
Raf. J. of Comp. & Math’s. , Vol. 7, No. 3, 2010
Third Scientific Conference Information Technology 2010 Nov. 29-30

121

Practical Comparison Between Genetic Algorithm and Clonal

Selection Theory on KDD Dataset

University of Mosul

Received on:14/10/2010 Accepted on:10/11/2010

ABSTRACT

 This paper compares between two models: Common Genetic algorithm and the

new Clonal selection theory in the field of Intrusion Detection. Genetic algorithms (GA)

which is a model of genetic evolution, while Clonal selection theory (CST) is from

models of the natural immune system NIS, the two models are from two different fields

of Artificial Intelligence AI but they have portion of shared operations and objectives.

The comparison to be done by applying the two models on some records of Knowledge

Discovery and Data mining tools which is known by the name KDD data sets (its

records the data of the interring packets to the computer system from the internet), to

produce population (in case of GA) or antibodies (in case of CST) can recognize these

abnormal records.

Keywords: Genetic algorithm, Clonal selection theory , Intrusion Detection, KDD data .

 KDDعلى مجموعة بيانات نظرية انتقاء السلالةمقارنة عملية بين الخوارزمية الجينية و

 نجلاء بديع الدباغ مفاز محسن خليل

 العلومكلية علوم الحاسوب والرياضيات كلية

 جامعة الموصل

 10/11/2010 :لقبولتاريخ ا 14/10/2010تاريخ الاستلام:

 ملخصال

يقارن هذا البحث مابين نموذجان: الخوارزمية الجينيةة المروفةةة فنيةواة انءقةاس ال ةللة الجفيةفج ةة مجةا
(نمةةوذل لطءلةةور الجينةة ا بينمةةا رء ةةو نءواةةة انءقةةاس ال ةةللة GAالخوارزميةةة الجينيةةة كشةةا الءل.ةةيث تيةةث رء ةةو

 CST مخءط.ةةين لطةةذااس ااعةةلناب فلهةةن لةةفييما رةة (مةةن نمةةاذل نءةةاا المنابةةة الل يرةة ا ن ننيمةةا مةةن تقطةةين
 KDDالرمطيةةاو فااهةةفام المشةةءواةث مةةن المقارنةةة بءل يةةع النموذجةةان بطةةا رةة تةةجلو مجموبةةاو بيانةةاو الةةة

 ةةجي بيانةةاو الحةةاا الفاىطةةة لةةا نءةةاا الحاتةةون مةةن ىةةل ا نءونةةن(ا نءةةال جيةةي ةةة تالةةة الخوارزميةةة الءةة
يمكنيمةةةةا ميةةةا ال ةةةجلو ال يةةةو ي يةةةةة نف نءواةةةة انءقةةةاس ال ةةةللة(ةةةة تالةةةةة Absالجينيةةةة(نف ميةةةاةاو تيةةةة

 المياجمةث
 ث KDDلةا اشا الءل.يا بياناو الهطماو الم.ءاتية: الخوارزمية الجينيةا نءواة انءقاس ال ل

Najlaa Badie Aldabagh

College of Computer Sciences

 and Mathematics

Mafaz Muhsin Khalil

College of science

 Najlaa B. Aldabagh & Mafaz M. Khalil

 122

1. Introduction

 Internet has given users a need for security components to protect themselves.

Certain techniques are used to secure important data, such as firewall and encryption

etc. . Firewall acts as a defense to protect sensitive data, but it merely reduces exposure

rather than monitors or eliminates vulnerabilities in computer systems. Any encrypted

message can be decrypted in theory, and encryption adds extra burden on hosts or

application. Moreover, any new security techniques themselves might have design

flaws. Obviously, it is important to have a detecting and monitoring system to protect

important data. For this reason the detection methods of intruders in the computer

networks have drawn attention to many researchers in recent years.[1]

 An Intrusion Detection System (IDS) is an important component of the

computer and information security framework. Its main goal is to differentiate between

normal activities of the system and behaviors that can be classified as suspicious or

intrusive.

 There are two main approaches to design of IDSs: misuse and anomaly detection

techniques. In a misuse detection based IDS, intrusions are detected by looking for

activities that correspond to known signatures of intrusion and vulnerabilities. On the

other hand, the anomaly detection based IDSs detect attacks by observing deviations

from behavior of the system. Its works by comparing network traffic, system call

sequences, or other features of known attack patterns.

 Clonal selection algorithms, however, are very similar to a kind of evolutionary

algorithm; namely, evolutionary strategies, although they have a different biological

inspiration. Clonal selection algorithms are also population-based search and

optimization algorithms generating a memory pool of suitable antibodies for solving a

particular problem.

2. Input data (the KDD Cup 99 Data)

 This is the data set of The Third International Knowledge Discovery and Data

mining tools competition, which was held in conjunction with KDD cup 99 the Fifth

International Conference on Knowledge Discovery and Data mining. The KDD cup

1999 is dataset used for benchmarking intrusion detection problems. The dataset was a

collection over a period of nine weeks on local area network. The types are grouped into

five categories (Normal, Probing, Denial of Service (DoS), User to Root (U2R), and

Remote to Local (R2L)).

 KDD Cup 99 dataset is divided into training and testing record sets. Total

number of connection records in the training dataset is about 5 million records. This too

large for our purpose, only concise training dataset of KDD Cup 99, known as 10%

KDD Cup 99, and test dataset which called (correct) data set was employed here [1].

Each record contained values of 41 independent variables (fields) describing the

different features of the connection, and the value of the dependent variable labeled as

either normal, or as an attack, with exactly one specific attack type, the sample of four

connection record corresponding to the attack types, and the list of 41 features

corresponding to their types is showing below [KDD data set].

0,tcp,http,SF,181,5450,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,8,8,0.00,0.00,0.00,0.00,

1.00,0.00,0.00,9,9,1.00,0.00,0.11,0.00,0.00,0.00,0.00,0.00,normal.

0,tcp,telnet,S0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,6,5,0.83,1.00,0.00,0.00,0.83

,0.33,0.00,5,6,1.00,0.00,0.20,0.33,1.00,0.83,0.00,0.00,neptune.

0,icmp,ecr_i,SF,1032,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,316,316,0.00,0.00,0.00

,0.00,1.00,0.00,0.00,148,3,0.02,0.02,0.02,0.00,0.00,0.00,0.00,0.00,smurf.

0,udp,private,SF,28,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0.00,0.00,0.00,0.00,1

.00,0.00,0.00,73,1,0.01,0.05,0.01,0.00,0.00,0.00,0.00,0.00,teardrop.

Practical Comparison between Genetic Algorithm…

 123

Four Samples of Connection Records Corresponding to the Attack Types

3. Evolutionary Computation

Evolution is an optimization process where the aim is to improve the ability of

an organism (or system) to survive in dynamically changing and competitive

environments [2][3].

Evolutionary computation (EC) refers to computer-based problem solving

systems that use computational models of evolutionary processes, such as natural

selection, survival of the fittest and reproduction, as the fundamental components of

such computational systems.

Evolution via natural selection of a randomly chosen population of individuals

can be thought of as a search through the space of possible chromosome values. In that

sense, an evolutionary algorithm (EA) is a stochastic search for an optimal solution to a

given problem. The evolutionary search process is influenced by the following main

components of an EA:

• an encoding of solutions to the problem as a chromosome;

• a function to evaluate the fitness, or survival strength of individuals;

• initialization of the initial population;

• selection operators; and

• reproduction operators.

Algorithm (1) shows how these components are combined to form a generic EA [2].

The steps of an EA are applied iteratively until some stopping condition is

satisfied. Each iteration of an EA is referred to as a generation. The different ways in

which the EA components are implemented result in different EC paradigms:[2]

• Genetic algorithms (GAs), which model genetic evolution.

• Genetic programming (GP), which is based on genetic algorithms, but individuals are

programs (represented as trees).

• Evolutionary programming (EP), which is derived from the simulation of adaptive

behavior in evolution (i.e. phenotypic evolution).

Algorithm 1. Generic Evolutionary Algorithm

Let t = 0 be the generation counter;

Create and initialize an nx-dimensional population, C(0), to consist of

ns individuals;

while stopping condition(s) not true do

Evaluate the fitness, f(xi(t)), of each individual, xi(t);

Perform reproduction to create offspring;

Select the new population, C(t + 1);

Advance to the new generation, i.e. t = t + 1;

end

 Najlaa B. Aldabagh & Mafaz M. Khalil

 124

• Evolution strategies (ESs), which are geared toward modeling the strategic parameters

that control variation in evolution, i.e. the evolution of evolution.

• Differential evolution (DE), which is similar to genetic algorithms, differing in the

reproduction mechanism used.

• Cultural evolution (CE), which models the evolution of culture of a population and

how the culture influences the genetic and phenotypic evolution of individuals.

• Co-evolution (CoE), where initially “dumb” individuals evolve through cooperation, or

in competition with one another, acquiring the necessary characteristics to survive.

3.2 Genetic Algorithms

Genetic algorithms (GA) are possibly the first algorithmic models developed to

simulate genetic systems. GAs model genetic evolution, where the characteristics of

individuals are expressed using genotypes. The main driving operators of a GA is

selection (to model survival of the fittest) and recombination through application of a

crossover operator (to model reproduction). This section discusses in detail GA used in

this research and their evolution operators, which is follows the general algorithm as

given in Algorithm (1), but with different components are combined to form GA

particularity to solve intrusion detection problem in KDD data set [2].

• A real value representation was used.

• Stochastic Universal sampling selection was used to select parents for recombination.

• Uniform crossover was used as the primary method to produce offspring.

• Somatic Mutation for real-value.

• Fitness evaluation, see section 8 .

• Positive Selection, see section 10.2.

• Replace worst.

• Stopping Condition, see section 9.

• Negative Selection, see section 10.1, this step performed on detectors one time after the

generation cycles complete.

The two steps Positive Selection and Negative Selection are from AIS and we added them

here because they are necessary for intrusion detection applications.

1. Real value representation

 Since our data consist of fields have different types characters and numbers. To

unite them we convert characters to numbers, and then applied normalization process on

them to obtain values in range [0 – 1].

 The benefit of data transformation such as normalization may improve the

accuracy and efficiency of artificial algorithms. Such methods provide better results if

data to be analyzed has been normalized, that is, scaled to specific range as [0 – 1]. [2]

Min-Max Normalization: The min-Max normalization performs a linear

transformation on the original data values. Suppose that minX and maxX are the

minimum and maximum of feature X. In order to map interval [minX - maxX] into new

interval [new minX – new maxX]. Consequently, every value v from the original interval

will be mapped into value newv using the following formula [1]:

2. Proportional Selection (Stochastic Universal sampling)

 v - minX

newv =

 maxX - minX

Practical Comparison between Genetic Algorithm…

 125

Selection operators are characterized by their selective pressure, also referred to

as the takeover time, which relates to the time it requires to produce a uniform

population. It is defined as the speed at which the best solution will occupy the entire

population by repeated application of the selection operator alone. An operator with a

high selective pressure decreases diversity in the population more rapidly than operators

with a low selective pressure, which may lead to premature convergence to suboptimal

solutions. A high selective pressure limits the exploration abilities of the population [2].

Two popular sampling methods used in proportional selection is roulette wheel

sampling and stochastic universal sampling.

In roulette wheel selection it may happen that the best individual is not selected

to produce offspring during a given generation. To prevent this problem, stochastic

universal sampling (refer to Algorithm 2), used to determine for each individual the

number of offspring, λi, to be produced by the individual with only one call to the

algorithm.

Because selection is directly proportional to fitness, it is possible that strong

individuals may dominate in producing offspring, thereby limiting the diversity of the

new population. In other words, proportional selection has a high selective pressure

[2][4].

3. Crossover (Uniform crossover)

Crossover operators can be divided into three main categories based on the

amity (i.e. the number of parents used) of the operator. This results in three main

classes of crossover operators:

• asexual, where an offspring is generated from one parent.

• sexual, where two parents are used to produce one or two offspring.

• multi-recombination, where more than two parents are used to produce one or more

offspring.

Crossover operators are further categorized based on the representation scheme

used. For example, binary-specific operators have been developed for binary string

representations, and operators specific to floating-point representations.

Algorithm 2. Stochastic Universal Sampling.

for i = 1, . . . , ns do , where ns is the population size

λi(t) = 0; , no of offspring for each individual

end

r ~ U(0, 1/λ), where λ is the total number of offspring, r is random no.

in range [0, 1/λ];

sum = 0.0;

for i = 1, . . . , ns do

sum = sum + γs(xi(t)); where γs(xi(t)) is the probability that xi

will be selected

while r < sum do

λi ++;

r = r + 1/λ;

end

end

return λ = (λ1, . . . , λns);

 Najlaa B. Aldabagh & Mafaz M. Khalil

 126

Parents are selected using the selection scheme discussed in previous section.

But here binary crossover applied on parent's features instead of 0 and 1.

Recombination is applied probabilistically, Each pair (or group) of parents have a

probability, pc, of producing offspring. Usually, a high crossover probability (also

referred to as the crossover rate) is used.

Most of the crossover operators for binary representations are sexual, being

applied to two selected parents. If x1(t) and x2(t) denote the two selected parents, then

the recombination process is summarized in Algorithm (3). In this algorithm, m(t) is a

mask that specifies which bits of the parents should be swapped to generate the

offspring, x 1(t) and x 2(t). Several crossover operators have been developed to

compute the mask: One-point crossover, Two-point crossover, Uniform crossover [2].

Uniform crossover: The nx-dimensional mask is created randomly as summarized in

Algorithm (3). Here, px is the bit-swapping probability. If

px = 0.5, then each bit has an equal chance to be swapped. Uniform crossover is

illustrated in Figure (1).

Figure 1. Uniform Crossover

4. Somatic Mutation for real-value.

 Mutation real-value attribute strings (vectors) has the same essence as mutating

the other types of strings, i.e., a change is made in one or more of the attributes, but it

has to respect the upper and lower limits of each attribute (vector coordinate).

 In inductive mutation, a random number to be added to a given attribute is

generated. A common mutation operator for real-valued vectors in evolutionary

algorithms is Gaussian mutation. The Gaussian mutation alters all The attributes of a

string according to the following expression:

 m` = m + α(D) N(0,σ) …..….. (1)

Algorithm 3. Uniform Crossover Mask Calculation

Initialize the mask: mj(t) = 0, for all j = 1, . . . , nx;

for j = 1 to nx do

if U(0, 1) ≤ px then

mj(t) = 1;

end

end

Practical Comparison between Genetic Algorithm…

 127

where m = (m1, m2, …, mL) is attribute string , m` its mutated version, α(D) is a

function that accounts for affinity (AIS) proportional mutation therefore is canceled

here in evolutionary computation, and N(0,σ) is a vector of independent Gaussian

random variables of zero mean and standard deviation σ [5].

5. Replacement Strategy

A replacement strategy that decides if offspring will replace parents, and which

parents to replace.

Two main classes of GAs are identified based on the replacement strategy used,

namely generational genetic algorithms (GGA) and steady state genetic algorithms

(SSGA), also referred to as incremental GAs. For GGAs the replacement strategy

replaces all parents with their offspring after all offpsring have been created and

mutated. This results in no overlap between the current population and the new

population (assuming that elitism is not used). For SSGAs, a decision is made

immediately after an offspring is created and mutated as to whether the parent or the

offspring survives to the next generation. Thus, there exists an overlap between the

current and new populations.

The amount of overlap between the current and new populations is referred to as

the generation gap. GGAs have a zero generation gap, while SSGAs generally have

large generation gaps [2][4].

A number of replacement strategies have been developed for SSGAs: Replace

worst, Replace random, Kill tournament, Replace oldest, Conservative selection, Elitist,

Parent-offspring.

• Replace worst, was used here where the offspring replaces the worst individual of the

current population.

The following flowchart (see figure 2) display in summary way the preceding

steps in our applying GA to solve intrusion detection problem in KDD data set.

 Najlaa B. Aldabagh & Mafaz M. Khalil

 128

Start

Initialize

Parameters

Read Normal & Attacks record from KDD

and consider them as chromosomes

convert them to normalizes value between [0-1]

Generate Random Detectors

Calculate fitness between Attacks

chromosomes(Ags) & Random Detectors

Select Detectors Parents by Using Stochastic

Universal Sampling

Produce offspring by Feature Crossover

 Real Value Mutation

Positive Selection between Attacks

chromosomes & Mutated offspring Detectors

Insert offspring Detectors which have the highest

fitness in random detectors instead the worst ones

Repeat until find detector recognize current

attack chromosome or reach the maximum

cycles

For each Attacks chromosome

Test the result by Negative Selection between

normal records & Life detectors

Calculate Detection & False Rate

Practical Comparison between Genetic Algorithm…

 129

Figure 2: Flowchart of implementation GA to solve ID problem in KDD

data set.
4. AIS - Learning the Antigen Structure

Learning in the immune system is based on increasing the population size of

those lymphocytes that frequently recognize antigens. Learning by the immune system

is done by a process known as affinity maturation. Affinity maturation can be broken

down into two smaller processes namely, a cloning process and a somatic hyper-

mutation process. The cloning process is more generally known as clonal selection,

which is the proliferation of the lymphocytes that recognize the antigens.

The interaction of the lymphocyte with an antigen leads to an activation of the

lymphocyte where upon the cell is proliferated and grown into a clone. When an antigen

stimulates a lymphocyte, the lymphocyte not only secretes antibodies to bind to the

antigen but also generates mutated clones of itself in an attempt to have a higher binding

affinity with the detected antigen. The latter process is known as somatic hyper-

mutation. Thus, through repetitive exposure to the antigen, the immune system learns

and adapts to the shape of the frequently encountered antigen and moves from a random

receptor creation to a repertoire that represents the antigens more precisely.

Lymphocytes in a clone produce antibodies if it is a B-Cell and secrete growth factors

(lymphokines) in the case of an HTC [2].

Since antigens determine or select the lymphocytes that need to be cloned, the

process is called clonal selection. The fittest clones are those which produce antibodies

that bind to antigen best (with highest affinity). Since the total number of lymphocytes

in the immune system is regulated, the increase in size of some clones decreases the size

of other clones. This leads to the immune system forgetting previously learned antigens.

When a familiar antigen is detected, the immune system responds with larger cloning

sizes. This response is referred to as the secondary immune response. Learning is also

based on decreasing the population size of those lymphocytes that seldom or never

detect any antigens. These lymphocytes are removed from the immune system. For the

affinity maturation process to be successful, the receptor molecule repository needs to

be as complete and diverse as possible to recognize any foreign shape [2][3].

5. Clonal Selection Theory Models

The process of clonal selection in the natural immune system was discussed in

the previous Section. Clonal selection in AIS is the selection of a set of Artificial

LymphoCytes (ALCs) with the highest calculated affinity with a non-self pattern. The

selected ALCs are then cloned and mutated in an attempt to have a higher binding

affinity with the presented non-self pattern. The mutated clones compete with the

 Najlaa B. Aldabagh & Mafaz M. Khalil

 130

existing set of ALCs, based on the calculated affinity between the mutated clones and

the non-self pattern, for survival to be exposed to the next non-self pattern [2].

In Clonal selection algorithms, each antibody and antigen is represented by a set

of attributes {x1, x2, …, xn}. Thus, antibodies and antigens may be represented as either

n-dimensional points in a metric space such as Euclidean space or use binary encoding

of the attributes; however, other representations are also used. The antigenic affinity of

each antibody is typically defined based on a metric, usually, the Euclidean distance.

Also, some operators are defined to introduce genetic variation to the antibodies based

on their antigenic affinities. First, a cloning operator is defined to make exact copies

(clones) of those antibodies having higher antigenic affinities; the higher the antigenic

affinity, the higher the number of clones an antibody can generate. Then some genetic

variation is introduced to these antibodies (through a mutation operator) to allow them

for better matching with the antigens [3].

Clonal selection algorithms are developed based on the Clonal selection theory

proposed nearly 50 years ago. The main immunological elements used are:

• Maintenance of a specific memory set.

• Selection and cloning of most stimulated antibodies.

• Removal of poorly stimulated or nonstimulated antibodies.

• Affinity maturation (hypermutation) of activated immune cells.

• Generation and maintenance of a diverse set of antibodies.

5.1 CLONALG

The selection of a lymphocyte by a detected antigen for Clonal proliferation,

inspired the modeling of CLONALG. CLONALG is an algorithm that performs

machine-learning and pattern recognition tasks. All patterns are presented as binary

strings [2].

The affinity between an ALC and a non-self pattern is measured as the

Hamming distance between the ALC and the non-self pattern. The Hamming distance

gives an indication of the similarity between two patterns, i.e. a lower Hamming

distance between an ALC and a non-self pattern implies a stronger affinity.

All patterns in the training set are seen as non-self patterns. Algorithm (4)

summarizes CLONALG for pattern recognition tasks. The different parts of the

algorithm are explained next [2].

The set of ALCs, C, is initialized with na randomly generated ALCs. The ALC

set is split into a memory set of ALCs, M, and the remaining set of ALCs, R, which are

not in M. Thus, C = MUR and |C| = |M| + |R| (i.e. na = nm + nr). The assumption in

CLONALG is that there is one memory ALC for each of the patterns that needs to be

recognized in DT .

Each training pattern, zp, at random position, p, in DT , is presented to C. The

affinity between zp and each ALC in C is calculated. A subset of the nh highest affinity

ALCs is selected from C as subset H. The nh selected ALCs are then sorted in ascending

order of affinity with zp. Each ALC in the sorted H are cloned proportional to the

calculated affinity with zp and added to set W. The number of clones, nci, generated for

an ALC, xi, at position i in the sorted set H, is defined in as

where β is a multiplying factor and round returns the closest integer.

 nci = round (β × nh)

 i

Practical Comparison between Genetic Algorithm…

 131

The ALCs in the cloned set, W, are mutated with a mutation rate that is inversely

proportional to the calculated affinity, i.e. a higher affinity implies a lower rate of

mutation. The mutated clones in W are added to a set of mutated clones, W`. The

affinity between the mutated clones in W` and the selected training pattern, zp, is

calculated.

The ALC with the highest calculated affinity in W` , x`, replaces the ALC at

position, p, in set M, if the affinity of x` is higher than the affinity of the ALC in set M.

Randomly generated ALCs replace nl of the lowest affinity ALCs in R. The learning

process repeats, until the maximum number of generations, tmax, has been reached. A

modified version of CLONALG has been applied to multi-modal function optimization.

6. Affinity Proportional Mutation rates

 Here in CLONALG we also applied Somatic Mutation for real-value discussed

in evolutionary sections, but from the viewpoint of evolution, a remarkable

characteristic of the affinity maturation process is its controlled nature. That is to say the

hypermutation rate to be applied to every immune cell receptor is proportional to its

antigenic affinity. By computationally simulating this process, one can produce

powerful algorithms that perform a search akin to local search around each candidate

solution. In equation (1) mutations borrowed from evolutionary algorithms do not

account for this important aspect of the mutation in the immune system: it is inversely

proportional to the antigenic affinity [5].

Algorithm 4. CLONALG Algorithm for Pattern Recognition

t = tmax;

Determine the antigen patterns as training set DT ;

Initialize a set of na randomly generated ALCs as population C;

Select a subset of nm = |DT | memory ALCs, as population M C C;

Select a subset of na − nm ALCs, as population R C C;

while t > 0 do

for each antigen pattern zp Є DT do

Calculate the affinity between zp and each of the ALCs in C;

Select nh of the highest affinity ALCs with zp from C as subset H;

Sort the ALCs of H in ascending order, according to the ALCs

affinity;

Generate W as the set of clones for each ALC in H;

Generate W` as the set of mutated clones for each ALC in W;

Calculate the affinity between zp and each of the ALCs in W` ;

Select the ALC with the highest affinity in W` as x`;

Insert x` in M at position p;

Replace nl of the lowest affinity ALCs in R with randomly

generated ALCs;

end

t = t − 1;

end

 Najlaa B. Aldabagh & Mafaz M. Khalil

 132

 In this case, one can evaluate the relative affinity of each candidate solution by

scaling (normalizing) their affinities. The inverse of an exponential function can be used

to establish a relationship between the hypermutation rate σ(.) and normalized affinity

D*, as described in equation (2). In some cases it might be interesting to re-scale α to an

interval such as [0 – 1].

α(D*) = exp(-ρD*) …(2)

where ρ is a parameter that controls the smoothness of the inverse exponential, and D*

is the normalized affinity, that can be determined by D* = D/Dmax.

7. Shape–Space and Affinity

A shape–space (or representation space) concept to represent antibody or antigen

binding (see Figure 2). Accordingly, antigens and antibodies are characterized by their

physicochemical binding properties, which are represented as coordinate points in such

space, typically, a Euclidean space (Figure 4). Binding properties include geometric

shape, hydrophobicity, charge, etc. In computational models, the notion of affinity

between antibodies and antigens is defined based on a distance measure between points

in the shape–space. Specifically, a small distance between an antibody and an antigen

represents high affinity between them. It should be noticed that in some cases,

coordinates are not given explicitly but the distance between antibodies and antigens is

provided.[3]

In Figure 5, the big outer circle V, crosses (X), and small inner circles Vε

represent the shape–space, antigens, and affinity (coverage) of antibodies,

respectively.[3]

 Thus, ε specifies a recognition threshold; if the affinity between an antibody and

an antigen (X) is less than ε (i.e., the antigen lies inside the affinity region of an

antibody), then the antigen is said to match (bind) the antibody.

Figure 3: Antibody and antigen binding. An antigen may bind to several antibodies

Practical Comparison between Genetic Algorithm…

 133

Figure 4: Antigens and antibodies are represented as points in

an N- dimensional (Euclidean) space

8. Real-Valued Vector Matching Rules (GA & CLON ALG)

Some distance measures that have been used to define matching rules in real-

valued vector representation are explained as the amount of difference between two

objects [3].

Euclidean Distance

A Euclidean distance is defined as

d(x, y) = Σi (xi – yi)
2 = || x - y|| …(3)

Euclidean distance can be modified when all the dimensions do not have equal

weights by multiplying each component of the vectors by specific weights. Other

distance measures can be used to define real-valued matching rule in a similar way to

Euclidean distance. The choice of distance measures mainly relies on the type of data

and domain knowledge of the specific application [3].

9. Stopping Conditions (GA & CLON ALG)

The evolutionary operators are iteratively applied in an EA until a stopping

condition is satisfied. The simplest stopping condition is to limit the number of

generations that the EA is allowed to execute, or alternatively, a limit is placed on the

number of fitness function evaluations. This limit should not be too small, otherwise the

EA will not

have sufficient time to explore the search space [2].

In addition to a limit on execution time, a convergence criterion is usually used

to detect if the population has converged. Convergence is loosely defined as the event

when the population becomes stagnant. In other words, when there is no genotypic or

phenotypic change in the population. The following convergence criteria can be used:

• Terminate when no improvement is observed over a number of consecutive generations.

• Terminate when there is no change in the population.

• Terminate when an acceptable solution has been found.

• Terminate when the objective function slope is approximately zero.[2]

In this paper we use Termination when an acceptable solution has been found, but if

not found continue until maximum number of generations.

10. AIS - Self/Nonself Discrimination

An important mechanism of the adaptive immune system is the “self/nonself

recognition”. The immune system is able to recognize which cells are its own (self) and

which are foreign (nonself); thus, it is able to build its defense against the attacker

 Najlaa B. Aldabagh & Mafaz M. Khalil

 134

instead of self-destructing. T cells of enormous diversity are first assembled with a

“pseudorandom genetic rearrangement process” and those that recognize self-cells are

eliminated before the rest are deployed into the immune system to recognize and attack

foreign pathogens. Therefore, T cells go through a process of selection that ensures that

they are able to recognize nonself peptides presented by major histocompatibility

complex (MHC). This process has two main phases: positive selection (PS) and NS.

During the PS phase, T cells are tested for recognition of MHC molecules expressed on

the cortical epithelial cells. If a T cell fails to recognize any of the MHC molecules, it is

discarded; otherwise, it is kept [2][3][4].

The purpose of NS is to test for tolerance of self-cells. T cells that recognize the

combination of MHC and self-peptides fail this test. This process can be viewed as a

filtering of a big diversity of T cells; only those T cells that do not recognize self-

peptides are kept. In the next two section we described NS and PS which are two idea

from immune system but we also use them in GA to evaluate the matching between

affinity or fitness of the mutated detectors (or ALCs) with Ags or self.

10.1 Negative Selection Algorithms

This algorithm models the T cell maturation process that occurs in the thymus.

Several variations of NSAs have been proposed after the original version was

introduced; however, the main features of the original algorithm still remain.

Particularly, the goal of NS is to cover the nonself space with an appropriate set of

detectors (shown in Figure 5).

Two important aspects of an NSA are as follows:

1. The target concept of the algorithm is the complement of a self-set.

2. The goal is to discriminate between self and nonself patterns, while only selfsamples

are available.

There are two steps in NSAs as follows: “detector generation” and “nonself

detection.” In the first step, a set of detectors is generated by some randomized process

that uses a collection of self as the input. Candidate detectors that match any of the self-

samples are eliminated, whereas unmatched ones are kept [2].

Figure 5: Illustration of the self and nonself regions

The first step is canceled here in this paper and replaced with GA or CLON

ALG, but In the detection stage, the stored detectors or ALCs (generated in the first

stage) are used to check whether new incoming samples correspond to self or nonself

instances. If an input sample matches a detector, then it is identified as part of nonself,

which in most applications, means that an anomaly/change has occurred (see Figure 6).

Practical Comparison between Genetic Algorithm…

 135

Figure 6: Monitoring phase of an NSA

10.2 Positive Selection Algorithms

In contrast to NS, “positive detection techniques” are widely used in pattern

recognition, clustering, and other domains, where they generate a set of detectors that

match self-points (instead of nonself points). In this case, a model of the self-set

(training data) is used to classify a sample as part of either self or nonself. A simple

model of a positive detection could be built using a nearest neighbor approach. If a

point lies in a neighborhood of a sample self-point, then it will be labeled as belonging

to the self-set (Figure 7) [2].

Figure 7: PS approaches. The goal of PS is to cover the self set with

an appropriate set of detectors

Generally, a positive detector defines the neighborhood by assuming a

hypersphere with a certain radius centered on each of the self-points. Moreover,

detectors can be defined in a more sophisticated way by using some clustering

algorithm on the self-sample points. Therefore, a sample point can be classified as

belonging to a cluster by measuring its distance to it. A measure of the distance from a

sample to a cluster may be defined in terms of the Euclidean distance to the “cluster

 Najlaa B. Aldabagh & Mafaz M. Khalil

 136

centroid” [5]. As shown in figure 8 if the detector match any Ag is selected and put in

memory, else its rejected.

Figure 8: Monitoring phase of an PSA

The following flowchart (see figure 9) display in summary way the preceding

steps in our applying CLONALG to solve intrusion detection problem in KDD data set.

Start

Initialize Parameters

Read Normal & Attacks record from KDD

And consider them as Self & NonSelf

(Ag)

Convert them to normalizes value between [0-1]

Generate Random ALCs

Calculate affinity between Ag & Random ALCs

Select the highest affinity & clone these ALCs

according to Clonal rate

Insert ALCs which have the highest affinity in

memory

Affinity Maturation by Real Value Mutation

Positive Selection between Ag & Mutated ALCs

Replace the lowest affinity ALCs with random

ALCs in Remain ALCs

Split them into Memory ALC & Remain ALC

Return Memory ALC & Remain ALC to

Practical Comparison between Genetic Algorithm…

 137

Figure 9: Flowchart of implementation CLONALG to solve ID

problem in KDD data set.

11. Evaluation Criteria (GA & CLON ALG)

 To rank the different results, there are standard metrics that have been developed

for evaluating intrusion detections. Detection Rate (DR) and False Alarm rate are two

most famous metrics that have already been used. DR is computed as the ratio between

the number of correctly detected attacks and the total number of attacks, while False

Alarm (false positive) rate is computed as the ratio between the number of normal

connections that is incorrectly misclassified as attacks and the total number of normal

connections [1].

12. Experimental Results

End

Calculate Detection & False

Rate

Figure 9: Flowchart of

implementation CLONALG to

solve ID problem in KDD data set.

Test the Memory by Negative Selection

between Selfs & Memory ALCs

Test the Memory by Positive Selection

between Ags & Memory ALCs

Calculate Detection & False Alarm Rate

End

 Najlaa B. Aldabagh & Mafaz M. Khalil

 138

For this paper we make two separate programs: Genetic Algorithm and CLON ALG.

See the result in figure 10, and the details as follow:

• Input data: 20 normal KDD record as Self, and 20 Abnormal KDD record as

Nonself or Antigens (Ags) .

• Max (Clonal ALC/Detectors): size: is the size of population, its first initiate

randomly and then enter the other operations.

• Total No of Mutation (Clonal ALC/Detectors): is the final total number of

mutation Clonal ALC which can recognize Ags.

• Positive Selection Threshold: is a threshold used to compare with the

(affinity/fitness)between Mutation (Clonal ALC / Detectors) and Ags, and must the

(affinity/fitness)smaller than threshold to consider this Ag is recognized.

• No of Ags Recognized and their sequence number.

• Detection Rate: is the ratio between the number of correctly detected Ags and

the total number of Ags, the desire value is one.

• Negative Selection Threshold: is a threshold used to compare with the

(affinity/fitness) between Mutation (Clonal ALC / Detectors) and Selfs, and must the

(affinity/fitness)smaller than threshold to consider this Self is recognized.

• No of Selfs Recognized: which is no. of normal KDD records.

• False Alarm Rate: is as the ratio between the number of Selfs that is incorrectly

misclassified as Ags and the total number of Selfs, , the desire value is zero.

(a) Genetic Algorithm (b) CLON ALG

Figure 10: Show results

13. Conclusions

From applying The two models Genetic Algorithm (GA) and Clonal Selection Theory

(CST) in order to detect intrusion in KDD data set, and based on the result we have

obtained from them, we access to the following:

1. After studying the algorithms in fields Artificial Immune system we select

Clonal Selection Theory , Negative Selection and Positive Selection to solve Intrusion

Detection problem because their capabilities in detect intrusion in the input space.

Practical Comparison between Genetic Algorithm…

 139

2. We find some similarities between Clonal Selection Theory and Genetic

Algorithm, so we decide to compare between them.

3. From the good results we observe the suitability of two models GA and CST

to solve Intrusion Detection problem, but CST has more flexibility in its steps

operations and has almost times the optimal result; Detection Rate equal (1) and False

alarm equal (0), but some times GA also give the optimal results.

4. The thresholds used in the two models different, and we select these value

under too many experiments.

5. CLON ALG has more mutated ALC because it based on Clone the beast,

while GA based on Selection method.

6. After observing the result of this research, it become from suitability to trend

to the new artificial subject which is Artificial Immune System.

REFFRENCE

[1]. Adel Sabry Issa, A Comparative Study among several modified Intrusion

Detection system Techniques, 2009.

[2]. Andries P. Engelbrecht, Computational Intelligence An Introduction, 2007.

[3]. Dispanker Dasgupta and Luis Fernando Nino, Immunological Computation

Theory and Applications, 2009.

[4]. Edward Keedwell and Ajit Narayanan, Intelligent Bioinformatics The

application of artificial intelligence techniques to bioinformatics problems,

2005.

[5]. Leandro N. de Castro and Jonathan Timmis, Artificial Immune Systems: A

New Computational Intelligence Approach, 2002.

