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ABSTRACT

In this paper the development, and numerical testing of a class of self-scaling
Quasi-Newton update with adaptive step - size are presented . In our work a new
combined (Oren-Al-Bayati) self-scaling algorithm is presented with a modified Armijo
line search procedure.

This algorithm has implemented both theoretically and numerically and tested
on some well-known test cases. Numerical experiments indicate that this new algorithm
is effective and superior to the standard, with respect to the number of functions
evaluations (NOF) and number of iterations (NOI).
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1. Introduction

The self-scaling update proposed by Oren [7] has some good characteristics.
With a self- scaling parameter ., this class of updates can be written as

T T
Hk+1=|:Hk_M+¢(y;Hkyk)RkRg}fuk+v$Vk ..(1)
Y HeYi k Yk
Where
Vie = Xy — X
Yi = Qi1 — O v Ok = Vf (Xk)
H, =1
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Ve ¥
1 =Y Q)
‘ ngkYk
and
R, = Vi H Vi ..3)

VeYe  YeHoYe
Where ¢ is parameter € (0,1), for the BFGS ¢ =1 and for the DFP ¢ =0. Oren used
¢ =1 in (1) to get

Hoyi Y Hiq, Vivi
Hya = [H, yEHkyk ]+Vlyk
where R,is defined by (3). And g, is defined by (2). Equation (4) is called 2-
parameters VM-update.

+®RR!, >0 ..(4)

Al-Bayati [1] found another interesting family of VM —updates of (1) by further scaling
of Oren’s family of updates with a scalar z >0 such that:

YeHoye
== ..(5
Hy VI Y, My (5)
Al-Bayati [1] has a search direction which is identical to the standard CG-direction (see
the following theorem):
Theorem (1.1):

Assume that f(x) be the quadratic function defined by
f(X) =%XTGX+ b x

and that the line searches are exact: If H is any symmetric positive definite matrix (of
appropriate order) and we define an updating

. H TH ERVAYA
Ho, =H, ——J 0T g pr g Vi ...(6)
Y Hi Vi Vi Y

And z, is defined by (5).,
simply we use * to denote new values in this theorem.
then the search direction d,,=-H"g" is identical to the conjugate-gradient direction

[3]. d define by

4 — 0« for k=0
© l-g"+yig /yld]d, fork=>1

Proof:

The update (6) can be written as :
H:ew =H, Vi Ve H Ve Y = Hoy Ve e Y+ + Y Hy Y IV YOV TV Y
Now

Orow =—H 0"+ Ve H0 IV YV Ve 0 TH Y IV Y = 2V H Y Ve 07 (Vv )2,
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=—H, 9"+ Yy H.a /v vy,
using the property v/ g" =0, quoted earlier which holds for line searches. The vector
g~ can be substituted for H, g~ by using property
H.,g =H.g for 0<i<k<n
therefore
Orew =9+ Yk 9"/ Vi VaewView - (7)
We also know that dg.., and dg, are identical (See Nazareth [5]) and d,,, is
identical to d .., With exact line searches. Hence equation (7) becomes

Arow =—0 +(¥e 9™/ Ygdeg)des = deg -
Hence the proof . #
2. Original Armijo Line Search rule [9]:

Given s>0 and f,o are parameters S,0 €(0,1). Choose «, to be the largest
one in {s,sB,sp°%,..} such that f(x, +ad,) - f, <ocag,d,.

Obviously, Armijo’s rule is easy to implement and useful in practice. The most
important advantage of the Armijo line search rule is that it enable use to estimate an
initial test step-size s.

Good estimation for s can make us cut down the function evaluation at each iteration.
How to choosing the parameters ( such as s,o, ) is very important for practical

problems.

Several choosing techniques have been appearing in many literatures. In this paper, we
propose a new inexact line search rule for Armijo for Quasi-Newton method and
establish some global convergent results of this method.

Theses results are useful in designing new Quasi-Newton methods with the new line
search rule.

3. Inexact Line Search rule

We first assume that
(H,) : The function f(x) has a lower bound on the level set

L, ={xeR"/ f(x) < f(x,)} where X, is given.
(H,): The gradient g(x) of f(x)is Lipschitz in an open convex set B that contains
L,, i.e., there exists a constant L >0 such that

la-a(y|<Lx-y| . ¥xyeB.
Some times we require that f (x) is twice continuously differentiable. In what follows,
we first describe the Quasi-Newton Method.

Original Armijo Algorithm (1):

Step(1): Given x, € R" and B, is a symmetric definite matrix, k =1.
Step(2): If |g,[ =0 then stop else go to step(3).

Step(3): X, = X +a,d, , where d, =—-B,'g, and «, is determined by
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For the next step use Given S (01) and o €(01/2). Choose ¢, to be the
largest one in {1, 3, #°,...} such that

f(x, +ad,)—f, <oalgld, +%adkTBkdk]

Step(4): Let v, =X, — X, Y« = 0v,s — 0., modify B, as B,,, by using BFGS or DFP

formula or other Quasi-Newton formulae.
Step(5): Set k =k +1 and go to step (2).

(H,): The matrix B, satisfies: m|d|’<d"Bd <M|[d|’, vdeR", vk, where
O<m<M.

Algorithm (11): (AL-Bayati )[1]

Start with any initial point x,

Step(1): Set k =1 and chose H, to be any positive definite matrix (usually H, =1).
Step(2): Determine the step-size 4, to minimize f(x, +Ad,) where d, =-H,g,, and

obtain x.,, =X, +Ad,
.
Kk

, Where 1, = ——=%
k MYk < Vi ‘ Vie Yi
Step(4):1f not converged increase k by 1 and return to step(2).

Algorithm(l11): (Oren)[6]

Start with any initial point x;

Step(1): Set k =1 and chose H, to be any positive definite matrix (usually H, =1).

Step(2): Determine the step-size A, to minimize f(x, +Ad,) where d, =-H,g,, and
obtain x,,, =X, +Ad,

T T
Step(3): Set H,., =[H, —%+ RR 1+ 77, YeHiYi

;

Step(3): Set H,, =[H, — WS g pry, o
k k Sk k

Step(4): If not converged increase k by 1 and return to step(2).

Oren algorithm (I11) processes the following properties for a quadratic function:

(a) If A, minimizes f(x,—A4H,g,) for all k, then the vector d, are

mutually conjugate (with respect to G) and hence the solution is obtained in at
most n iterations.

1 1
(b) The condition number of the matrix R, =G?H,G? is strictly

monotonically decreasing.
(©) If A4, =1 for all k, then the algorithm convergent” two- step super

linearly", i.e.

Ilm ||Xk+l - Xmin || — O

ke ”Xk—xmin ”

The proofs of these properties can be found in [2] and [6].
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4. A New Hybrid (Oren- Al-Bayati) Self-Scaling VM Algorithm

Our objective is to propose a new class of two parameter updates which will
combine the relative merits of different types of QN updates. This class of modified QN
updates can be expressed as follows :

H.y.y H A 1

H,., ={Hk —%mm;}yk + 7 2 where g =— .(8)
k T Yk Yi Vi Hy

This formula is invariant under linear transformation provided that x, and z, are

constructed from invariant scalars. Other properties, such as termination and conjugate
gradients, are also preserved.
Likewise positive definite matrices are preserved for x4, >0 and sufficiently large z, .

5.New Modified Armijo Line Search
We modify original Armijo algorithm as follows for a smooth differential
function f and for an starting point x, with parameters A, follow these steps by
considering an stopping criterion ¢ :
Step(1): Input {f,X,, 4,77, €}
Step(2): Set k =-1
Step(3): If k <7, replace k by k+1,set A=4,, j=1 and go to the next step,
otherwise, go to step(8)

Step(4): If f(x, —2Vf(x))— f(x,)< —%/1||Vf (xk)||2 , go to step(6) ;

otherwise, set j= j+1 and go to the next step.

Step(5): Set 1 = 2};0_1 and return to step(4)
Step(6): Set x,,, = X, —2Vf(x,)

Step(7): If |Vf(x)| <& , go to Step(8) ; other wise go to step(3).

Step(8): Output {x,, f(x.),Vf(x)}

The above algorithm provides an effective and very useful step- size adaptation
procedure for various applications, for more details see [8].

6. The Out lines of New Preconditional CG Algorithm With New Armijo Line
Search Procedure

Step(1): Set X,,&,Hy =1
Step(2): For k =1,2,...,n , set d, =—H,g,
Step(3): Compute X, = X, +Ad, Where 7, is optimal step- size obtained from Armijo

line search procedure.
Step(4): Cheek if |g,,|| < & then stop , otherwise go to step (5).

Step(5) © Ve = Xs =Xy Vi = Ges — G-

o YYHY - ViV -
Step(6): p =———, If g4 >05then p =—>*—, u =1
VY, ‘ “CyeHy
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H TH A
Step(7): H,,, =[H, _%]ﬂk + yIHkykRk RII + 4 yk;\;k
where R, is defined by (3)
Step(8): dy,; = —Hy 10,1 + B4,

g;+1Hk+1yk
where f, ==t _xdlk
C Ay

Step(9): If k=n or d,,9,,, >0 then go to step(2)
Otherwise k =k +1 and go to step(3)

7. Numerical Results

The comparative test involves eleven well-known standard test functions(given
in the appendix) with different dimensions. The line search routine is a new modified
Armijo line search which uses only function values.

The results are given in the Table (1A) is specifically quoting the number of
function evaluations (NOF) an the number of iterations (NOI).

All programs are written in FORTRAN 90 language and for all cases the stopping

criterion is taken to be ||g, .| <1x10°°.

From Table (1B) it is clear that there are a big advantages comparing the new
algorithm against the standard BFGS algorithm, namely, there are about %02 NOI
and % 62 NOF improvements in the new suggested.

Table (1A). Comparative Performance of Two Algorithms
(New Algorithm and Standard BFGS).

NEW OPTIMAL STEP SIZE BFGS METHOD

N

Test Function

POWELL 4 53 60 21 88
60 58 65 68 189
100 58 65 67 185
500 58 65 39 118
ROSEN 2 50 62 18 56
60 51 63 175 563
100 51 63 237 697
| 500 51 63
e ——————————————————————————
CUBIC 2 50 58 14 45
150 51 59 49 117
200 51 59 46 119
| 500 51 59 79 186
e —————————————————————————
SHALLOW 2 12 15 8 26
100 12 15 8 26
200 12 15 8 26
| 500 12 15 8 26
e ———————————————————————————————
DIXON 4 13 15 50 58
| 10 15 17 15 33
e ——————————————————————
NON- 2 41 53 11 45
DIAGONAL 12 47 65 41 105
100 52 66 76 181
500 42 55 85 210
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MIELE 4 33 37 26 90
52 44 48 31 96
100 44 48 32 99
| 500 48 52 39 120
e
Gcantrel 4 67 70 9 41
60 139 142 22 101
100 164 167 23 107
| 500 287 290 23 107
I ———§—ii——
Gwolfe 3 11 14 6 17
21 42 46 24 50
99 52 56 72 145
| 450 62 66 82 165
I ———§—ii——
Beale 2 18 20 9 24
80 19 21 10 25
100 19 21 10 25
| 500 19 21 10 25
P ———i——i—i———
GWood 4 33 41 37 105
80 33 41 207 620
100 33 41 245 757
Total 2007 2251 2040 5818

From Table(1B)
Percentage performance of the new algorithm against 100% BFGS algorithm

New
98.38235
38.69027

Appendix :
All the test functions used in this paper are from general literature:

1. Powell function ( Generalized form)
n/4

f= Z[(Xm—s +10X,;5)® +5(Xg 3 = Xg)* + (Xgip = 2%415)* +10(X455 = X4)*T

i=1
X, =(3-10%..)"
2. Rosen function
f =100(x, —x7)* +(1—%)%, X, = (-1.21.0)"

3. Cubic function
f =100(x, — xf)2 +@1- xl)2 Xy = (-1.21.0)"

4. Shallow function
n/2

f= Z(Xgi—l X )+ (L= X5 4)" X = (-25.)"

5. Dixon function
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Fox) @) + D0 %)%, % = (1)

6. Non-diagonal function

= D000~ ) +@-%)7], % =(-1.)

7. Miele function
f =(e*—1)%tan" (x, — X,) +100(x, — %,)° +x° + (%, =1)?, %, = 1,2,2,2)"

8. Cantrel function
f = (6" = Xyi5)* +100(Xy;_, —X5)" + AtaN((Xyiy =Xy ) +Xgig 1 %o = (122,2;.)]

9. wolfe function

n-1
f=(=x@—x,,)+2x, _1)22(Xi—1 =% (8= X12) + 2%y —1)* + (X, — X, (B—X,,) —1)°
i1
X, =(-L..)"
10. Beale function
f =(@5-x(1-X,))*+(2.25—x (1—x}))* +(6.625- X (1-X3))*, X, =(0,0)"

11. wood function
n/4

f= Z[lOO(XAH ~Xai0)® (L= Xy 5)* +900%,; = %5 1) + (L= X, 4)* +10.1(x,; , ~1)°
i1

+ (X, _1)2 +19.8(X,, —D(X,; =1 , X = (—3,—1;—3,—1;...)T
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