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ABSTRACT 

 This paper compares between two models: Common Genetic algorithm and  the 

new Clonal selection theory in the field of Intrusion Detection. Genetic algorithms (GA) 

which is a model of genetic evolution, while Clonal selection theory (CST) is from 

models of the natural immune system NIS,  the two models are from two different fields 

of Artificial Intelligence AI but they have portion of shared operations and objectives. 

The comparison to be done by applying the two models on some records of Knowledge 

Discovery and Data mining tools which is known by the name KDD data sets (its 

records the data of the interring packets to the computer system from the internet), to 

produce population ( in case of GA) or antibodies (in case of CST) can recognize these 

abnormal records.  
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1. Introduction 
 

 Internet  has given users a need for security  components to protect themselves. 

Certain techniques are used to secure important data, such as firewall and encryption 

etc. . Firewall acts as a defense to protect sensitive data, but it merely reduces exposure 

rather than monitors or eliminates vulnerabilities in computer systems. Any encrypted 

message can be decrypted in theory, and encryption adds extra burden on hosts or 

application. Moreover, any new security techniques themselves might have design 

flaws. Obviously, it is important to have a detecting and monitoring system to protect 

important data. For this reason the detection methods of intruders in the computer 

networks have drawn attention to many researchers in recent years.[1] 

 An Intrusion Detection System (IDS) is an important component of the 

computer and information security framework. Its main goal is to differentiate between 

normal activities of the system and behaviors that can be classified as suspicious or 

intrusive. 

 There are two main approaches to design of IDSs: misuse and anomaly detection 

techniques. In a misuse detection based IDS, intrusions are detected by looking for 

activities that correspond to known signatures of intrusion and vulnerabilities. On the 

other hand, the anomaly detection based IDSs detect attacks by observing deviations 

from behavior of the system. Its works by comparing network traffic, system call 

sequences, or other features of known attack patterns. 

 Clonal selection algorithms, however, are very similar to a kind of evolutionary 

algorithm; namely, evolutionary strategies, although they have a different biological 

inspiration. Clonal selection algorithms are also population-based search and 

optimization algorithms generating a memory pool of suitable antibodies for solving a 

particular problem. 
 

2. Input data (the KDD Cup 99 Data) 
 

 This is the data set of The Third International Knowledge Discovery and Data 

mining tools competition, which was held in conjunction with KDD cup 99 the Fifth 

International Conference on Knowledge Discovery and Data mining. The KDD cup 

1999 is dataset  used for benchmarking intrusion detection problems.  The dataset was a 

collection over a period of nine weeks on local area network. The types are grouped into 

five categories (Normal, Probing, Denial of Service (DoS), User to Root (U2R), and 

Remote to Local (R2L)). 

 KDD Cup 99 dataset is divided into training and testing record sets. Total 

number of connection records in the training dataset is about 5 million records. This too 

large for our purpose, only concise training dataset of KDD Cup 99, known as 10% 

KDD Cup 99, and test dataset which called (correct) data set was employed here [1]. 

Each record contained values of 41 independent variables (fields) describing the 

different features of the connection, and the value of the dependent variable labeled as 

either normal, or as an attack, with exactly one specific attack type, the sample of four 

connection record corresponding to the attack types, and the list of 41 features 

corresponding to their types is showing below [KDD data set]. 

 

 

 

 

 

0,tcp,http,SF,181,5450,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,8,8,0.00,0.00,0.00,0.00,

1.00,0.00,0.00,9,9,1.00,0.00,0.11,0.00,0.00,0.00,0.00,0.00,normal. 
 

0,tcp,telnet,S0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,5,0.83,1.00,0.00,0.00,0.83

,0.33,0.00,5,6,1.00,0.00,0.20,0.33,1.00,0.83,0.00,0.00,neptune. 
 

0,icmp,ecr_i,SF,1032,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,316,316,0.00,0.00,0.00

,0.00,1.00,0.00,0.00,148,3,0.02,0.02,0.02,0.00,0.00,0.00,0.00,0.00,smurf. 
 

0,udp,private,SF,28,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0.00,0.00,0.00,0.00,1

.00,0.00,0.00,73,1,0.01,0.05,0.01,0.00,0.00,0.00,0.00,0.00,teardrop. 



Practical Comparison between Genetic Algorithm… 
 

 

 123 

 

 

 

 

 

 

 

Four Samples of Connection Records Corresponding to the Attack Types 
 

3. Evolutionary Computation 
 

Evolution is an optimization process where the aim is to improve the ability of 

an organism (or system) to survive in dynamically changing and competitive 

environments [2][3]. 

Evolutionary computation (EC) refers to computer-based problem solving 

systems that use computational models of evolutionary processes, such as natural 

selection, survival of the fittest and reproduction, as the fundamental components of 

such computational systems. 

Evolution via natural selection of a randomly chosen population of individuals 

can be thought of as a search through the space of possible chromosome values. In that 

sense, an evolutionary algorithm (EA) is a stochastic search for an optimal solution to a 

given problem. The evolutionary search process is influenced by the following main 

components of an EA: 

• an encoding of solutions to the problem as a chromosome; 

• a function to evaluate the fitness, or survival strength of individuals; 

• initialization of the initial population; 

• selection operators; and 

• reproduction operators. 

Algorithm (1) shows how these components are combined to form a generic EA [2]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The steps of an EA are applied iteratively until some stopping condition is 

satisfied. Each iteration of an EA is referred to as a generation. The different ways in 

which the EA components are implemented result in different EC paradigms:[2] 

• Genetic algorithms (GAs), which model genetic evolution. 

• Genetic programming (GP), which is based on genetic algorithms, but individuals are 

programs (represented as trees). 

• Evolutionary programming (EP), which is derived from the simulation of adaptive 

behavior in evolution (i.e. phenotypic evolution). 

Algorithm 1. Generic Evolutionary Algorithm 

 

Let t = 0 be the generation counter; 

Create and initialize an nx-dimensional population, C(0), to consist of 

ns individuals; 

while stopping condition(s) not true do 

Evaluate the fitness, f(xi(t)), of each individual, xi(t); 

Perform reproduction to create offspring; 

Select the new population, C(t + 1); 

Advance to the new generation, i.e. t = t + 1; 

end 
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• Evolution strategies (ESs), which are geared toward modeling the strategic parameters 

that control variation in evolution, i.e. the evolution of evolution. 

• Differential evolution (DE), which is similar to genetic algorithms, differing in the 

reproduction mechanism used. 

• Cultural evolution (CE), which models the evolution of culture of a population and 

how the culture influences the genetic and phenotypic evolution of individuals. 

• Co-evolution (CoE), where initially “dumb” individuals evolve through cooperation, or 

in competition with one another, acquiring the necessary characteristics to survive. 
 

3.2 Genetic Algorithms 
 

Genetic algorithms (GA) are possibly the first algorithmic models developed to 

simulate genetic systems. GAs model genetic evolution, where the characteristics of 

individuals are expressed using genotypes. The main driving operators of a GA is 

selection (to model survival of the fittest) and recombination through application of a 

crossover operator (to model reproduction). This section discusses in detail GA used in 

this research and their evolution operators, which is follows the general algorithm as 

given in Algorithm (1), but with different components are combined to form GA 

particularity to solve intrusion detection problem in KDD data set [2]. 

• A real value representation was used. 

• Stochastic Universal sampling selection was used to select parents for recombination. 

• Uniform crossover was used as the primary method to produce offspring. 

• Somatic Mutation for real-value. 

• Fitness evaluation, see section 8 . 

• Positive Selection, see section  10.2. 

• Replace worst. 

• Stopping Condition, see section 9.  

• Negative Selection, see section 10.1, this step performed on detectors one time after the 

generation cycles complete.  

The two steps Positive Selection and Negative Selection are from AIS and we added them 

here because they are necessary for intrusion detection applications. 
 

1. Real value representation 
 

 Since our data consist of fields have different types characters and numbers. To 

unite them we convert characters to numbers, and then applied normalization process on 

them to obtain values in range [0 – 1]. 

 The benefit of data transformation such as normalization may improve the 

accuracy and efficiency of artificial  algorithms. Such methods provide better results if 

data to be analyzed has been normalized, that is, scaled to specific range as [0 – 1]. [2] 

Min-Max Normalization: The min-Max normalization performs a linear 

transformation on the original data values. Suppose that minX and maxX are the 

minimum and maximum of feature X. In order to map interval [minX - maxX] into new 

interval [new minX – new maxX]. Consequently, every value v from the original interval 

will be mapped into value newv using the following formula [1]: 

 

 

 

 

 

2. Proportional Selection (Stochastic Universal sampling) 
 

                v - minX 

newv =  

                 maxX - minX 
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Selection operators are characterized by their selective pressure, also referred to 

as the takeover time, which relates to the time it requires to produce a uniform 

population. It is defined as the speed at which the best solution will occupy the entire 

population by repeated application of the selection operator alone. An operator with a 

high selective pressure decreases diversity in the population more rapidly than operators 

with a low selective pressure, which may lead to premature convergence to suboptimal 

solutions. A high selective pressure limits the exploration abilities of the population [2]. 

Two popular sampling methods used in proportional selection is roulette wheel 

sampling and stochastic universal sampling. 

In roulette wheel selection it may happen that the best individual is not selected 

to produce offspring during a given generation. To prevent this problem, stochastic 

universal sampling (refer to Algorithm 2), used to determine for each individual the 

number of offspring, λi, to be produced by the individual with only one call to the 

algorithm. 

Because selection is directly proportional to fitness, it is possible that strong 

individuals may dominate in producing offspring, thereby limiting the diversity of the 

new population. In other words, proportional selection has a high selective pressure 

[2][4]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

3. Crossover (Uniform crossover) 
 

Crossover operators can be divided into three main categories based on the 

amity (i.e. the number of parents used) of the operator. This results in three main 

classes of crossover operators: 

• asexual, where an offspring is generated from one parent. 

• sexual, where two parents are used to produce one or two offspring. 

• multi-recombination, where more than two parents are used to produce one or more 

offspring. 

Crossover operators are further categorized based on the representation scheme 

used. For example, binary-specific operators have been developed for binary string 

representations, and operators specific to floating-point representations. 

Algorithm 2. Stochastic Universal Sampling. 
 

for i = 1, . . . , ns do , where ns is the population size 

λi(t) = 0;         , no of offspring for each individual 

end 

r ~ U(0, 1/λ ), where λ is the total number of offspring, r is random no. 

in range [0, 1/λ]; 

sum = 0.0; 

for i = 1, . . . , ns do 

sum = sum + γs(xi(t));  where γs(xi(t)) is the probability that xi 

will be selected 

while r < sum do 

λi ++; 

r = r + 1/λ; 

end 

end 

return λ = (λ1, . . . , λns ); 
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Parents are selected using the selection scheme discussed in previous section. 

But here binary crossover applied on parent's features  instead of 0 and 1. 

Recombination is applied probabilistically, Each pair (or group) of parents have a 

probability, pc, of producing offspring. Usually, a high crossover probability (also 

referred to as the crossover rate) is used. 

Most of the crossover operators for binary representations are sexual, being 

applied to two selected parents. If x1(t) and x2(t) denote the two selected parents, then 

the recombination process is summarized in Algorithm (3). In this algorithm, m(t) is a 

mask that specifies which bits of the parents should be swapped to generate the 

offspring, x 1(t) and x 2(t). Several crossover operators have been developed to 

compute  the mask: One-point crossover, Two-point crossover, Uniform crossover [2]. 

Uniform crossover: The nx-dimensional mask is created randomly as summarized in 

Algorithm (3). Here, px is the bit-swapping probability. If 

px = 0.5, then each bit has an equal chance to be swapped. Uniform crossover is 

illustrated in Figure (1). 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1. Uniform Crossover 
 

4. Somatic Mutation for real-value. 

 Mutation real-value attribute strings (vectors) has the same essence as mutating 

the other types of strings, i.e., a change is made in one or more of the attributes, but it 

has to respect the upper and lower limits of each attribute (vector coordinate). 

 In inductive mutation, a random number to be added to a given attribute is 

generated. A common mutation operator for real-valued vectors in evolutionary 

algorithms is Gaussian mutation. The Gaussian mutation alters all The attributes of a 

string according to the following expression: 

                                m` = m + α(D) N(0,σ)  …..….. (1) 

Algorithm 3. Uniform Crossover Mask Calculation 

 

Initialize the mask: mj(t) = 0, for all j = 1, . . . , nx; 

for j = 1 to nx do 

if U(0, 1) ≤ px then 

mj(t) = 1; 

end 

end 
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where m = (m1, m2, …, mL) is attribute string ,  m` its mutated version, α(D) is a 

function  that accounts for affinity (AIS) proportional mutation therefore is canceled 

here in evolutionary computation, and N(0,σ) is a vector of independent Gaussian 

random variables of zero mean and standard deviation σ [5]. 
 

5.  Replacement Strategy 
 

A replacement strategy that decides if offspring will replace parents, and which 

parents to replace. 

Two main classes of GAs are identified based on the replacement strategy used, 

namely generational genetic algorithms (GGA) and steady state genetic algorithms 

(SSGA), also referred to as incremental GAs. For GGAs the replacement strategy 

replaces all parents with their offspring after all offpsring have been created and 

mutated. This results in no overlap between the current population and the new 

population (assuming that elitism is not used). For SSGAs, a decision is made 

immediately after an offspring is created and mutated as to whether the parent or the 

offspring survives to the next generation. Thus, there exists an overlap between the 

current and new populations. 

The amount of overlap between the current and new populations is referred to as 

the generation gap. GGAs have a zero generation gap, while SSGAs generally have 

large generation gaps [2][4]. 

A number of replacement strategies have been developed for SSGAs: Replace 

worst, Replace random, Kill tournament, Replace oldest, Conservative selection, Elitist, 

Parent-offspring. 

• Replace worst, was used here where the offspring replaces the worst individual of the 

current population. 

 

The following flowchart (see figure 2) display in summary way the preceding 

steps in our applying GA to solve intrusion detection problem in KDD data set.   
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Start 

Initialize 

Parameters 

Read Normal & Attacks record from KDD 

and consider them as chromosomes 

convert them to normalizes value between [0-1] 

Generate Random Detectors 

Calculate fitness between Attacks 

chromosomes(Ags) & Random Detectors 

Select Detectors Parents by Using Stochastic 

Universal Sampling 

Produce offspring  by Feature Crossover 

 Real Value Mutation 

Positive Selection between Attacks 

chromosomes & Mutated offspring Detectors 

Insert offspring Detectors which have the highest 

fitness in random detectors instead the worst ones 

Repeat until find detector recognize current 

attack chromosome or reach the maximum 

cycles 

For each Attacks chromosome 

Test the result by Negative Selection between  

normal records & Life detectors 

Calculate Detection & False Rate  
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Figure 2: Flowchart of implementation GA to solve ID problem in KDD 

data set. 
4.  AIS - Learning the Antigen Structure 
 

Learning in the immune system is based on increasing the population size of 

those lymphocytes that frequently recognize antigens. Learning by the immune system 

is done by a process known as affinity maturation. Affinity maturation can be broken 

down into two smaller processes namely, a cloning process and a somatic hyper-

mutation process. The cloning process is more generally known as clonal selection, 

which is the proliferation of the lymphocytes that recognize the antigens. 

The interaction of the lymphocyte with an antigen leads to an activation of the 

lymphocyte where upon the cell is proliferated and grown into a clone. When an antigen 

stimulates a lymphocyte, the lymphocyte not only secretes antibodies to bind to the 

antigen but also generates mutated clones of itself in an attempt to have a higher binding 

affinity with the detected antigen. The latter process is known as somatic hyper-

mutation. Thus, through repetitive exposure to the antigen, the immune system learns 

and adapts to the shape of the frequently encountered antigen and moves from a random 

receptor creation to a repertoire that represents the antigens more precisely. 

Lymphocytes in a clone produce antibodies if it is a B-Cell and secrete growth factors 

(lymphokines) in the case of an HTC [2]. 

Since antigens determine or select the lymphocytes that need to be cloned, the 

process is called clonal selection. The fittest clones are those which produce antibodies 

that bind to antigen best (with highest affinity). Since the total number of lymphocytes 

in the immune system is regulated, the increase in size of some clones decreases the size 

of other clones. This leads to the immune system forgetting previously learned antigens. 

When a familiar antigen is detected, the immune system responds with larger cloning 

sizes. This response is referred to as the secondary immune response. Learning is also 

based on decreasing the population size of those lymphocytes that seldom or never 

detect any antigens. These lymphocytes are removed from the immune system. For the 

affinity maturation process to be successful, the receptor molecule repository needs to 

be as complete and diverse as possible to recognize any foreign shape [2][3]. 
 

5. Clonal Selection Theory Models 
 

The process of clonal selection in the natural immune system was discussed in 

the previous Section. Clonal selection in AIS is the selection of a set of Artificial 

LymphoCytes (ALCs) with the highest calculated affinity with a non-self pattern. The 

selected ALCs are then cloned and mutated in an attempt to have a higher binding 

affinity with the presented non-self pattern. The mutated clones compete with the 
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existing set of ALCs, based on the calculated affinity between the mutated clones and 

the non-self pattern, for survival to be exposed to the next non-self pattern [2]. 

In Clonal selection algorithms, each antibody and antigen is represented by a set 

of attributes {x1, x2, …, xn}. Thus, antibodies and antigens may be represented as either 

n-dimensional points in a metric space such as Euclidean space or use binary encoding 

of the attributes; however, other representations are also used. The antigenic affinity of 

each antibody is typically defined based on a metric, usually, the Euclidean distance. 

Also, some operators are defined to introduce genetic variation to the antibodies based 

on their antigenic affinities. First, a cloning operator is defined to make exact copies 

(clones) of those antibodies having higher antigenic affinities; the higher the antigenic 

affinity, the higher the number of clones an antibody can generate. Then some genetic 

variation is introduced to these antibodies (through a mutation operator) to allow them 

for better matching with the antigens [3]. 

Clonal selection algorithms are developed based on the Clonal selection theory 

proposed nearly 50 years ago. The main immunological elements used are: 

• Maintenance of a specific memory set. 

• Selection and cloning of most stimulated antibodies. 

• Removal of poorly stimulated or nonstimulated antibodies. 

• Affinity maturation (hypermutation) of activated immune cells. 

• Generation and maintenance of a diverse set of antibodies. 
 

5.1 CLONALG 
 

The selection of a lymphocyte by a detected antigen for Clonal proliferation, 

inspired the modeling of CLONALG. CLONALG is an algorithm that performs 

machine-learning and pattern recognition tasks. All patterns are presented as binary 

strings [2]. 

The affinity between an ALC and a non-self pattern is measured as the 

Hamming distance between the ALC and the non-self pattern. The Hamming distance 

gives an indication of the similarity between two patterns, i.e. a lower Hamming 

distance between an ALC and a non-self pattern implies a stronger affinity. 

All patterns in the training set are seen as non-self patterns. Algorithm (4) 

summarizes CLONALG for pattern recognition tasks. The different parts of the 

algorithm are explained next [2]. 

The set of ALCs, C, is initialized with na randomly generated ALCs. The ALC 

set is split into a memory set of ALCs, M, and the remaining set of ALCs, R, which are 

not in M. Thus, C = MUR and |C| = |M| + |R| (i.e. na = nm + nr). The assumption in 

CLONALG is that there is one memory ALC for each of the patterns that needs to be 

recognized in DT . 

Each training pattern, zp, at random position, p, in DT , is presented to C. The 

affinity between zp and each ALC in C is calculated. A subset of the nh highest affinity 

ALCs is selected from C as subset H. The nh selected ALCs are then sorted in ascending 

order of affinity with zp. Each ALC in the sorted H are cloned proportional to the 

calculated affinity with zp and added to set W. The number of clones, nci, generated for 

an ALC, xi, at position i in the sorted set H, is defined in as 

 

 

 

where β is a multiplying factor and round returns the closest integer. 
 

    nci = round ( β × nh ) 

                        i 
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The ALCs in the cloned set, W, are mutated with a mutation rate that is inversely 

proportional to the calculated affinity, i.e. a higher affinity implies a lower rate of 

mutation. The mutated clones in W are added to a set of mutated clones, W`. The 

affinity between the mutated clones in W` and the selected training pattern, zp, is 

calculated. 

The ALC with the highest calculated affinity in W` , x`, replaces the ALC at 

position, p, in set M, if the affinity of x` is higher than the affinity of the ALC in set M. 

Randomly generated ALCs replace nl of the lowest affinity ALCs in R. The learning 

process repeats, until the maximum number of generations, tmax, has been reached. A 

modified version of CLONALG has been applied to multi-modal function optimization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

6. Affinity Proportional Mutation rates 
 

 Here in CLONALG we also applied Somatic Mutation for real-value discussed 

in evolutionary sections, but from the viewpoint of evolution, a remarkable 

characteristic of the affinity maturation process is its controlled nature. That is to say the 

hypermutation rate to be  applied to every immune cell receptor is proportional to its 

antigenic affinity. By computationally simulating this process, one can produce 

powerful algorithms that perform a search akin to local search around each candidate 

solution. In equation (1) mutations borrowed from evolutionary algorithms do not 

account for this important aspect of the mutation in the immune system: it is inversely 

proportional to the antigenic affinity [5]. 

Algorithm 4. CLONALG Algorithm for Pattern Recognition 
 

t = tmax; 

Determine the antigen patterns as training set DT ; 

Initialize a set of na randomly generated ALCs as population C; 

Select a subset of nm = |DT | memory ALCs, as population M C C; 

Select a subset of na − nm ALCs, as population R C C; 

while t > 0 do 

for each antigen pattern zp Є DT do 

Calculate the affinity between zp and each of the ALCs in C; 

Select nh of the highest affinity ALCs with zp from C as subset H; 

Sort the ALCs of H in ascending order, according to the ALCs 

affinity; 

Generate W as the set of clones for each ALC in H; 

Generate W` as the set of mutated clones for each ALC in W; 

Calculate the affinity between zp and each of the ALCs in W` ; 

Select the ALC with the highest affinity in W` as x`; 

Insert x` in M at position p; 

Replace nl of the lowest affinity ALCs in R with randomly 

generated ALCs; 

end 

t = t − 1; 

end 
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 In this case, one can evaluate the relative affinity of each candidate solution by 

scaling (normalizing) their affinities. The inverse of an exponential function can be used 

to establish a relationship between the hypermutation rate σ(.) and  normalized affinity 

D*, as described in equation (2). In some cases it might be interesting to re-scale α to an 

interval such as [0 – 1]. 

α(D*) = exp(-ρD*)      …(2) 

where ρ is a parameter that controls the smoothness of the inverse exponential, and D* 

is the normalized affinity, that can be determined by D* = D/Dmax. 
 

7. Shape–Space and Affinity 
 

A shape–space (or representation space) concept to represent antibody or antigen 

binding (see Figure 2). Accordingly, antigens and antibodies are characterized by their 

physicochemical binding properties, which are represented as coordinate points in such 

space, typically, a Euclidean space (Figure 4). Binding properties include geometric 

shape, hydrophobicity, charge, etc. In computational models, the notion of affinity 

between antibodies and antigens is defined based on a distance measure between points 

in the shape–space. Specifically, a small distance between an antibody and an antigen 

represents high affinity between them. It should be noticed that in some cases, 

coordinates are not given explicitly but the distance between antibodies and antigens is 

provided.[3] 

In Figure 5, the big outer circle V, crosses (X), and small inner circles Vε 

represent the shape–space, antigens, and affinity (coverage) of antibodies, 

respectively.[3] 

  Thus, ε specifies a recognition threshold; if the affinity between an antibody and 

an antigen (X) is less than ε (i.e., the antigen lies inside the affinity region of an 

antibody), then the antigen is said to match (bind) the antibody. 

 

 
 

Figure 3: Antibody and antigen binding. An antigen may bind to several antibodies 
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Figure 4: Antigens and antibodies are represented as points in 

an N- dimensional (Euclidean) space 
 

8. Real-Valued Vector Matching Rules (GA & CLON ALG) 
 

Some distance measures that have been used to define matching rules in real-

valued vector representation are explained as the amount of difference between two 

objects [3]. 

Euclidean Distance 

A Euclidean distance is defined as 

d(x, y) = Σi (xi – yi)
2 = || x - y||    …(3) 

Euclidean distance can be modified when all the dimensions do not have equal 

weights by multiplying each component of the vectors by specific weights. Other 

distance measures can be used to define real-valued matching rule in a similar way to 

Euclidean distance. The choice of distance measures mainly relies on the type of data 

and domain knowledge of the specific application [3]. 
 

9. Stopping Conditions (GA & CLON ALG) 
 

The evolutionary operators are iteratively applied in an EA until a stopping 

condition is satisfied. The simplest stopping condition is to limit the number of 

generations that the EA is allowed to execute, or alternatively, a limit is placed on the 

number of fitness function evaluations. This limit should not be too small, otherwise the 

EA will not 

have sufficient time to explore the search space [2]. 

In addition to a limit on execution time, a convergence criterion is usually used 

to detect if the population has converged. Convergence is loosely defined as the event 

when the population becomes stagnant. In other words, when there is no genotypic or 

phenotypic change in the population. The following convergence criteria can be used: 

• Terminate when no improvement is observed over a number of consecutive generations. 

• Terminate when there is no change in the population. 

• Terminate when an acceptable solution has been found. 

• Terminate when the objective function slope is approximately zero.[2] 

In this paper we use Termination when an acceptable solution has been found, but if 

not found continue until maximum number of generations. 
 

10. AIS - Self/Nonself Discrimination 
 

An important mechanism of the adaptive immune system is the “self/nonself 

recognition”. The immune system is able to recognize which cells are its own (self) and 

which are foreign (nonself); thus, it is able to build its defense against the attacker 
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instead of self-destructing. T cells of enormous diversity are first assembled with a 

“pseudorandom genetic rearrangement process” and those that recognize self-cells are 

eliminated before the rest are deployed into the immune system to recognize and attack 

foreign pathogens. Therefore, T cells go through a process of selection that ensures that 

they are able to recognize nonself peptides presented by major histocompatibility 

complex (MHC). This process has two main phases: positive selection (PS) and NS. 

During the PS phase, T cells are tested for recognition of MHC molecules expressed on 

the cortical epithelial cells. If a T cell fails to recognize any of the MHC molecules, it is 

discarded; otherwise, it is kept [2][3][4]. 

The purpose of NS is to test for tolerance of self-cells. T cells that recognize the 

combination of MHC and self-peptides fail this test. This process can be viewed as a 

filtering of a big diversity of T cells; only those T cells that do not recognize self-

peptides are kept. In the next two section we described NS and PS which are two idea 

from immune system but we also use them in GA to evaluate the matching between 

affinity or fitness of the mutated detectors (or ALCs) with Ags or self. 
 

10.1 Negative Selection Algorithms 
 

This algorithm models the T cell maturation process that occurs in the thymus. 

Several variations of NSAs have been proposed after the original version was 

introduced; however, the main features of the original algorithm still remain. 

Particularly, the goal of NS is to cover the nonself space with an appropriate set of 

detectors (shown in Figure 5). 

Two important aspects of an NSA are as follows: 

1. The target concept of the algorithm is the complement of a self-set. 

2. The goal is to discriminate between self and nonself patterns, while only selfsamples 

are available. 

There are two steps in NSAs as follows: “detector generation” and “nonself 

detection.” In the first step, a set of detectors is generated by some randomized process 

that uses a collection of self as the input. Candidate detectors that match any of the self-

samples are eliminated, whereas unmatched ones are kept [2]. 

 

 
 

Figure 5: Illustration of the self and nonself regions 
 

The first step is canceled here in this paper and replaced with GA or CLON 

ALG, but In the detection stage, the stored detectors or ALCs (generated in the first 

stage) are used to check whether new incoming samples correspond to self or nonself 

instances. If an input sample matches a detector, then it is identified as part of nonself, 

which in most applications, means that an anomaly/change has occurred (see Figure 6).  
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Figure 6: Monitoring phase of an NSA 
 

 

 

10.2 Positive Selection Algorithms 
 

In contrast to NS, “positive detection techniques” are widely used in pattern 

recognition, clustering, and other domains, where they generate a set of detectors that 

match self-points (instead of nonself points). In this case, a model of the self-set 

(training data) is used to classify a sample as part of either self or nonself. A simple 

model of a positive detection could be built using a nearest neighbor approach. If a 

point lies in a neighborhood of a sample self-point, then it will be labeled as belonging  

to the self-set (Figure 7) [2]. 

 

 
 

Figure 7: PS approaches. The goal of PS is to cover the self set with  

an appropriate set of detectors 
 

Generally, a positive detector defines the neighborhood by assuming a 

hypersphere with a certain radius centered on each of the self-points. Moreover, 

detectors can be defined in a more sophisticated way by using some clustering 

algorithm on the self-sample points. Therefore, a sample point can be classified as 

belonging to a cluster by measuring its distance to it. A measure of the distance from a 

sample to a cluster may be defined in terms of the Euclidean distance to the “cluster 
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centroid” [5]. As shown in figure 8 if the detector match any Ag is selected and put in 

memory, else its rejected. 

 

 
 

Figure 8: Monitoring phase of an PSA 

 

The following flowchart (see figure 9) display in summary way the preceding 

steps in our applying CLONALG to solve intrusion detection problem in KDD data set.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Start 

Initialize Parameters 

Read Normal & Attacks record from KDD 

And consider them as Self & NonSelf 

(Ag) 

Convert them to normalizes value between [0-1] 

Generate Random ALCs 

Calculate affinity between Ag & Random ALCs 

Select the highest affinity & clone these ALCs 

according  to Clonal rate 

Insert ALCs which have the highest affinity in 

memory  

Affinity Maturation by Real Value Mutation 

Positive Selection between Ag & Mutated ALCs 

Replace the lowest affinity ALCs with random 

ALCs in Remain ALCs 

Split them into Memory ALC & Remain ALC 

Return Memory ALC & Remain ALC to 
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Figure 9: Flowchart of implementation CLONALG to solve ID  

problem in KDD data set.    
 

11. Evaluation Criteria (GA & CLON ALG) 
 

 To rank the different results, there are standard metrics that have been developed 

for evaluating intrusion detections. Detection Rate (DR) and False Alarm rate are two 

most famous metrics that have already been used. DR is computed as the ratio between  

the number of correctly detected attacks and the total number of attacks, while False 

Alarm (false positive) rate is computed as the ratio between the number of normal 

connections that is incorrectly misclassified as attacks and the total number of normal 

connections [1]. 
 

12. Experimental Results 
 

End 

Calculate Detection & False 

Rate  

Figure 9: Flowchart of 

implementation CLONALG to 

solve ID problem in KDD data set.    

Test the Memory by Negative Selection 

between Selfs & Memory ALCs 

Test the Memory by Positive Selection 

between Ags & Memory ALCs 

Calculate Detection & False Alarm Rate 

End 
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For this paper we make two separate programs: Genetic Algorithm and CLON ALG. 

See the result in figure 10, and the details as follow: 
 

• Input data: 20 normal KDD record as Self, and 20 Abnormal KDD record as 

Nonself or Antigens (Ags) . 

• Max (Clonal ALC/Detectors): size: is the size of population, its first initiate 

randomly and then enter the other operations. 

• Total No of Mutation (Clonal ALC/Detectors): is the final total number of 

mutation Clonal ALC which can recognize Ags. 

• Positive Selection Threshold: is a threshold used to compare with the 

(affinity/fitness)between Mutation (Clonal ALC / Detectors) and Ags, and must the 

(affinity/fitness)smaller than threshold to consider this Ag is recognized. 

• No of Ags Recognized and their sequence number. 

• Detection Rate: is the ratio between  the number of correctly detected Ags and 

the total number of Ags, the desire value is one. 

• Negative Selection Threshold: is a threshold used to compare with the 

(affinity/fitness) between Mutation (Clonal ALC / Detectors) and Selfs, and must the 

(affinity/fitness)smaller than threshold to consider this Self is recognized. 

• No of Selfs Recognized: which is no. of normal KDD records. 

• False Alarm Rate: is as the ratio between the number of Selfs that is incorrectly 

misclassified as Ags and the total number of Selfs, , the desire value is zero. 

 

 

    
 

(a) Genetic Algorithm                                    (b) CLON ALG 
 

Figure 10: Show results 
 

13. Conclusions 
 

From applying The two models Genetic Algorithm (GA) and Clonal Selection Theory 

(CST) in order to detect intrusion in KDD data set, and based on the result we have 

obtained from them, we access to the following: 
 

1. After studying the algorithms in fields Artificial Immune system we select  

Clonal Selection Theory , Negative Selection and Positive Selection to solve Intrusion 

Detection problem because their capabilities  in detect intrusion in the input space. 
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2. We find some similarities between Clonal Selection Theory and Genetic 

Algorithm, so we decide to compare between them. 

3. From the good results we observe the suitability of two models GA and CST 

to solve Intrusion Detection problem, but CST has more flexibility in its  steps 

operations and has almost times the optimal result; Detection Rate equal (1 ) and False 

alarm equal (0), but some times GA also give the optimal results. 

4. The thresholds used in the two models different, and we select these value 

under too many experiments. 

5. CLON ALG has more mutated ALC because it based on Clone the beast, 

while GA based on Selection method.   

6. After observing the result of this research, it become from suitability to trend 

to the new artificial subject which is Artificial Immune System. 
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