Detour Hosoya Polynomials of Some Compound Graphs

Herish O. Abdullah Gashaw A. Muhammed-Saleh
herish_omer@yahoo.com gashaw.mohammed@su.edu.krd
College of Science
University of Salahaddin
Received on:23/11/2009
Accepted on:11/4/2010

Abstract

In this paper we will introduce a new graph distance based polynomial; Detour Hosoya polynomials of graphs $\boldsymbol{H}^{*}(\boldsymbol{G} ; \boldsymbol{x})$. The Detour Hosoya polynomials $\boldsymbol{H}^{*}(\boldsymbol{G} ; \boldsymbol{x})$ for some special graphs such as paths and cycles are obtained. Moreover the Detour Hosoya polynomials $\boldsymbol{H}^{*}\left(\boldsymbol{G}_{\mathbf{1}} \bullet \boldsymbol{G}_{\mathbf{2}} ; \boldsymbol{x}\right)$, $\boldsymbol{H}^{*}\left(\boldsymbol{G}_{\mathbf{1}}: \boldsymbol{G}_{\mathbf{2}} ; \boldsymbol{x}\right)$ and $\boldsymbol{H}^{*}\left(\boldsymbol{G}_{\mathbf{1}} \odot \boldsymbol{G}_{\mathbf{2}} ; \boldsymbol{x}\right)$ are obtained.

Keywords: Detour distance, compound graphs, Hosoya polynomials.
هتعدشات حمر عدد Detour لبهض البيانات المركبة
كلية العلوم
جامعة صلاح الدين

1. Introduction

The concept of Hosoya polynomial was first put forward in 1988 by Hosoya [1]. Several authors, such as [1], [2], [3], [4], [5], [6], [7], [8], [13] and [15] had obtained Hosoya polynomials for special graphs, graphs having some kind of regularity and for compound graphs obtained by using some well-known binary operations in graph theory.

$$
\begin{aligned}
& \text { تاريخ الاستلام : 2009/11/23 تاريخ القبول : 2010/4/11 } \\
& \text { الملخص } \\
& \text { في هذا البحث قمنا بتعريف متعددة حدود هوسويا نسبة الى مسافة اطول بعد }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ، } \boldsymbol{H}^{*}\left(\boldsymbol{G}_{1} \bullet \boldsymbol{G}_{2} ; \boldsymbol{x}\right) \text { مثل بيان ألدرب و بيان ألدارة. و كذلك تم ألحصول على كل من } \\
& \text {. } H^{*}\left(G_{1} \odot G_{2} ; x\right) \quad H^{*}\left(G_{1}: G_{2} ; x\right) \\
& \text { الكلمات المفتاحية : مسافة Detour ، بيانات مركبة ، متعددة حدود هوسويا. }
\end{aligned}
$$

In this paper, we consider finite connected graphs without loops or multiple edges. For undefined concepts and notations see [9] and [12].

Ordinarily, when we wish to proceed from a point \boldsymbol{A} to a point \boldsymbol{B} we take a route which involves the least distance. We have all been faced with detour sign which require us to take a route from \boldsymbol{A} to \boldsymbol{B} that involves a greater distance. In any such detour route from \boldsymbol{A} to \boldsymbol{B} we assume that there is no possible shortcut along the route, for otherwise this should have been part of the route initially. When one is driving along such a detour, it sometimes seems that we are using the longest route possible from \boldsymbol{A} to \boldsymbol{B} (again subject to the "no shortcut" condition). In this paper we investigate longest detour routes in graphs.

The distance $\boldsymbol{d}(\boldsymbol{u}, \boldsymbol{v})$ between two vertices \boldsymbol{u} and \boldsymbol{v} in a connected graph \boldsymbol{G} is the length of a shortest $\boldsymbol{u} \boldsymbol{- v}$ path in \boldsymbol{G}. For a nonempty set \boldsymbol{S} of vertices of \boldsymbol{G}, the subgraph $\langle\boldsymbol{S}\rangle$ of \boldsymbol{G} induced by \boldsymbol{S} as its vertex set while an edge of \boldsymbol{G} belongs to $<\boldsymbol{S}\rangle$ if it joins two vertices of \boldsymbol{S}. If \boldsymbol{P} is a $\boldsymbol{u}-\boldsymbol{v}$ path of length $\boldsymbol{d}(\boldsymbol{u}, \boldsymbol{v})$, then the subgraph $\langle\boldsymbol{V}(\boldsymbol{P})\rangle$ induced by the vertices of \boldsymbol{P} is \boldsymbol{P} itself. This observation suggests the following concept. The detour distance $\boldsymbol{d}^{*}(\boldsymbol{u}, \boldsymbol{v})$ between \boldsymbol{u} and \boldsymbol{v} in \boldsymbol{G} is the length of a longest induced $\boldsymbol{u}-\boldsymbol{v}$ path, that is a longest $\boldsymbol{u} \boldsymbol{- \boldsymbol { v }}$ path \boldsymbol{P} for which $\langle\boldsymbol{V}(\boldsymbol{P})\rangle=\boldsymbol{P}$. An induced $\boldsymbol{u}-\boldsymbol{v}$ path of length $\boldsymbol{d}^{*}(\boldsymbol{u}, \boldsymbol{v})$ is called a detour path [10].

Observe that $\boldsymbol{d}^{*}(\boldsymbol{u}, \boldsymbol{v}) \geq \boldsymbol{d}(\boldsymbol{u}, \boldsymbol{v})$ for all vertices \boldsymbol{u} and \boldsymbol{v} of \boldsymbol{G} and that $\boldsymbol{d}^{*}(\boldsymbol{u}, \boldsymbol{v})=\boldsymbol{d}(\boldsymbol{u}, \boldsymbol{v})=\mathbf{1}$ if and only if \boldsymbol{u} and \boldsymbol{v} are adjacent. Also, note that $\boldsymbol{d}^{*}(\boldsymbol{u}, \boldsymbol{v})=\boldsymbol{d}^{*}(\boldsymbol{v}, \boldsymbol{u})$ for all vertices \boldsymbol{u} and \boldsymbol{v} of \boldsymbol{G}. Therefore the detour distance is symmetric. However, the triangle inequality does not hold in general. Consider the wheel $\boldsymbol{W}_{\boldsymbol{p}}$ of order $\boldsymbol{p} \geq \mathbf{6}$ with center at the vertex \boldsymbol{w}; then: $d^{*}(u, v)=p-3>2=d^{*}(u, w)+d^{*}(w, v)$, for every two vertices \boldsymbol{u} and \boldsymbol{v} of $\boldsymbol{W}_{\boldsymbol{p}}, \boldsymbol{u}, \boldsymbol{v} \neq \boldsymbol{w}$, that are both adjacent to a common vertex $\boldsymbol{x} \neq \boldsymbol{w}$.
Therefore, in general, the detour distance is not a metric on the vertex set of $\boldsymbol{G}[10]$.

The detour eccentricity $\boldsymbol{e}^{*}(\boldsymbol{v})$ of a vertex \boldsymbol{v} is defined by $e^{*}(v)=\max \left\{d^{*}(v, w): w \in V(G)\right\}$. The detour eccentricity set $\boldsymbol{e}^{*}(\boldsymbol{G})$ of a connected graph \boldsymbol{G} is the set consisting of all detour
eccentricities of \boldsymbol{G}, that is $\boldsymbol{e}^{*}(\boldsymbol{G})=\left\{\boldsymbol{e}^{*}(\boldsymbol{v}): \boldsymbol{v} \in \boldsymbol{V}(\boldsymbol{G})\right\}$. The detour radius $\boldsymbol{r a d}^{*}(\boldsymbol{G})$ of \boldsymbol{G} is the minimum detour eccentricity, while the detour diameter $\operatorname{diam}^{*}(\boldsymbol{G})$ of \boldsymbol{G} is the maximum detour eccentricity.
For completeness we define $\boldsymbol{d}^{*}(\boldsymbol{u}, \boldsymbol{v})=\mathbf{0}$ if and only $\boldsymbol{u}=\boldsymbol{v}$.
A connected graph \boldsymbol{G} is called a detour graph if $\boldsymbol{d}^{*}(\boldsymbol{u}, \boldsymbol{v})=\boldsymbol{d}(\boldsymbol{u}, \boldsymbol{v})$ for all vertices \boldsymbol{u} and \boldsymbol{v} of \boldsymbol{G}. No cycle of length $\mathbf{5}$ or more is a detour graph. On the other hand, all trees and all complete graphs are detour graphs. If \boldsymbol{u} and \boldsymbol{v} are distinct vertices of a graph \boldsymbol{G} such that $\boldsymbol{d}^{*}(\boldsymbol{u}, \boldsymbol{v})=\mathbf{1}$ or $\mathbf{2}$, then $d^{*}(u, v)=\boldsymbol{d}(u, v)[10]$, the converse is not true in general, that is if $d(u, v)=2$, then $d^{*}(u, v) \geq 2$, as for the wheel $\boldsymbol{W}_{p}, p \geq 6$.

The concept of Hosoya polynomial $\boldsymbol{H}(\boldsymbol{G} ; \boldsymbol{x})$ of a graph \boldsymbol{G} was put forward by Hosoya[13], and defined as
$\boldsymbol{H}(\boldsymbol{G} ; \boldsymbol{x})=\sum_{\boldsymbol{k}=\mathbf{0}}^{\delta(\boldsymbol{G})} \boldsymbol{C}(\boldsymbol{G}, \boldsymbol{k}) \boldsymbol{x}^{\boldsymbol{k}}$; where $\boldsymbol{C}(\boldsymbol{G}, \boldsymbol{k})$ is the number of pairs of vertices in \boldsymbol{G} that are distance \boldsymbol{k} apart, and $\boldsymbol{\delta}(\boldsymbol{G})$ is the diameter of the graph \boldsymbol{G}.
In this paper, the concept of Hosoya polynomials of detour distance of a connected graph \boldsymbol{G} (or simply detour Hosoya polynomial of a graph G) has been defined by

$$
\begin{equation*}
H^{*}(G ; x)=\sum_{k=0}^{\delta^{*}(G)} C^{*}(G, k) x^{k}=\sum_{\{u, v\} \subseteq V(G)} x^{d^{*}(u, v)} \tag{1}
\end{equation*}
$$

in which $\boldsymbol{C}^{*}(\boldsymbol{G}, \boldsymbol{k})$ is the number of pairs of vertices in \boldsymbol{G} with detour distance \boldsymbol{k}, and $\boldsymbol{\delta}^{*}(\boldsymbol{G})$ is the detour diameter of \boldsymbol{G}.
It is clear that if \boldsymbol{G} is a detour graph, then $\boldsymbol{H}^{*}(\boldsymbol{G} ; \boldsymbol{x})=\boldsymbol{H}(\boldsymbol{G} ; \boldsymbol{x})$.
The sum $\boldsymbol{W}^{*}(\boldsymbol{G})$ of detour distances between all pairs of vertices of the graph \boldsymbol{G} is known as the Wiener index of detour distance of the graph \boldsymbol{G} (or simply detour Wiener index of the graph \boldsymbol{G}), that is

$$
W^{*}(G)=\sum_{u, v} d^{*}(u, v)
$$

where the sum is taken over all unordered pairs $\{\boldsymbol{u}, \boldsymbol{v}\}$ of distinct vertices in \boldsymbol{G}.
It is clear that

$$
W^{*}(G)=\left.\frac{d}{d x} H^{*}(G ; x)\right|_{x=1}
$$

We illustrate these ideas in the following example.
Example 1.1. Let \boldsymbol{G} be a graph of order $\boldsymbol{p}=\mathbf{9}$, depicted in figure 1.1(a).
It is clear that
$e^{*}\left(v_{1}\right)=5, e^{*}\left(v_{2}\right)=4, e^{*}\left(v_{3}\right)=4, e^{*}\left(v_{4}\right)=3, e^{*}\left(v_{5}\right)=4$,
$e^{*}\left(v_{6}\right)=3, e^{*}\left(v_{7}\right)=4, e^{*}\left(v_{8}\right)=5$ and $e^{*}\left(v_{9}\right)=5$.
Hence

$$
e^{*}(G)=\{5,4,4,3,4,3,4,5,5\}, \operatorname{diam}^{*}(G)=5 \text { and } \operatorname{rad}^{*}(G)=3 .
$$

A detour $\boldsymbol{v}_{\mathbf{1}}-\boldsymbol{v}_{\boldsymbol{9}}$ path is given in Figure $\mathbf{1 . 1 (b)}$.Therefore $\boldsymbol{d}^{*}\left(\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\boldsymbol{9}}\right)=\mathbf{5}$, and this gives us the maximum detour distance among all detour distances of pairs of vertices of $\boldsymbol{V}(\boldsymbol{G})$.
The path \boldsymbol{P}^{\prime} is not a detour $\boldsymbol{v}_{\mathbf{1}}-\boldsymbol{v}_{\boldsymbol{9}}$ path, because $\left\langle\boldsymbol{V}\left(\boldsymbol{P}^{\prime}\right)\right\rangle \neq \boldsymbol{P}^{\prime}$ (see figures 1.1(c) and 1.1(d)).
By direct calculations, we get that

$$
\begin{aligned}
& C^{*}(\boldsymbol{G}, \mathbf{0})=p=9, \quad C^{*}(\boldsymbol{G}, \mathbf{1})=10, \quad C^{*}(\boldsymbol{G}, 2)=9, \\
& C^{*}(\boldsymbol{G}, 3)=9, C^{*}(\boldsymbol{G}, 4)=6 \text { and } C^{*}(\boldsymbol{G}, 5)=2 .
\end{aligned}
$$

Hence, the detour Hosoya polynomial of \boldsymbol{G} is

$$
H^{*}(G ; x)=9+10 x+9 x^{2}+9 x^{3}+6 x^{4}+2 x^{5}
$$

and

$$
W^{*}(G)=\left.\frac{d}{d x} H^{*}(G ; x)\right|_{x=1}=89
$$

(c) The path \boldsymbol{P}^{\prime}

(b) The detour $\boldsymbol{v}_{\mathbf{1}}-\boldsymbol{v}_{9}$ path

(d) $\left\langle V\left(P^{\prime}\right)\right\rangle$

Figure 1.1.

In 1993, Gutman [8], established few additional properties of the respective graph polynomials. He obtained Hosoya polynomials of some special graphs and obtained formula for the Hosoya polynomials of some compound graphs, namely $\boldsymbol{G}_{\mathbf{1}} \bullet \boldsymbol{G}_{\mathbf{2}}$ and $\boldsymbol{G}_{\mathbf{1}}: \boldsymbol{G}_{\mathbf{2}}$ which are defined in the following: Let $\boldsymbol{G}_{\mathbf{1}}$ and $\boldsymbol{G}_{\mathbf{2}}$ be vertex-disjoint connected graphs, and let $\boldsymbol{u} \in \boldsymbol{V}\left(\boldsymbol{G}_{\mathbf{1}}\right)$ and $\boldsymbol{v} \in \boldsymbol{V}\left(\boldsymbol{G}_{\mathbf{2}}\right)$. Then, the graph $\boldsymbol{G}_{\mathbf{1}} \bullet \boldsymbol{G}_{\mathbf{2}}$ is obtained from $\boldsymbol{G}_{\mathbf{1}}$ and $\boldsymbol{G}_{\mathbf{2}}$ by identifying the two vertices \boldsymbol{u} and \boldsymbol{v}. This means that $\boldsymbol{G}_{\mathbf{1}}$ and $\boldsymbol{G}_{\mathbf{2}}$ have exactly one vertex in common in the compound graph $\boldsymbol{G}_{\mathbf{1}} \bullet \boldsymbol{G}_{\mathbf{2}}$. The graph $\boldsymbol{G}_{\mathbf{1}}: \boldsymbol{G}_{\mathbf{2}}$ is obtained from $\boldsymbol{G}_{\mathbf{1}}$ and $\boldsymbol{G}_{\mathbf{2}}$ by introducing a new edge joining the two vertices \boldsymbol{u} and \boldsymbol{v}. In this paper, formulas for $\boldsymbol{H}^{*}\left(\boldsymbol{G}_{\mathbf{1}} \bullet \boldsymbol{G}_{\mathbf{2}} ; \boldsymbol{x}\right)$ and $\boldsymbol{H}^{*}\left(\boldsymbol{G}_{\mathbf{1}}: \boldsymbol{G}_{\mathbf{2}} ; \boldsymbol{x}\right)$ in terms of the detour Hosoya polynomials of $\boldsymbol{G}_{\mathbf{1}}$ and $\boldsymbol{G}_{\mathbf{2}}$ will be obtained.

2. Detour Hosoya Polynomials of Some Special Graphs

Let $\boldsymbol{P}_{\boldsymbol{n}}, \boldsymbol{K}_{\boldsymbol{n}}$ and $\boldsymbol{S}_{\boldsymbol{n}}$ denotes the path, complete and star graphs of \boldsymbol{n} vertices respectively. It is known that $[\mathbf{1 0}]$ all trees and complete graphs are detour graphs. This leads us to the following result.

Proposition 2.1

(a) $\quad H^{*}\left(P_{n} ; x\right)=\sum_{k=0}^{n-1}(n-k) x^{k}$.
(b) $\quad H^{*}\left(K_{n} ; x\right)=n+\frac{1}{2} n(n-1) x$.
(c) $\quad H^{*}\left(S_{n} ; x\right)=n+(n-1) x+\binom{n-1}{2} x^{2}$.

Proposition 2.2 Let $\boldsymbol{C}_{\boldsymbol{p}}$ be a cycle of order $\boldsymbol{p} \geq \mathbf{5}$, then

$$
H^{*}\left(C_{p} ; x\right)= \begin{cases}p\left(1+x+\sum_{k=\frac{p+1}{2}}^{p-2} x^{k}\right) & \text { if } p \text { is odd } \\ p\left(1+x+\frac{1}{2} x^{\frac{p}{2}}+\sum_{k=\frac{p}{2}+1}^{p-2} x^{k}\right) & \text { if } p \text { is even }\end{cases}
$$

Proof. Let $\boldsymbol{u}, \boldsymbol{v}$ be any two distinct vertices of \boldsymbol{C}_{p}. We will consider the following cases:
(1) If $\boldsymbol{u} \boldsymbol{v} \in \boldsymbol{E}\left(\boldsymbol{C}_{p}\right)$ then $\boldsymbol{d}^{*}(\boldsymbol{u}, \boldsymbol{v})=\mathbf{1}$ and $\boldsymbol{C}^{*}(\boldsymbol{G}, \mathbf{1})=\boldsymbol{p}$.
(2) If $u v \notin E\left(C_{p}\right)$, then $d^{*}(u, v)=p-d(u, v)$,
where $\boldsymbol{d}(\boldsymbol{u}, \boldsymbol{v})$ denotes the ordinary distance.
We know that [11], for an odd \boldsymbol{p}, the ordinary Hosoya polynomial of $\boldsymbol{C}_{\boldsymbol{p}}$ is given by $\boldsymbol{H}\left(C_{p} ; x\right)=p+p x+p \sum_{k=2}^{\frac{p-1}{2}} x^{k}$.
Hence

$$
H^{*}\left(C_{p} ; x\right)=p+p x+p \sum_{k=p-2}^{p-\frac{p-1}{2}} x^{k}
$$

or

$$
H^{*}\left(C_{p} ; x\right)=p+p x+p \sum_{k=\frac{p+1}{2}}^{p-2} x^{k}
$$

Similarly, we prove the formula for the case when \boldsymbol{p} is even.
This completes the proof.
Proposition 2.3 Let \boldsymbol{W}_{p} be a wheel graph of $\boldsymbol{p} \geq \mathbf{6}$ vertices, then

$$
H^{*}\left(W_{p} ; x\right)=p+2(p-1) x+(p-1)\left\{\begin{array}{cc}
\sum_{k=\frac{p}{2}}^{p-3} x^{k}, & \text { if } p \text { is even } \\
\frac{1}{2} x^{\frac{p-1}{2}}+\sum_{k=\frac{p+1}{2}}^{p-3} x^{k}, & \text { if } p \text { is odd }
\end{array} .\right.
$$

Hence, for $\boldsymbol{k} \geq \mathbf{2}$

$$
C^{*}\left(W_{P}, k\right)=C^{*}\left(C_{p-1}, k\right)
$$

Thus,

$$
H^{*}\left(W_{p} ; x\right)=1+(p-1) x+H^{*}\left(C_{p-1}, x\right)
$$

Now, using Proposition 2 we obtain the required result.

Proposition 2.4 Let $\boldsymbol{K}_{t, s}$ be a complete bipartite graph with partite subsets of sizes t and s, then

$$
H^{*}\left(K_{t, s} ; x\right)=(t+s)+(t s) x+\left[\binom{t}{2}+\binom{s}{2}\right] x^{2}
$$

Proof. Obvious
The following result gives us the Wiener index of the detour distance of the special graphs $\boldsymbol{P}_{\boldsymbol{n}}, \boldsymbol{K}_{\boldsymbol{n}}, \boldsymbol{S}_{\boldsymbol{n}}, \boldsymbol{C}_{\boldsymbol{p}}, \boldsymbol{W}_{\boldsymbol{p}}$ and $\boldsymbol{K}_{\boldsymbol{t}, \mathrm{s}}$.

Proposition 2.5
(1) $W^{*}\left(P_{n}\right)=\frac{1}{6} n\left(n^{2}-1\right)$.
(2) $W^{*}\left(K_{n}\right)=\frac{1}{2} n(n-1)$.
(3) $W^{*}\left(S_{n}\right)=(n-1)^{2}$.
(4) For $p \geq 5, W^{*}\left(C_{p}\right)=\left\{\begin{array}{l}\frac{1}{8} p\left(3 p^{2}-12 p+17\right), \text { if } p \text { is odd } \\ \frac{1}{8} p\left(3 p^{2}-12 p+16\right), \text { if } p \text { is even }\end{array}\right.$.
(5) For $p \geq 6, W^{*}\left(W_{p}\right)=\left\{\begin{array}{l}\frac{1}{8}(p-1)\left(3 p^{2}-18 p+39\right), \text { if } p \text { is odd } \\ \frac{1}{8}(p-1)\left(3 p^{2}-18 p+40\right), \text { if } p \text { is even }\end{array}\right.$.
(6) $W^{*}\left(K_{t, s}\right)=t s+t(t-1)+s(s-1)$.

3. Detour Hosoya Polynomials of Some Compound Graphs

Let \boldsymbol{u} be a vertex of a connected graph \boldsymbol{G} of order \boldsymbol{p}. The number of pairs of vertices of \boldsymbol{G} containing the vertex \boldsymbol{u} such that $\boldsymbol{d}_{\boldsymbol{G}}^{*}(\boldsymbol{u}, \boldsymbol{v})=\boldsymbol{k}$, $\forall \boldsymbol{v} \in \boldsymbol{V}(\boldsymbol{G})$, will be denoted by $\boldsymbol{C}^{*}(\boldsymbol{u}, \boldsymbol{G} ; \boldsymbol{k})$.
We define the polynomial

$$
\begin{equation*}
H^{*}(u, G ; x)=\sum_{k=0}^{e^{*}(u)} C^{*}(u, G ; k) x^{k} \tag{2}
\end{equation*}
$$

It is clear that

$$
\begin{equation*}
\mathbf{H}^{*}(G ; x)=\frac{1}{2} \sum_{u \in V(G)} H^{*}(u, G ; x)+\frac{1}{2} p \tag{3}
\end{equation*}
$$

Let $\boldsymbol{G}_{\mathbf{1}}$ and $\boldsymbol{G}_{\mathbf{2}}$ be two disjoint connected graphs of orders $\boldsymbol{p}_{\mathbf{1}}$ and \boldsymbol{p}_{2} respectively. Moreover, let \boldsymbol{w} be the vertex obtained by identifying the
vertex \boldsymbol{u} of $\boldsymbol{G}_{\mathbf{1}}$ with the vertex \boldsymbol{v} of $\boldsymbol{G}_{\mathbf{2}}$ in order to construct the compound graph $\boldsymbol{G}_{\mathbf{1}} \bullet \boldsymbol{G}_{\mathbf{2}}$. The compound graph $\boldsymbol{G}_{\mathbf{1}}: \boldsymbol{G}_{\mathbf{2}}$ is obtained by introducing a new edge joining the vertex \boldsymbol{u} of $\boldsymbol{G}_{\mathbf{1}}$ with the vertex \boldsymbol{v} of $\boldsymbol{G}_{\mathbf{2}}$.

Now, we are ready to present formulas for $\boldsymbol{H}^{*}\left(\boldsymbol{G}_{\mathbf{1}} \bullet \boldsymbol{G}_{\mathbf{2}} ; \boldsymbol{x}\right)$ and $\boldsymbol{H}^{*}\left(\boldsymbol{G}_{\mathbf{1}}: \boldsymbol{G}_{\mathbf{2}} ; \boldsymbol{x}\right)$ in terms of $\boldsymbol{H}^{*}\left(\boldsymbol{G}_{\mathbf{1}} ; \boldsymbol{x}\right)$ and $\boldsymbol{H}^{*}\left(\boldsymbol{G}_{\mathbf{2}} ; \boldsymbol{x}\right)$.
Theorem 3.1 If $\boldsymbol{G}_{\mathbf{1}}$ and $\boldsymbol{G}_{\mathbf{2}}$ are disjoint connected graphs, then

$$
\begin{aligned}
H^{*}\left(G_{1} \bullet G_{2} ; x\right)= & H^{*}\left(G_{1} ; x\right)+H^{*}\left(G_{2} ; x\right)+H^{*}\left(u, G_{1} ; x\right) . H^{*}\left(v, G_{2} ; x\right) \\
& -H^{*}\left(u, G_{1} ; x\right)-H^{*}\left(v, G_{2} ; x\right)
\end{aligned}
$$

$\underline{\text { Proof: }}$ Let $\boldsymbol{s}, \boldsymbol{t}$ be any two vertices of $\boldsymbol{G}_{\mathbf{1}} \bullet \boldsymbol{G}_{\mathbf{2}}$ such that $\boldsymbol{d}_{\boldsymbol{G}_{1} \cdot G_{2}}^{*}(\boldsymbol{s}, \boldsymbol{t})=\boldsymbol{k}$. We will consider the following cases:
(1) If $\boldsymbol{s}, \boldsymbol{t} \in \boldsymbol{V}\left(\boldsymbol{G}_{\mathbf{1}}\right)$, then $\boldsymbol{C}^{*}\left(\boldsymbol{G}_{\mathbf{1}} \bullet \boldsymbol{G}_{\mathbf{2}} ; \boldsymbol{k}\right)=\boldsymbol{C}^{*}\left(\boldsymbol{G}_{\mathbf{1}}, \boldsymbol{k}\right)$, which produces the polynomial $\boldsymbol{H}^{*}\left(\boldsymbol{G}_{\mathbf{1}} ; \boldsymbol{x}\right)$.
(2) If $s, t \in V\left(G_{\mathbf{2}}\right)$, then $C^{*}\left(G_{\mathbf{1}} \bullet G_{\mathbf{2}} ; \boldsymbol{k}\right)=C^{*}\left(\boldsymbol{G}_{\mathbf{2}}, \boldsymbol{k}\right)$, which produces the polynomial $\boldsymbol{H}^{*}\left(\boldsymbol{G}_{2} ; \boldsymbol{x}\right)$.
(3) $\boldsymbol{s} \in \boldsymbol{V}\left(\boldsymbol{G}_{1}\right)$ and $\boldsymbol{t} \in \boldsymbol{V}\left(\boldsymbol{G}_{2}\right)$: In this case, any longest induced ($\left.\boldsymbol{s}, \boldsymbol{t}\right)$ path \boldsymbol{P} will contain the vertex \boldsymbol{w}. If \boldsymbol{P}^{\prime} is a longest $(\boldsymbol{s}, \boldsymbol{w})$-path and $\boldsymbol{P}^{\prime \prime}$ is a longest $(\boldsymbol{t}, \boldsymbol{w})$-path with $\left\langle\boldsymbol{V}\left(\boldsymbol{P}^{\prime}\right)\right\rangle=\boldsymbol{P}^{\prime}$ and $\left\langle\boldsymbol{V}\left(\boldsymbol{P}^{\prime \prime}\right)\right\rangle=\boldsymbol{P}^{\prime \prime}$, then

$$
\boldsymbol{V}(\boldsymbol{P})=\boldsymbol{V}\left(\boldsymbol{P}^{\prime}\right) \cup \boldsymbol{V}\left(\boldsymbol{P}^{\prime \prime}\right), \text { and }\langle\boldsymbol{V}(\boldsymbol{P})\rangle=\left\langle\boldsymbol{V}\left(\boldsymbol{P}^{\prime}\right) \cup \boldsymbol{V}\left(\boldsymbol{P}^{\prime \prime}\right)\right\rangle
$$

because no vertex of \boldsymbol{P}^{\prime}, other than \boldsymbol{w} is adjacent with a vertex of $\boldsymbol{P}^{\prime \prime}$, other than \boldsymbol{w}.
Therefore $\boldsymbol{P}^{\prime} \bullet \boldsymbol{P}^{\prime \prime}=\langle\boldsymbol{V}(\boldsymbol{P})\rangle=\boldsymbol{P}$.
Hence, $d_{G_{1} \bullet G_{2}}^{*}(s, t)=d_{G_{1}}^{*}(s, w)+d_{G_{2}}^{*}(t, w)$.
This produces the polynomial $\boldsymbol{H}^{*}\left(\boldsymbol{u}, \boldsymbol{G}_{\mathbf{1}} ; \boldsymbol{x}\right) . \boldsymbol{H}^{*}\left(\boldsymbol{v}, \boldsymbol{G}_{\mathbf{2}} ; \boldsymbol{x}\right)$. Notice that the polynomial $\boldsymbol{H}^{*}\left(\boldsymbol{u}, \boldsymbol{G}_{\mathbf{1}} ; \boldsymbol{x}\right)$ is counted twice in the Cases (1) and (3), and also $\boldsymbol{H}^{*}\left(\boldsymbol{v}, \boldsymbol{G}_{\mathbf{2}} ; \boldsymbol{x}\right)$ is counted twice in the Cases (2) and (3).
Now, adding the polynomials obtained from the cases (1), (2) and (3), we get the required result.

Theorem 3.2 If $\boldsymbol{G}_{\mathbf{1}}$ and $\boldsymbol{G}_{\mathbf{2}}$ are disjoint connected graphs, then
$H^{*}\left(G_{1}: G_{2}, x\right)=H^{*}\left(G_{1}, x\right)+H^{*}\left(G_{2}, x\right)+x . H^{*}\left(u, G_{1} ; x\right) . H^{*}\left(v, G_{2} ; x\right)$.
Proof. Let $\boldsymbol{s}, \boldsymbol{t}$ be any two distinct vertices of the compound graph $\boldsymbol{G}_{\mathbf{1}}: \boldsymbol{G}_{\mathbf{2}}$. We consider the following cases:
(1) If $s, t \in V\left(\boldsymbol{G}_{\mathbf{1}}\right)$, then we get the polynomial $\boldsymbol{H}^{*}\left(\boldsymbol{G}_{\mathbf{1}} ; \boldsymbol{x}\right)$.
(2) If $s, t \in V\left(\boldsymbol{G}_{2}\right)$, then we get the polynomial $\boldsymbol{H}^{*}\left(\boldsymbol{G}_{\mathbf{2}} ; \boldsymbol{x}\right)$.
(3) $\boldsymbol{s} \in \boldsymbol{V}\left(\boldsymbol{G}_{1}\right)$ and $\boldsymbol{t} \in \boldsymbol{V}\left(\boldsymbol{G}_{\mathbf{2}}\right)$: In this case, any longest ($\left.\boldsymbol{s}, \boldsymbol{t}\right)$-path will contains the edge $\boldsymbol{u} \boldsymbol{v}$, and as in the proof of Theorem $\mathbf{6}$ (Case $\mathbf{3}$), this produces the polynomial

$$
\text { x. } H^{*}\left(u, G_{1} ; x\right) . H^{*}\left(v, G_{2} ; x\right)
$$

Now, adding the polynomials obtained from the cases (1), (2) and (3), we get the required result.
Definition 3.3 Let $\boldsymbol{G}_{\mathbf{1}}$ and $\boldsymbol{G}_{\mathbf{2}}$ be disjoint connected graphs of orders $\boldsymbol{p}_{\mathbf{1}}$ and $\boldsymbol{p}_{\mathbf{2}}$, respectively. Let $\boldsymbol{G}_{2}^{(i)}$ be the $\boldsymbol{i}^{\text {th }}$ copy of $\boldsymbol{G}_{\mathbf{2}}$. The Corona $\boldsymbol{G}_{\mathbf{1}} \odot \boldsymbol{G}_{\mathbf{2}}$, is the graph $[\mathbf{1 3}]$ constructed from $\boldsymbol{G}_{\mathbf{1}} \cup \boldsymbol{p}_{\mathbf{1}} \boldsymbol{G}_{\mathbf{2}}$ with additional edges $\bigcup_{i=1}^{p_{1}}\left\{\boldsymbol{v}_{i} \boldsymbol{u}: \boldsymbol{u} \in \boldsymbol{V}\left(\boldsymbol{G}_{2}^{(i)}\right)\right\}$,
as depicted in Fig. 3.1, in which $\boldsymbol{V}\left(\boldsymbol{G}_{\mathbf{1}}\right)=\left\{\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{p_{1}}\right\}$.
It is clear that

$$
p\left(G_{1} \odot G_{2}\right)=p_{1}\left(1+p_{2}\right)=p
$$

and

$$
q\left(G_{1} \odot G_{2}\right)=q\left(G_{1}\right)+p_{1}\left(p_{2}+q\left(G_{2}\right)\right)=q
$$

Fig. 3.1 The Corona $\boldsymbol{G}_{\mathbf{1}} \odot \boldsymbol{G}_{\mathbf{2}}$

The next theorem computes the detour Hosoya polynomial of the corona $\boldsymbol{G}_{\mathbf{1}} \odot \boldsymbol{G}_{\mathbf{2}}$.

Theorem 3.4 Let $\boldsymbol{G}_{\mathbf{1}}$ and $\boldsymbol{G}_{\mathbf{2}}$ be two disjoint connected graphs, then

$$
\begin{aligned}
H^{*}\left(G_{1} \odot G_{2} ; x\right) & =\left(1+p_{2} x\right)^{2} H^{*}\left(G_{1} ; x\right)+p_{1} H^{*}\left(G_{2}, x\right) \\
& -p_{1} p_{2} x\left(1+p_{2} x\right) .
\end{aligned}
$$

Proof. Let $\boldsymbol{s}, \boldsymbol{t}$ be any two distinct vertices of $\boldsymbol{G}_{\mathbf{1}} \odot \boldsymbol{G}_{\mathbf{2}}$. We will consider the following cases:
Case 1. If $\boldsymbol{s}, \boldsymbol{t} \in \boldsymbol{V}\left(\boldsymbol{G}_{\mathbf{1}}\right)$, then we get the polynomial $\boldsymbol{H}^{*}\left(\boldsymbol{G}_{\mathbf{1}} ; \boldsymbol{x}\right)$.
Case 2. If $s, t \in V\left(G_{2}^{(i)}\right)$, for $i=1,2, \ldots, p_{1}$, then we get the polynomial $p_{1} H^{*}\left(G_{2} ; x\right)$.
Case 3. $s \in V_{2}^{(i)}$ and $t=v_{j}\left(\right.$ or $s=v_{i}$ and $\left.t \in V_{2}^{(j)}\right)$ for $i, j=1,2, \ldots, p_{1}$, then
(i) If $\boldsymbol{i}=\boldsymbol{j}$, then we get the polynomial $\boldsymbol{p}_{\mathbf{1}} \boldsymbol{p}_{\mathbf{2}} \boldsymbol{x}$.
(ii) If $i \neq j$, then we get the polynomial $2 p_{2} x\left[H^{*}\left(G_{1} ; x\right)-p_{1}\right]$.

Case 4. If $s \in V_{2}^{(i)}$ and $t \in V_{2}^{(j)}$ for $i, j=1,2, \ldots, p_{1}, i \neq j$, then we get the polynomial $p_{2}^{2} x^{2}\left[H^{*}\left(G_{1} ; x\right)-p_{1}\right]$.
Now, adding the polynomials obtained from the above cases and simplifying, we get the required result.

REFERENCES

[1] Abdullah, H. O. (2007). Hosoya polynomials of Steiner distance of Some graphs, Ph.D. Thesis, University of Salahaddin\Erbil, Erbil, Iraq.
[2] Ahmed, H. G. (2007). On Wiener Polynomials of n-Distance in Graphs, M.Sc. Thesis, Dohuk University, Dohuk, Iraq.
[3] Ali, A. A. and Sharaf, K. R. (1998). On Wiener polynomials of trees, Raf. J. Sc. Vol.9, No.1.
[4] Ali, A. M. (2005). Wiener polynomials of generalized distance in graphs, M. Sc. Thesis, Mosul University, Mosul, Iraq.
[5] Ali, A. A. and Ali, A. M. (2006). Wiener polynomials of the generalized distance for some special graphs, Rah. J. Com. Sc. And Maths., Vol.3, No.2, pp.103-120.
[6] Ali, A. A. and Saeed, W. A. (2006). Wiener polynomials of the strong product and semi-strong product, Raf. J. Sc. Vol.11, No.(3).
[7] Ali, A. A. and Saeed, W. A. (2006). Wiener polynomials of Steiner distance of graphs, J. of Applied Sciences, Vol.8, No.2.
[8] Ali, A. A. and Saeed, W. A. (2006). Wiener polynomials of the tensor product, Raf. J. Sc. Vol.17, No.1.
[9] Buckly, F. and Harary, F. (1990). Distance in Graphs, AddisonWesley, Redwood, California. U. S. A.
[10] Chartrand, G.; Johns, G. L. and Tian S. (1993). Detour distance in graphs, Annals of Discrete Mathematics, Vol. 55, pp. 127-136.
[11] Gutman, I. (1993). Some properties of the Wiener polynomial, Graph Theory Notes of New York, Vol.XXV, pp.13-18.
[12] Harary, F. (1969). Graph Theory, Addison-Wesley, Reading, Mass.
[13] Hosoya, H. (1988). On some counting polynomials in Chemistry, Discrete Applied Mathematics, Vol.19, pp.239-257.
[14] Saeed, W. (1999). Wiener polynomials of graphs, Ph.D. Thesis, University of Mosul.
[15] Sagan, B. E., Yeh, Y. N. and Zhang, P. (1996). The Wiener polynomial of a graph, International J. of Quantum Chemistry, Vol.60, pp.959-969.

