; x\right)=3(3 m-1) x^{2}+12(2 m-1) x^{3}+2(18 m-17) x^{4} \\
& \quad+27(m-1) x^{5}+4(m-1) x^{6}+\sum_{k=0}^{m-3}(k+1) F_{m-k}(x)
\end{aligned}
$$

where

$$
\begin{aligned}
F_{m-k}(x) & =2 x^{2(m-k-1)}\left[(2 m-2 k-3)+(9 m-9 k-11) x+(13 m-13 k-9) x^{2}\right. \\
& \left.+(7 m-7 k-1) x^{3}+(m-k) x^{4}\right] .
\end{aligned}
$$

Proof. From Theorem 3.3,

$$
\begin{align*}
H_{3}^{*}\left(\mathbf{G}_{m} ; x\right)= & 2 H_{3}^{*}\left(\mathbf{G}_{m-1} ; x\right)-H_{3}^{*}\left(\mathbf{G}_{m-2} ; x\right)+F_{m}(x) \\
& =2\left[2 H_{3}^{*}\left(\mathbf{G}_{m-2} ; x\right)-H_{3}^{*}\left(\mathbf{G}_{m-3} ; x\right)+F_{m-1}(x)\right]-H_{3}^{*}\left(\mathbf{G}_{m-2} ; x\right)+F_{m}(x) \\
& =3 H_{3}^{*}\left(\mathbf{G}_{m-2} ; x\right)-2 H_{3}^{*}\left(\mathbf{G}_{m-3} ; x\right)+F_{m}(x)+2 F_{m-1}(x) \\
& =3\left[2 H_{3}^{*}\left(\mathbf{G}_{m-3} ; x\right)-H_{3}^{*}\left(\mathbf{G}_{m-4} ; x\right)+F_{m-2}(x)\right] \\
& -2 H_{3}^{*}\left(\mathbf{G}_{m-3} ; x\right)+F_{m}(x)+2 F_{m-1}(x) \\
& =4 H_{3}^{*}\left(\mathbf{G}_{m-3} ; x\right)-3 H_{3}^{*}\left(\mathbf{G}_{m-4} ; x\right)+\sum_{k=0}^{2}(k+1) F_{m-k}(x) \\
& =(m-1) H_{3}^{*}\left(\mathbf{G}_{2} ; x\right)-(m-2) H_{3}^{*}\left(\mathbf{G}_{1} ; x\right)+\sum_{k=0}^{m-3}(k+1) F_{m-k}(x) \tag{3.1}
\end{align*}
$$

From the remark above, we have

$$
H_{3}^{*}\left(\mathbf{G}_{2} ; x\right)=15 x^{2}+36 x^{3}+38 x^{4}+27 x^{5}+4 x^{6}
$$

and

$$
H_{3}^{*}\left(\mathbf{G}_{1} ; x\right)=6 x^{2}+12 x^{3}+2 x^{4}
$$

Substituting in (3.1) and simplifying, we get the required result.

The 3-Wiener index of \mathbf{G}_{m} is given in the following corollary.
Corollary 3.5. For $m \geq 3$,

$$
W_{3}^{*}\left(\mathbf{G}_{m}\right)=\frac{4}{3} m(m-2)\left(8 m^{2}+35 m+83\right)+225 m-1
$$

Proof. It is known that

$$
\begin{aligned}
W_{3}^{*}\left(\mathbf{G}_{m}\right) & =\left.\frac{d}{d x} H_{3}^{*}\left(\mathbf{G}_{m} ; x\right)\right|_{x=1} \\
\text { Hence } W_{3}^{*}\left(\mathbf{G}_{m}\right) & =393 m-337+2 \sum_{k=0}^{m-3}\left[64 k^{3}+(116-128 m) k^{2}+\left(64 m^{2}-180 m+68\right) k\right. \\
& \left.+8\left(16 m^{2}-13 m+4\right)\right]
\end{aligned}
$$

Now, using the fact that
$\sum_{k=0}^{m-3} k=\frac{1}{2}(m-3)(m-2), \sum_{k=0}^{m-3} k^{2}=\frac{1}{6}(m-3)(m-2)(2 m-5) \quad \sum_{k=0}^{m-3} k^{3}=\left\{\frac{1}{2}(m-3)(m-2)\right\}^{2}$,
and simplifying we get the required result.

REFERENCES

[1] Ali, A.A. and Saeed, W.A. (2006), "Wiener polynomials of Steiner distance of graphs", J. of Applied Sciences, Vol.8, No.2.
[2] Buckly, F. and Harary, F.(1990). Distance in Graphs, AddisonWesley, Redwood, California.
[3] Chartrand, G. and Lesniak, L. (1986), Graphs and Digraphs, $2^{\text {nd }}$ ed., Wadsworth and Brooks/ Cole, California.
[4] Danklemann, P. Oellermann, O. R. and Swart, H.C. (1996), " The average Steiner distance of a graph", J. Graph Theory, Vol.22, No.1, pp.15-22.
[5] Dobrynin, A.A. (1999), "A simple formula for calculation of the Wiener index of hexagonal chains", Computers and Chemistry, Pergamon, Vol. 23, pp.43-48.
[6] Dobrynin, A.A. (2003), "On the Wiener index decomposition for catacondesed benzenoid graphs", Indian J. of Chemistry, Vol. 42 A, pp. 1270-1271.
[7] Henning, M.A. Oellermann, O.R., and Swart, H.C.;(1991), "On vertices with maximum Steiner eccentricity in graphs", Graph Theory, Combinatorics, Algorithms and Applications (eds. Y. Alavi, F.R.K. Chung, R.L. Graham, and D.F. Hsu.), SIAM publication, Philadelphia, pp.393-403.
[8] Hernando, C.; Jiang, T.; Mora, M.; Pelayo, I. M., and Seara, C., (2005), "On the Steiner, geodetic and hull numbers of graphs", Discrete Maths., ELSEVIER, Vol. 293, pp.139-154.

