A New Family of Spectral CG-Algorithm
Abbas Y. Al Bayati
profabbasalbayati@yahoo.com
College of Computer Sciences and Mathematics
University of Mosul, Iraq
Received on: 07/01/2007
Runak M. Abdullah
College of Sciences
University of Suleimani
Accepted on: 23/01/2007

ABSTRACT

A new family of CG -algorithms for large-scale unconstrained optimization is introduced in this paper using the spectral scaling for the search directions, which is a generalization of the spectral gradient method proposed by Raydan [14].

Two modifications of the method are presented, one using Barzilai line search, and the others take $\alpha=1$ at each iteration (where α is stepsize). In both cases tested for the Wolfe conditions, eleven test problems with different dimensions are used to compare these algorithms against the well-known Fletcher -Revees CG-method, with obtaining a robust numerical results.
Keywords: Unconstrained optimization, spectral conjugate gradient method, inexact line search.

$$
\begin{aligned}
& \text { عائلة جديدة لخوارزميات التترج المترافق الطيفي } \\
& \text { روناك محمد عبدالله الهاس يونس البياتي } \\
& \text { جامعة الموصل/كلية علوم الحاسوب والرياضبيات } \\
& \text { تاريخ استلام البحث: 2007/01/07 2007/01/23 تاريخ قبول البحث: 2ا } \\
& \text { جامعة السليمانية/كلية العلوم }
\end{aligned}
$$

1. Introduction

Unconstrained optimization is one of the fundamental problems of numerical analysis with numerous applications.

The problem is the following:

For a function $f: R^{n} \rightarrow R$ and an initial point x_{0}, find a point x^{*} (the minimizer of f) which minimizes the function $f(x)$, i.e.

$$
\begin{equation*}
\min _{x \in R^{n}} f(x) \tag{1}
\end{equation*}
$$

Usually x^{*} exists and is locally unique. It is a assumed that f is continuously differentiable for all k where k is the number of iterations. Methods for unconstrained optimization are generally iterative methods in which the user typically provides an initial estimate x_{0} of x^{*} with possibly some additional information. A sequence of iterates $\left\{x_{k}\right\}$ is then generated according to some algorithm. Usually function values $\left\{f_{k}\right\}$ is monotonically decreasing (f_{k} denotes $f\left(x_{k}\right)$).

A well-known algorithm for solving problem given in equation(1) is the Steepest Descent method first proposed by Cauchy in 1874. The iterations are made according to the following equation:
$x_{k+1}=x_{k}+\alpha_{k} d_{k} \quad, \quad k=0,1, \ldots$
where $d_{k}=-g_{k}$ and α_{k} is a step-size, which is obtained by carrying out an exact line search. It's well-known that the negative gradient direction has the following optimal property (see [7]).
$-g_{k}=\operatorname{Min}_{d \in R^{n}} \operatorname{Lim}_{a \rightarrow 0^{+}}\left[f_{k}-f\left[x_{k}+\frac{\alpha d}{\|d\|_{2}}\right]\right] \frac{1}{\alpha}$
Despite the simplicity of the method and the optimal property (3), the Steepest Descent method converges slowly and is badly affected by illconditioning (see [9] or [15]).

In 1988, a paper by Barzilai and Borwein [5] proposed a Steepest Descent method (the BB method) that uses a different strategy for choosing the step-size α_{k} along the negative gradient direction which is obtained from two point approximation to the secant equation underlying QuasiNewton methods,

Considering $H_{k}=\gamma_{k} I_{n x n}$ as an approximation to the Hessian of f at x_{k}, they choose γ_{k} such that
$H_{k}=\arg \min \left\|H s_{k}-y_{k}\right\|_{2}$,
where $s_{k}=x_{k+1}-x_{k}$ and $y_{k}=g_{k+1}-g_{k}$, yielding (see[2] or [5]),

$$
\begin{equation*}
\gamma_{k}^{B B}=\frac{s_{k}^{T} y_{k}}{s_{k}^{T} s_{k}} \tag{4}
\end{equation*}
$$

with these, the method of Barzilai and Borwein is given by the following iterative scheme:

$$
\begin{equation*}
x_{k+1}=x_{k}-\alpha_{k} g_{k} \tag{5}
\end{equation*}
$$

where $\alpha_{k}=\frac{1}{\gamma^{B B}}$
The scalar $\gamma^{B B}$ has been already used as scaling factor in the QuasiNewton algorithms or Conjugate Gradient algorithms (see[4] and [11]).

The BB method has been shown to converge [14] and it's convergence is linear [13], despite at these advances of BB method on quadratic functions, still there are many open questions about this method on non-quadratic functions although Fletcher [9] shows that the method be very low on some test functions.

In recent paper Abbo [1] proposed a modification of BB by the following way [1].
Let $G_{k}=\gamma_{k}^{B B} I_{n x n}$
where I is the identity matrix as an approximation of Hessian matrix G_{k}, from convex combination of forward and backward Euler's scheme $x_{k+1}=x_{k}-h_{k}\left[(1-\varepsilon) g_{k}+\varepsilon g_{k}\right], 0 \leq \varepsilon \leq 1, h$ is a step-size
and using Taylor's series for $\mathrm{g}(\mathrm{x})$ about x_{k+1}, i.e.

$$
\begin{equation*}
g_{k+1}=g_{k}+G_{k} s_{k}+o\left(\|s\|^{2}\right) \tag{7}
\end{equation*}
$$

2. Conjugate Gradient Method (CG-Methods)

Conjugate Gradient Methods depend on the fact that for quadratic function, if we search along a set of n mutually conjugate directions d_{k}, $k=1,2, \ldots, n$, then we will find the minimum in at most n steps if line searches are exact. Moreover, if we generate this set of directions by known gradients, then each direction can be simply expressed as

$$
\begin{align*}
& d_{0}=-g_{0} \tag{8}\\
& d_{k+1}=-g_{k+1}+\beta_{k} d_{k} \tag{9}
\end{align*}
$$

where β_{k} can be calculated by

$$
\begin{equation*}
\beta_{F R}=\frac{g_{k+1}^{T} g_{k+1}}{g_{k}^{T} g_{k}} \tag{10}
\end{equation*}
$$

$$
\begin{equation*}
\beta_{\text {perry }}=\frac{\left(y_{k}-s_{k}\right)^{T} g_{k+1}}{s_{k}^{T} y_{k}} \tag{11}
\end{equation*}
$$

All these β_{k} 's are equivalent on quadratic function with exact line searches and starting with steepest descent direction, but when extended to general non-linear functions, the conjugate gradient algorithm with different β are quite different in efficiency. Formula (11) gives better algorithms than (10) in practice, a reason for this is given by Powell [13]. One of the reasons for the inefficiency of CG-method is that none of the β in (10) and (11) takes into consideration the effect of inexact line searches [10]. To overcome this drawback some authors proposed the so called spectral conjugate gradient methods (see for example [3],[6]).

Birgin and Martinez in [6] introduced an spectral conjugate gradient (SCG), in which the search directions are generated by

$$
\begin{align*}
& d_{k}=-\theta_{k} g_{k} \quad, \quad k=0 \\
& d_{k+1}=-\theta_{k+1} g_{k+1}+\beta_{k} s_{k} \tag{12}
\end{align*}
$$

where $\theta_{k+1}=\frac{s_{k}^{T} s_{k}}{s_{k}^{T} y_{k}}$
and $\beta_{k}=\frac{\left(\theta_{k} y_{k}-s_{k}\right)^{T} g_{k+1}}{s_{k}^{T} y_{k}}$
For if $\theta_{k}=1$ this formula was introduced by Perry in [12], if we assume that

$$
\begin{align*}
& s_{j}^{T} g_{j+1}=0 \quad, \quad j=0,1, \ldots, k \text { then } \\
& \beta_{k}=\frac{\theta_{k} y_{k}^{T} g_{k+1}}{\alpha_{k} \theta_{k} g_{k}^{T} g_{k}} . \tag{15}
\end{align*}
$$

Finally, assuming that the successive gradients are orthogonal, we obtain the generalization of FR formula:

$$
\begin{equation*}
\beta_{k}=\frac{\theta_{k} g_{k+1}^{T} g_{k+1}}{\alpha_{k} \theta_{k} g_{k}^{T} g_{k}} \tag{16}
\end{equation*}
$$

In fact, SCG algorithm is a generalization of the Raydan [14] spectral gradient algorithm defined by

$$
\begin{equation*}
d_{k}=-\theta_{k} g_{k} \tag{17}
\end{equation*}
$$

where θ as in (13).

3. Outlines of the spectral CG-algorithm algorithm

$$
\text { Let } x_{0} \in R^{n},, d_{0}=-g_{0}, k=0, \alpha_{0}=1
$$

Step(1) : if $g_{k}=0$ stop, otherwise go to step (2)
Step(2) : compute

$$
\begin{equation*}
\alpha_{k}=\frac{\alpha_{k-1}\left\|d_{k-1}\right\|}{\left\|d_{k}\right\|} \tag{18}
\end{equation*}
$$

such that Wolfe-condition is satisfied and hence a new x_{k+1} is computed Step (3) : compute θ_{k+1} by (13) and β_{k} by (15) or (16) and define

$$
\begin{equation*}
d_{k+1}=-\theta_{k+1} g_{k+1}+\beta_{k} s_{k} \tag{19}
\end{equation*}
$$

Step(4): If $d_{k}^{T} g_{k+1} \leq-10^{-3}\left\|d_{k}\right\|_{2}\left\|g_{k+1}\right\|$
then set $\quad d_{k+1}=d_{k}$ else $d_{k+1}=-\theta g_{k+1}$
Step(5) : k=k+1 go to step(1)

4. New family of SCG methods (NSCG say)

In [10] Birgin gives a nice comparison by asking the following questions:

1 - Is the choice (13) better than $\theta=1$?
2- Which is the best choice of β_{k} among (15) and (16)?
3- Which is the best choice of α_{k} ?
According to these inquires let us consider the following:
From the last term in (7) and substituting in (6) we obtain

$$
\begin{align*}
& x_{k+1}-x_{k}=-h_{k}\left[(1-\varepsilon) g_{k}+\varepsilon\left(g_{k}+G_{k} s_{k}\right)\right] \\
& s_{k}=-h_{k}\left[g_{k}+\varepsilon G_{k} s_{k}\right] \\
& s_{k}+\varepsilon h_{k} G_{k} s_{k}=-h_{k} g_{k} \\
& \left(I+\varepsilon h_{k} G_{k}\right) s_{k}=-h_{k} g_{k} \\
& \frac{x_{k+1}-x_{k}}{h_{k}}=-\left(I+\varepsilon h_{k} G_{k}\right)^{-1} g_{k} \tag{20}
\end{align*}
$$

Let $L_{k}=\frac{\left\|g_{k+1}-g_{k}\right\|^{2}}{\left\|x_{k+1}-x_{k}\right\|^{2}} \quad$, Lipschitz constant, let $G_{k}=\lambda_{k} I$ where I is $n \times n$ identity matrix and put $h_{k}=L_{k}$ in (20)

$$
x_{k+1}-x_{k}=-L_{k}\left[I+L_{k} \theta \lambda_{k} I\right]^{-1} g_{k}
$$

$$
\begin{align*}
& \frac{1}{L_{k}}\left(x_{k+1}-x_{k}\right)=-\left[I+\varepsilon \frac{y^{T} y}{s^{T} s} \cdot \frac{s^{T} y}{y^{T} y}\right]^{-1} g_{k} \\
& \frac{1}{L_{k}} s_{k}=-\left[\frac{s_{k}^{T} s_{k}}{s_{k}^{T} s_{k}+\varepsilon s_{k}^{T} y}\right] g_{k} \\
& \because d_{k}=-\frac{s_{k}^{T} s_{k}}{s_{k}^{T} s_{k}+\varepsilon s_{k}^{T} y} g_{k} \\
& x_{k+1}=x_{k}+d_{k} \\
& \text { where } \theta=\frac{s^{T} s}{s^{T} s+\varepsilon s^{T} y} \tag{21}
\end{align*}
$$

From (21) it is clear that setting $\varepsilon=0$ this gives $\theta=\frac{s^{T} s}{s^{T} s}=1$, this will answer one of the inquiries of Birgin. Also taking $\varepsilon=1$ will give $\theta=\frac{s^{T} s}{s^{T} s+s^{T} y}$. To answer the $2^{\text {nd }}$ inquiry, it is clear that β_{k} in (14) is very effective since the line search which is used in this paper is not exact. To answer the $3^{\text {rd }}$ inquiry we suggest a new hybrid computations for the scalar α as shown in step(2) from the new algorithm.
We are going to list outlines of the new proposed algorithm (NSCG).

4.1 Outline of the algorithm (NSCG)

Let $x_{0} \in R^{n}, 0<\sigma<\gamma<1, d_{0}=-g_{0}, k=0$
Step(1) : if $g_{k}=0$ stop, else go to step(2)
Step(2):First compute $\alpha_{k}=1$ and second compute

$$
\alpha_{k}=\left\{\begin{array}{lc}
1 & k=0 \tag{22}\\
\frac{\alpha_{k-1}\left\|d_{k-1}\right\|}{\left\|d_{k}\right\|} & k>0
\end{array}\right\}
$$

Such that $f\left(x_{k}+\alpha_{k} d_{k}\right) \leq f\left(x_{k}\right)+\sigma \alpha_{k} g_{k}^{T} d_{k}$
And $g_{k+1}^{T} d_{k} \geq \gamma g_{k}^{T} d_{k}$

$$
\begin{equation*}
x_{k+1}=x_{k}+\alpha_{k} d_{k} \tag{23}
\end{equation*}
$$

Step (3) : compute θ by (21) and β_{k} by (16) and define

$$
d_{k+1}=-\theta_{k+1} g_{k+1}+\beta_{k} s_{k}
$$

Step(4): If $\quad d_{k}^{T} g_{k+1} \leq-10^{-3}\|d\|_{2}\left\|g_{k+1}\right\|$
then $\quad d_{k+1}=d_{k}$ else $\quad d_{k+1}=-\theta_{k+1} g_{k+1}$
Step(5) : k=k+1 go to step(1)

4.2 Some theoretical results

4.2.1 Theorem:

If α_{k} satisfies Wolf condition defined by (22) and (23) then the search direction will be descent, i.e. $y_{k}^{T} s_{k}>0$.
For proof see [5].

4.2.2 Theorem:

Suppose that f is bounded below in R^{n} and that f is continuously differentiable in neighborhood of the level set $L=\left\{x: f(x) \leq f\left(x_{0}\right)\right\}$. Assume also that the gradient g_{k} is Lipchitz continuous i.e. there exists a constant $c>0$ s.t. $\|g(x)-g(y)\| \leq c\|x-y\| \quad \forall x, y \in R^{n}$.

Consider any iteration of the form
$x_{k+1}=x_{k}+\alpha_{k} d_{k} \quad$ where $\alpha=1$ and if $d_{k}=-g_{k}$ and α_{k} satisfies Wolfe conditions defined in (22) and (23) then $\lim _{k \rightarrow \infty}\left\|g_{k}\right\|=0$.

Proof : From equation (22) we have $\left(g_{k+1}-g_{k}\right)^{T} d_{k} \geq\left(\sigma_{2}-1\right) g_{k}^{T} d_{k}$ on the other hand, the lipchitz condition $\quad\left(g_{k+1}-g_{k}\right)^{T} d_{k} \leq \alpha_{k} c\left\|d_{k}\right\|^{2}$
from (24) and (25) we get $\quad \alpha_{k} \geq\left(\frac{\sigma_{2}-1}{c}\right) \frac{\left(g_{k}^{T} d_{k}\right)^{2}}{\left\|d_{k}\right\|^{2}}$
using equations (22) and (26) we have $f_{k+1} \leq f_{k}+\sigma_{1}\left(\frac{\sigma_{2}-1}{c}\right) \frac{\left(g_{k}^{T} d_{k}\right)^{2}}{\left\|d_{k}\right\|^{2}}$
now using the relation $\left\|g_{k}\right\|\left\|d_{k}\right\| \cos \gamma_{k}=-g_{k}^{T} d_{k}$ where γ_{k} is the angle between g_{k} and d_{k}.
then the equation (27) can be written as $f_{k+1} \leq f_{k}+t\left\|g_{k}\right\| \cos ^{2} \gamma_{k}$
where $t=\frac{\sigma_{1}\left(\sigma_{2}-1\right)}{c}$ and $\sigma_{1}, \sigma_{2} \in\left(0, \frac{1}{2}\right)$
summing the expression in equation (28) and since f is bounded below, we obtain

$$
\begin{equation*}
\sum \cos ^{2} \gamma_{k}\left\|g_{k}\right\|^{2}<\infty \tag{29}
\end{equation*}
$$

assuming that $\cos ^{2} \gamma_{k}>\delta>0$ for all k , then we conclude that

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|g_{k}\right\|=0 \tag{30}
\end{equation*}
$$

5. Numerical results

The comparative test involves eleven well-known standard test functions(given in the appendix) with different dimensions. The results are given in the Table(1) is specifically quoting the number of function evaluations (NOF) . All programs are written in FORTRAN 90 language and for all cases the stopping criterion is taken to be $\left\|g_{k+1}\right\|<1 x 10^{-5}$. The results are given in table (1):

Table (1)
Comparison results between the new (NSCG)
and Birgin spectral standard SCG for $\beta_{F R}$

		New (SCC)		StandardSCG)									
Test Function	N	$\alpha_{k}=\frac{\alpha_{k-1}\left\\|d_{k-1}\right\\|}{\left\\|d_{k}\right\\|}$	$\alpha_{k}=1$	$\alpha_{k}=\frac{\alpha_{k-1}\left\\|d_{k-1}\right\\|}{\left\\|d_{k}\right\\|}$	$\alpha_{k}=1$								
		f $\mathrm{l}_{\text {- }}$	¢	f 0 -	P-								
	$\begin{gathered} \hline \hline 1000 \\ 5000 \\ 10000 \\ \hline \end{gathered}$	44	35	44	32								
Evtondod		101	40	99	161								
Trigonometric		86	40	86	152								
	1000	59	92	64	121								
Extended	5000	60	92	64	106								
Rosenbrock	10000	64	99	64	105								
	$\begin{gathered} \hline 1000 \\ 5000 \\ 10000 \\ \hline \end{gathered}$	$\begin{gathered} \hline 662 \\ 1239 \\ 1504 \\ \hline \end{gathered}$	$\begin{gathered} \hline 431 \\ 833 \\ 1198 \\ \hline \end{gathered}$	513	364								
Perturbed Quadratic				1351	938								
				1703	2001								
	$\begin{gathered} \hline 1000 \\ 5000 \\ 10000 \end{gathered}$	$\begin{gathered} \hline \hline 1619 \\ \# \\ \# \end{gathered}$	$\begin{gathered} \hline 622 \\ 873 \\ \# \\ \hline \end{gathered}$	636	591								
Raydan 1				\#	2327								
				\#	\#								
	$\begin{gathered} \hline 1000 \\ 5000 \\ 10000 \end{gathered}$	$\begin{aligned} & \hline 307 \\ & 486 \\ & 522 \\ & \hline \end{aligned}$	3888261189	337 747 2027	$\begin{gathered} \hline \hline 344 \\ 830 \\ 1200 \\ \hline \end{gathered}$								
Diagonal 2													
	$\begin{gathered} \hline \hline 2000 \\ 5000 \\ 10000 \end{gathered}$	$\begin{gathered} 54 \\ 429 \\ 1324 \end{gathered}$	$\begin{gathered} \hline \hline 42 \\ 185 \\ 325 \end{gathered}$	$\begin{gathered} \hline 320 \\ 732 \\ 1666 \end{gathered}$	469								
Tridiagonal-1					$\overline{5537}$								
	$\begin{aligned} & \hline 3000 \\ & 4000 \end{aligned}$	17691911	$\begin{aligned} & 116 \\ & 181 \end{aligned}$	56631524									
Exponential Terms					425								

A new family of spectral CG-algorithm

1	10000	2634	II	438	II	4364	II	768	II				
Generalized PSC1	5000	\#		\#	\|		\#	\|		\#	1		
	1000	172		152	\|		147	\|		590	\\|		
Extended Powell	3000	146	\|		179	\\|	183	\|		2062	\|		
	5000	158	\|		155	\\|	178	\|		712	\|		
	1000	37	\|	141	\|		43	\|		46	\|		
Extended Maratos	6000	37	\|		141	\\|	39	I	307	II			
1	1000	0	\\|	141	1	120	\\|	21	1				
	1000	184		71	\|		184	\|		81	\|		
Extended Wood	5000	192	\|		71	\|		202	\|		79	\|	
	10م0	178	-	74	-	188	-	83	-				
Total		16076		9170		24970		16257					

From Table (1) taking the standard Birgin (SCG) as \%100 NOF we can get the following values.

Table(2)

New SCG	64%	56%

From table (2) it is clear that the new proposed algorithm with it's both versions has an improvements of about (33-36)\% NOF according to our selected number of test functions.

6. Appendix :

All the test functions used in this paper are from general literature:

1. Extended Trigonometric Function
$\mathrm{f}(\mathrm{x})=\sum_{i=1}^{n}\left(\left(n-\sum_{j=1}^{n} \cos x_{j}\right)+i\left(1-\cos x_{i}\right)^{2} \quad, x_{0}=[0.2,0.2, \ldots, 0.2]^{T}\right.$
2. Extended Rosenbrock Function
$\mathrm{f}(\mathrm{x})=\sum_{i=1}^{n / 2} c\left(x_{2 i}-x_{2 i-1}^{2}\right)^{2}+\left(1-x_{2 i-1}\right)^{2} \quad, x_{0}=[-1.2,1, . .,-1.2,1]^{T}$
3. Perturbed Quadratic Function
$\mathrm{f}(\mathrm{x})=\sum_{i=1}^{n} i x_{i}^{2}+\frac{1}{100}\left(\sum_{i=1}^{n} x_{i}\right)^{2} \quad, \quad x_{0}=[0.5,0.5, \ldots, 0.5]^{T}$
4. Raydan1 Function
$\mathrm{f}(\mathrm{x})=\sum_{i=1}^{n} \frac{i}{10}\left(\exp \left(x_{i}\right)-x_{i}\right) \quad, \quad x_{0}=[1,1, \ldots, 1]^{T}$
5. Diagonal2 Function

$$
\mathrm{f}(\mathrm{x})=\sum_{i=1}^{n}\left(\exp \left(x_{i}\right)-\frac{x_{i}}{i}\right) \quad, x_{0}=[1 / 1,1 / 2, \ldots, 1 / n]^{T}
$$

6. Generalized Tridigonal-1 Function

$$
\mathrm{f}(\mathrm{x})=\sum_{i=1}^{n-1}\left(x_{i}+x_{i+1}-3\right)^{2}+\left(x_{i}-x_{i+1}+1\right)^{4} \quad, \quad x_{0}=[2,2, \ldots, 2]^{T}
$$

7. Extended Three Exponential Terms

$$
\begin{array}{r}
\mathrm{f}(\mathrm{x})=\sum_{i=1}^{n / 2}\left(\exp \left(x_{2 i-1}+3 x_{2 i}-0.1\right)+\exp \left(x_{2 i-1}-3 x_{2 i}-0.1\right)+\exp \left(-x_{2 i-1}-0.1\right),\right. \\
x_{0}=[0.5,0.5, \ldots, 0.5]^{T}
\end{array}
$$

8. Generalized PSC1 Function
$\mathrm{f}(\mathrm{x})=\sum_{i=1}^{n-1}\left(x_{i}^{2}+x_{i+1}^{2} x_{i} x_{i+1}\right)^{2}+\sin ^{2}\left(x_{i}\right)+\cos ^{2}\left(x_{i}\right) \quad, x_{0}=[3,0.1, \ldots, 3,0.1]^{T}$
9. Extended Powell Function
$\mathrm{f}(\mathrm{x})=$

$$
\begin{array}{r}
\sum_{i=1}^{n / 4}\left(x_{4 i-3}+10 x_{4 i-2}\right)^{2}+5\left(x_{4 i-1}-x_{4 i}\right)^{2}+\left(x_{4 i-2}-2 x_{4 i-1}\right)^{4}+10\left(x_{4 i-3}-x_{4 i}\right)^{4}, \\
x_{0}=[3,-1,0,1, \ldots, 3,-1,0,1]^{T}
\end{array}
$$

10. Extended Maratos Function

$$
\mathrm{f}(\mathrm{x})=\sum_{i=1}^{n / 2} x_{2 i-1}+c\left(x_{2 i-1}^{2}+x_{2 i}^{2}-1\right)^{2} \quad, \quad x_{0}=[1.1,0.1, \ldots, 1.1,0.1]^{T}
$$

11. Extended Wood Function

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x})=\sum_{i=1}^{n / 4} 100\left(x_{4 i-3}^{2}-x_{4 i-2}\right)^{2}+\left(x_{4 i-3}-1\right)^{2}+90\left(x_{4 i-1}^{2}-x_{4 i}\right)^{2}+\left(1-x_{4 i-1}\right)^{2}+ \\
& 10.1\left\{\left(x_{4 i-2}-1\right)^{2}+\left(x_{4 i}-1\right)\right\}+19.8\left(x_{4 i-2}-1\right)\left(x_{4 i}-1\right), \\
& x_{0}=[-3,-1,-3,-1, \ldots,-3,-1,-3,-1]^{T}
\end{aligned}
$$

REFERENCES

[1] Abbo, K. " Modifying of Barzilai and Borwein Method for solving Large scale Unconstrained Optimization", accepted for publication in Iraqi journal of Statistical Sciences, 2006
[2] Andrei, N. "A New Gradient Descent Method for Unconstrained Optimization" Research Institute Informatics AMS 65F30. Bucharest 2002
[3] Andrei, N. "A New Gradient Descent Method for Unconstrained Optimization" ICI. Technical Report. Bucharest 2004.
[4] Andrei, N. "Scaled Conjugate Gradient Algorithm for Unconstrained Optimization" ICI. Technical Report. Bucharest 2005.
[5] Barzilai, J. and Borwein.M " Two Points Step-size Gradient Methods" IMA J. Number Anal. ,9, 1988.
[6] Bergin, E. and Martinez. M " a Spectral Conjugate Gradient Method for Unconstrained Optimization Applied Math. And Optimization, 43, 2001.
[7] Dai, Y. and Ynan. X. " Modified Two Point Step-size Gradient Methods for Unconstraine Optimization" Report No. ICM. 98-044 July-1988.
[8] Dai, Y. and Liao. L" R- linear Convergence of Barzilai and Borwein Gradient Method" Research Report, 1999 (Accepted by IMA J. Number Anal.).
[9] Fletcher, R. "Practical Methods of Optimization" (2 ${ }^{\text {nd }}$ Edition). John Wiley Chichester 1987.
[10] Hu, Y. and Storeg. C " On Unconstrained Conjugate Gradient Optimization Methods and Their Interrelationship Mathematics Report A 129, July 1990.
[11] Lin, D. and Nocedal. J " On the Limited Memory BFGS Method for Large Scale- Optimization" Math. Programming , 95, 1989.
[12] Perry, A. " A Modified Conjugate Gradient Algorithm" operations Research 26, 1978.
[13] Powell. M. " Restart Procedures for the Conjugate Gradient Method" Math. Programming , Vol (12), 1977.
[14] Raydan, M. "On the Barzilai and Borwein Choice of steplength for the Gradient Method", Research Report, 1999 (accepted by IMA J. Number Anal.).
[15] Zhen, J. and Jie. S " Step-size Estimation for Unconstrained Optimization Methods" Computational and Applied Mathematics Vol. (24) No.(3), 2005.

