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Unsteady Flow near the Junction Zone of Three Liquids
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ABSTRACT

In this paper we consider the motion near the junction zone of three approximately
plane liquid films of semi-infinite extent in two dimensional polar coordinate system with
negligible inertia. We use Stokes equation to describe such flow. The pressure in the region of
large curvature is less than that on the surface of bulk fluid and this pressure gradient ensures
that this problem is unsteady state case. The equation that governs such flow is solved
analytically, the shape and the thickness are determined for some liquids.
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Introduction:

Thin liquid films appear in many contexts such as the cooling of gas turbine
blade tips, rocket engines. Apart from these direct cooling applications of thin liquid
layers, thin films form a crucial element in many other applications such as in industrial
coating and spinning processes. Homsy (2000), studied the slow motion of a thin
viscous film flowing over a topographical feature under the action of external forces,
using the lubrication approximation and he obtained an equation of the free surface in
time and space. Breward, D.R. and Darton R.C. (2000) investigate the flow of a liquid
from the lamellae to the plateau border and the drainage flow that occur within the
border. Bowen, M. and King, J.R. (2001) consider the asymptotic behavior of thin film
equation in bounded domains. Schwartz, L.W. and Brien, S.B (2002) gave the theory
and a mathematical modeling of thin film flow which reproduce many of the features of
this process include the shape of the film thickness profiles and the large differences in
drainage time scales for low and high surfactant. Leshansky A. and Rubinstein B.
(2004) investigate the non— linear rupture of thin liquid films on solid surfaces.

The main object of this paper is to study the mechanics of the junction zone of
three plane films as shown in Figure (1). An effect of surface tension is necessarily to
cause a continual thickening of the films in the junction zone, with the additional liquid
being supplied symmetrically by all the three films.

The hydrostatic pressure of the junction zone (called border which is a region of
large curvature) is less than that on the surface of bulk fluid, further up the liquid, the
pressure is much higher than that at the border and so the pressure gradient inside the
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liquid film which forces the flow of liquid towards the border and this pressure gradient
ensures that there must be some flow and this cannot represent a steady state situation.
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Figure (1): Motion near the junction zone of three fluids.
Formulation and governing equations:

We consider the flow of viscous liquid within the film in two dimensions and we
suppose that there is no inertia the uses the stokes equations to describe the fluid motion
in junction zone of three films in vector form as

Dg

and
Divg=0 ..(2)

where q,P,p and u are the velocity, pressure, density and viscosity of fluid
respectively, V and A are the gradient and the laplacian operator.

The solution of equation (1) is equivalent to the solution of the following
biharmonic equation

10
Ny =——(Ay) (3)
where the stream function is related to the velocity components by
u, =— 1ov ugza—w, and where v = £ .
r 06’ or )
Equation (3) can be written in polar coordinates and after simplifications to give:
2 1 1 2 4 2 1
Virr +_l//rrr _r_zl//rr +r_3l//r _r_gl//ree +r_4l//90 +r_2(//rr¢96 +r_4l//¢9999
_ 10 1 1
(w” +—y, 4—1//%) ...(4)
Y r

Suppose that the stream function (r, 8,t) is defined by:
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w(r,6,t)=g(n)h(8), h(8) =sin 3ka ...(5)
and
n=r(ut)2 ...(6)

Now, using (5) and (6) into equation (4), and after simplifications, we get

AN 2r3(’)t)_g g —r’(ut) g"+ r(ut)_% g'+
5

18k? (ut)‘% rg’—36k’g —18k*r?(vt) 9" +81k‘g = %(ut)-i gt -

4 3

2r (Lt)2g"—r*(vt)*g" —%(ut)z g'+%k2r3(ut)g g’ A7)

By using equation (6), equation (7) gives
'™ +27°9® —(1+18k? Jy?g" + (1+18k? g’ +9k?(9k? —4)g
2
:%[77393+3nzg"+(1—9k2)g’] ..(8)
Indeed, there may be no solution defined at 77 =0 other than the trivial solution

g =0, so we seek a solution defined near » =0 and the solution turn to be valid at
n =0, that is we seek a solution represented by a series which has the form

g(n)z Z._C:Cnn”” ...(9)

By substituting (9) and their derivatives into equation (8) after simplifications,
we get

nZz(;[(n +12)-9k?] [(n +r-2f —9k2] C™ =

S S er-2fnr-2 ok, (10

Now for n=0, equation (10), gives

(r2 —ok2f(r -2 —9k?| c. =0 e
Suppose that C, =0, equation (11) gives
n=3k, r,=-3k, n=2+3k, r,=2-3k
For n=1, equation (10), gives
fr? — L+ 9k?F —36k2) c, =0 (12)
Since the Coefficients of C, are non-zero for each of the roots r,r,,r, and r, it

follows that C, =0 in each case.
Now for n> 2, equation (10) gives

[(n+ry —okke, = —%(n +r-2)C,, .(13)

or
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(n+r-2)

¢ 2[n+r 9kJ "2

n

.(14)

Now, to find the Frobenius series corresponding to the roots r, =3k, and
r, =2+3k, we substitute in (14) to obtain the recursion formula. For r =3k, and for
convenience we write A, instead of C to get

_(n+3k-2)
- n> ...(15
A 2n(n+6k) o= (15)
and thus, we have
3k
= A
A= 8(L+3k)
3k
& __128(1+3k)A>
and so on-on substituting in (9), we have
3k k(4 +3k)
=An*|1- 2+ ‘- 2F e ...(16
I= AT { 81+3k)" " 12801+3k)" 3072k 113k +1) | T } (16)
Now for r =2+ 3k, we may write B, instead of C_, we get
- (n+3k) n>2 ..(17)

B »
" 2(n+2)n+2+6k) "
Thus, we have
1 (4+3k) (2+k)
B,=-—B, , By=—7—7—~B. , Be=— 7B
16 1152(1+k) 12288(1+k)
and so on. On substituting in (9), we get the second solution which has the form
1 (4 +3k) (2+k)
=B 1-—n’ ‘- °x.. ..(18
9= 50 [ 16" "1152+ k)T " 120881+K) T (18)
Similarly, we can find the solutions g,and g, at r=-3k and r=2-3k
respectively to obtain

. 3k 3k k(4+k)
=C.n %1~ 2 - ! RS ..(19
I== { gl-3k)" 1281-3k)" 30720+ k)1-3k)" T } (19
and
§ 1 (4-3k) (2-k)
=D |1-—n? = *x.. ...(20
I=Ea { 16”7 "11520-k)" " 1228801-k)" T (20)

Now for k =1, the general solution is
3 3 7 1 7 1
9(n)= Aﬂs(l—?f tos' — o ¢---)+ Boff’(l— ST il ol ?j
_ 1 1 _ 3 3 1
e 1(1_2_4’7 Yyl T3 7761---j+D077 3(1_?77 2° "4_?”61") @D

The constants in (21) can be determined by using the initial and boundary
condition. The boundedness at the origin requires that the constants D, and C, must be

vanished, that is D, = C, = 0, and the solution now is given by
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2n +1 2n+3 (2n+3) 2n45
..(22
AOZZ““n' n+3)l OZ24n2 [(n+2)F (n+4)'n (22)

Boundary conditions:

At the free surface F(,0(r7))=0, we have the following boundary conditions.
The tangential stressz =0, that is

ntoy; =0 ...(23)
and the normal stress condition
nno; =-ok ...(24)

where o is the surface tension and k is the curvature, the unit tangent and unit normal
vectors at the free surface is give by

1
S5 [ 2172 .
t = 1+r2(d—0j } (Hrd—eej ...(25)
dr dr
and
_ 21
- 212 n
n= 1+r2[d—9j} ( rrd—0+6j ...(26)
dr dr

where (f,é) denote the natural orthonormal basis of the coordinate system, the
curvature k is given by

k= {1+r (dej} [Zd—e d29+r(d—9j) ...(27)
dr dr  dr? dr

The stress tensor o in the fluid in given by

ou. u
P [6r rj

ou, 1lou u
— —0 - r__r ...(28
0 [8r r o6 rj @%)
o —pe2u (16u &j
o r

where u, and u, are the velocity components in the directions of ¢ and & respectively.
Hence the boundary conditions (23) and (24) after simplifications become

2
—r%Urr +l:1—r2((:j_fj :|O-r9+rc:j_f699=0 (29)

and
(((jjfj o, —2r ?jfar9+agg = 0'{1+r [zf) } ...(30)

The velocity components u, and u, are related to the stream function
w(r,0,t)=y(n,0) by
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0 =1 andu,--¥ ..(31)
r 06 06
Now the stream tensor given by (28) and by using the condition (29) and (30) is
then become

o> r o6 r? o6

loy 1oy
o= 2y 1 T

2 2
Gra:lu(_&l//_|_l8_l//_|_l@!//} ...(32)

By substituting (32) into (29) and (30), we have

2 2 2
4rd9(_15_‘/’+i5_vfj+{1_r2(d9) }(_5 y 1oy 10 ‘”Jzo .(33)

dr\ raree  r? o6 dr ok ror r?of?
and
(d_ej Lo _Loy)|_ dof %y low 13d%
dr ) {r 60 r? 06 dr{ or? r oo r? 062
2 2
o 1oV +i26_1// S rz(%j (p—ok) ..(34)
rorod r° o6 2u or

Now by using the transformations (5) and (6) in (33) and after some
simplifications, we get

2
4nd_9(_ig'h'+izgh']+ 1—772(0'—9] (—g”h+ig'h+izgh'j=0 +(35)

The leading term in the general solution in equation (22) is given by

g(n) = Ar’ (36)
By substitute (36) and their derivatives in equation (35), we get

2
n’ a0 sin39—277cos36?d—0—sin 30=0 ...37)
dn dn

Equation (37), gives.

dg 27030+ +/4n? c0s 39+ 45° sin 36 o
dn 2% sin 30

dn _ sin30

7 ~ c0os30+1

Integrating (38), we get

...(38)

Iny = —%In(cos3¢9i1)+ InC or

1
7 =C(cos30+1) s ...(39)
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By using (6) equation (39), given
r=C.fut(cos36+1) s ...(40)
where v=% and equation (40) represent the shape of the thin liquid film in the
o

neighborhood of the origin.
Some of the solution curves for equation (40) are presented for different liquid
namely water, glycerin and mercury and for different values of time t:(O.l, 0.5, 1) as

shown in figures (2), (3), (4), and (5).

Figure (2): The thickness and the shape of the free surface for the mercury for
different values of time. a) t=0.1 , b)t=05 , ¢) t=1.
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Figure (3): The thickness and the shape of the free surface for the glycerin for
different values of time. a) t=0.1 , b)t=05 , c) t=1.
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Figure (4): The thickness and the shape of the free surface for different
liquids at time t =0.1
W: Water, M: Mercury, G: Glycerin

Figure (5): The thickness and the shape of the free surface for different
liquids at time t=0.5.
W: Water, M: Mercury, G: Glycerin

Conclusions:

The flow of a liquid in the junction zone of these approximately plane liquid
films is essentially unsteady initial value problem and the solution controls the life span
of foam. The shape of three surfaces is determined for some liquids, namely for water,
mercury and glycerin and it is seen from figure (2) and (3) that at time increases, the
thickness of the liquid film also increases and when the supply of liquid is exhausted,
that component ruptures. Furthermore, the thickness of liquid film in water is less than
that of glycerin and the reason may be related to viscosity of the liquid.
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