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ABSTRACT 

In this paper we consider the motion near the junction zone of three approximately 

plane liquid films of semi–infinite extent in two dimensional polar coordinate system with 

negligible inertia. We use Stokes equation to describe such flow. The pressure in the region of 

large curvature is less than that on the surface of bulk fluid and this pressure gradient ensures 

that this problem is unsteady state case. The equation that governs such flow is solved 

analytically, the shape and the thickness are determined for some liquids. 
Keywords: Liquid films, polar coordinate system, Stokes equation. 

 ة سائلأغشية ثلاثة الالتقاء لغير المستقر قرب منطقة جريان ال
 عيسى جاسم ينة تر                                    الحميد  عبدغانم  جوزيف

 ، جامعة الموصل اضياتوالري  كلية علوم الحاسوب                   ، جامعة دهوككلية التربية              
 16/09/2010تاريخ القبول:                                                13/09/2009تاريخ الاستلام: 

 الملخص 
شةةبم ممتةةي  فةةي النقةةام القط ةةي  مسةةتوية سةةاةلة أغشةةيةلثلاثةةة  ءمنطقةةة اتلتقةةافي هذا البحث تمت دراسة الحركةةة بةةرب 

تقعةةرا   الأك ةةرالضةة ف فةةي المنطقةةة  إ . اسةةتميمت معادلةةة سةةتوك  لوصةةر هنةةذا جريةةا . الةةذاتيالبعةةي نادعةةيام الق ةةور  الثنةةاةي
المعادلةةة التةةي  إ ينو  اص ر من الض ف خارج سطح الماةع وهذا اتدحيار في الض ف يؤكي نا  المسالة تعتمةةي علةةز الةة من. 

 السواةل. شنل وسمك ال شاء لبعض إيجادتحنم هذا الجريا  تم حلها تحليليا  وبي تم 
 .معادلة ستوك ، النقام القط ياتغشية الساةلة، الكلمات المفتاحية: 

Introduction:  

Thin liquid films appear in many contexts such as the cooling of gas turbine 

blade tips, rocket engines. Apart from these direct cooling applications of thin liquid 

layers, thin films form a crucial element in many other applications such as in industrial 

coating and spinning processes. Homsy (2000), studied the slow motion of a thin 

viscous film flowing over a topographical feature under the action of external forces, 

using the lubrication approximation and he obtained an equation of the free surface in 

time and space. Breward, D.R. and Darton R.C. (2000) investigate the flow of a liquid 

from the lamellae to the plateau border and the drainage flow that occur within the 

border. Bowen, M. and King, J.R. (2001) consider the asymptotic behavior of thin film 

equation in bounded domains. Schwartz, L.W. and Brien, S.B (2002) gave the theory 

and a mathematical modeling of thin film flow which reproduce many of the features of 

this process include the shape of the film thickness profiles and the large differences in 

drainage time scales for low and high surfactant. Leshansky A. and Rubinstein B. 

(2004) investigate the non– linear rupture of thin liquid films on solid surfaces.  

The main object of this paper is to study the mechanics of the junction zone of 

three plane films as shown in Figure (1). An effect of surface tension is necessarily to 

cause a continual thickening of the films in the junction zone, with the additional liquid 

being supplied symmetrically by all the three films.  

The hydrostatic pressure of the junction zone (called border which is a region of 

large curvature) is less than that on the surface of bulk fluid, further up the liquid, the 

pressure is much higher than that at the border and so the pressure gradient inside the 
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liquid film which forces the flow of liquid towards the border and this pressure gradient 

ensures that there must be some flow and this cannot represent a steady state situation.              

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (1): Motion near the junction zone of three fluids. 

Formulation and governing equations:  

We consider the flow of viscous liquid within the film in two dimensions and we 

suppose that there is no inertia the uses the stokes equations to describe the fluid motion 

in junction zone of three films in vector  form as          
 

qP
Dt

qD
=+           …(1) 

 

and 
 

   Div q = 0           …(2)  
 

where ,, Pq  and   are the velocity, pressure, density and viscosity of fluid 

respectively,   and   are the gradient and the laplacian operator.  

The solution of equation (1) is equivalent to the solution of the following 

biharmonic equation  

( )


 



=

t

12          …(3) 

where the stream function is related to the velocity components by 








−=

r
ur

1
, 

r
u




=


 ,  and where 




 = . 

Equation (3) can be written in polar coordinates and after simplifications to give:  

 
424332

1242112

rrrrrrr
rrrrrrrrrrrr +++−+−+   









++




= 
 2

111

rrt
rrr         …(4) 

Suppose that the stream function ( )tr ,,  is defined by:  
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( ) ( ) ( ) ( )  khhgtr 3sin,,, ==           …(5) 
 

and  

( ) 2

1
−

= tr            …(6) 
 

Now, using (5) and (6) into equation (4), and after simplifications, we get  
 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) )7...(
2

9

22

2
81183618

2

2

3
32

2

33
242

4

3
2

55
41222

2

1
2

2

1
123

2

3
3424

gtrkgt
r

gtrgt
r

gt
r

gkgtrkgkgrtk

gtrgtrgtrgtr

+−−
−

−=+−−

++−+

−−−−

−−−

−−−−







 

By using equation (6), equation (7) gives 
 

( ) ( ) ( ) ( ) ( )gkkgkgkgg 4991811812 222223344 −++++−+   

                                                           ( ) gkgg −++= 2233
2

913
2




  …(8) 

Indeed, there may be no solution defined at 0=  other than the trivial solution 

0=g , so we seek a solution defined near 0=  and the solution turn to be valid at 

0= , that is we seek a solution represented by a series which has the form  

( ) 


=

+=
0n

rn

nCg            …(9) 

By substituting (9) and their derivatives into equation (8) after simplifications, 

we get  

( )  ( )  =−−+−+ +

=

 rn

n

n

Ckrnkrn 22

0

22 929  

( ) ( )  rn

n

n

Ckrnrn +

−

=

−−+−+−  2
22

2

922
2

1
                   …(10) 

 

Now for 0=n , equation (10), gives  
 

( )( )  0929 2222 =−−− Ckrkr                  …(11) 
 

Suppose that 0C , equation (11) gives  
 

kr 31 = ,  kr 32 −= ,  kr 323 += ,  kr 324 −=  
 

For 1=n , equation (10), gives  
 

 

( )   03691 1

2222 =−+− Ckkr                  …(12) 

Since the Coefficients of 1C  are non-zero for each of the roots 321 ,, rrr  and 4r  it 

follows that 01 =C  in each case.  

Now for 2n , equation (10) gives  

( )  ( ) 2

22
2

2

1
9 −−+−=−+ nn CrnCkrn                 …(13) 

or  



  Joseph G. Abdulahad and Rutayna J. Eisa  
 

 

 122 

( )
( )  222

92

2
−

−+

−+
−= nn C

krn

rn
C                   …(14) 

 

Now, to find the Frobenius series corresponding to the roots kr 31 = , and 

kr 323 += , we substitute in (14) to obtain the recursion formula. For kr 3= , and for 

convenience we write nA  instead of nC  to get 

( )
( ) 2

62

23
−

+

−+
−= nn A

knn

kn
A   ,  2n                  …(15) 

 

and thus, we have  

( ) A
k

k
A

318

3
2

+
−=      

( ) A
k

k
A

31128

3
4

+
−=  

and so on-on  substituting in (9), we have  

( ) ( )
( )
( )( ) 





++

+




−

+
+

+
−= 

2423

1313072

34

31128

3

318

3
1 

kk

kk

k

k

k

k
Ag k             …(16) 

 

Now for kr 32+= , we may write nB  instead of nC , we get  

( )
( )( ) 2

6222

3
−

+++

+
−= nn B

knn

kn
B   ,  2n                 …(17) 

 

Thus, we have  
 

BB
16

1
2 −=   ,  

( )
( ) B

k

k
B

+

+
=

11152

34
4   ,  

( )
( ) B

k

k
B

+

+
=

112288

2
6  

and so on. On substituting in (9), we get the second solution which has the form  

( )
( )

( )
( ) 





+

+
−

+

+




+−= + 

64232

112288

2

11152

34

16

1
1 

k

k

k

k
Bg k              …(18) 

Similarly, we can find the solutions 3g and 4g  at kr 3−=  and kr 32−=  

respectively to obtain  

( ) ( )
( )

( )( ) 




−+

+
+

−




−

−
−= − 

6423

3113072

4

31128

3

318

3
1 

kk

kk

k

k

k

k
Cg k             …(19) 

and  

( )
( )

( )
( ) 





−

−
−

−

−




+−= − 

64232

112288

2

11152

34

16

1
1 

k

k

k

k
Dg k              …(20) 

 

Now for 1=k , the general solution is  

( ) 







−+−+








−+−=  

6

13

4

82

2

4

56

13

4

9

23

2

1

23

7

2

1
1

2.3

7

2

3

2

3
1  BAg   









−+−+








−+−+ −−  

6

12

4

8

2

4

36

14

4

82

2

4

1

2

1

2

3

2

3
1

2.3

5

23

1

2

1
1  DC …(21) 

 

The constants in (21) can be determined by using the initial and boundary 

condition. The boundedness at the origin requires that the constants 0D  and 0C  must be 

vanished, that is 000 == CD , and the solution now is given by  
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( )
( ) ( )

( ) ( )
( ) ( )
( )  ( )


=

+

−
=

+

− ++

+−
+

+

+−
=

0

52

2240

0

32

2140
!4!12

!321

!3!2

!1213

n

n

n

n

n

n

n

n

nn

n
B

nn

n
Ag     ...(22) 

Boundary conditions: 

At the free surface ( )( ) 0, =F , we have the following boundary conditions. 

The tangential stress 0= , that is  

0=ijiitn                      …(23) 

and the normal stress condition  

knn ijii  −=                     …(24) 

where   is the surface tension and k  is the curvature, the unit tangent and unit normal 

vectors at the free surface is give by  









+




















+=

−
→


 ˆˆ1

2

1
2

2

dr

d
rr

dr

d
rt                  …(25) 

and  









+−




















+=

−
→


 ˆˆ1

2

1
2

2

dr

d
rr

dr

d
rn                  …(26) 

where ( )̂,r̂  denote the natural orthonormal basis of the coordinate system, the 

curvature k  is given by  






















++




















+=

−
3

2

22

3

2

2 21
dr

d
r

dr

d
r

dr

d

dr

d
rk


               …(27) 

 

The stress tensor   in the fluid in given by  























+




+−=









−




+




=









−




+−=

r

u

r

u

r
p

r

uu

rr

u

r

u

r

u
p

r

rr
r

rr
rr














1
2

1

2

                  …(28) 

where ru  and u  are the velocity components in the directions of r̂  and ̂  respectively.  

Hence the boundary conditions (23) and (24) after simplifications become 

01

2

2 =+



















−+




−  









dr

d
r

dr

d
r

r
r rrr                …(29) 

and  

 



















+−=+−








2

2

2

2 12
dr

d
r

dr

d
r

dr

d
r krrr








                …(30) 

 

The velocity components ru  and u  are related to the stream function 

( ) ( ) ,,, =tr  by  
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






=

r
ur

1
,  and 









−=u                   …(31) 

Now the stream tensor given by (28) and by using the condition (29) and (30) is 

then become  





























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
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
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






+




+




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











−




+−=









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

















2

2

2
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2

2

2
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2
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2

rrr
p

rrr

rr

u

r
p

r

rr

                 …(32) 

 

By substituting (32) into (29) and (30), we have  
 

0
11

1
11

4
2

2

22

22

2

2
=












+




+




−




















−+












+




−













rrrrdr

d
r

rrrdr

d
r       …(33) 

and  

( ) )34...(1
2

111

1111

2

2

2

2

2

2

22

2

2

22

2

k
r

r
rrr

rrrdr

d
r

rrdr

d
r




























−























+=












+




−+













+




+




−−












−













 

Now by using the transformations (5) and (6) in (33) and after some 

simplifications, we get  

0
11

1
11

4
2

2

2

2
=








++−























−+








+− hghghg

d

d
hghg

d

d









          …(35) 

 

The leading term in the general solution in equation (22) is given by  

( ) 3 Ag =                     …(36) 

By substitute (36) and their derivatives in equation (35), we get  

03sin3cos23sin

2

2 =−−



















d

d

d

d
                …(37) 

Equation (37), gives. 









3sin2

3sin43cos43cos2
2

22 +
=

d

d
  or  









d

d

13cos

3sin


=                    …(38) 

Integrating (38), we get  

( ) Cln13cosln
3

1
ln +−=    or  

( ) 3

1

13cos
−

=  C                    …(39) 
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By using (6) equation (39), given  

( ) 3

1

13cos
−

=  tCr                   …(40) 

where 



 =  and equation (40) represent the shape of the thin liquid film in the 

neighborhood of the origin. 

Some of the solution curves for equation (40) are presented for different liquid 

namely water, glycerin and mercury and for different values of time ( )1,5.0,1.0=t  as 

shown in figures (2), (3), (4), and (5). 
 

 

 Figure (2): The thickness and the shape of the free surface for the mercury for 

 different values of time.  a) 1.0=t   ,   b) 5.0=t   ,  c) 1=t . 
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Figure (3): The thickness and the shape of the free surface for the glycerin for 

different values of time.  a) 1.0=t   ,   b) 5.0=t   ,  c) 1=t . 
 



Unsteady Flow near the Junction Zone of Three Liquids 
 

 

 127 

 
Figure (4): The thickness and the shape of the free surface for different 

liquids at time 1.0=t  

W: Water,  M: Mercury,  G: Glycerin 

 
 Figure (5): The thickness and the shape of the free surface for different 

 liquids at time 5.0=t . 

W: Water,  M: Mercury,  G: Glycerin 

 

Conclusions: 

 The flow of a liquid in the junction zone of these approximately plane liquid 

films is essentially unsteady initial value problem and the solution controls the life span 

of foam. The shape of three surfaces is determined for some liquids, namely for water, 

mercury and glycerin and it is seen from figure (2) and (3) that at time increases, the 

thickness of the liquid film also increases and when the supply of liquid is exhausted, 

that component ruptures. Furthermore, the thickness of liquid film in water is less than 

that of glycerin and the reason may be related to viscosity of the liquid.   
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