On $S\pi$ – Weakly Regular Rings, II

Shahla M. Khalil moayadshahla@gmail.com College of Computer Sciences and Mathematics University of Mosul

Received on: 30/9/2009

Accepted on:28/12/2009

ABSTRACT

The main purpose of this paper is to study right(left) $S\pi$ – Weakly regular rings. also we give some properties of $S\pi$ – Weakly regular rings, and the connection between such rings and CS-rings, MGP-rings and SSGP-rings.

Keywords: $S\pi$ – Weakly regular rings, CS-rings, MGP-rings, SSGP-rings.

 $S\pi - -$ الحلقات المنتظمة الضعيفة من النمط

شهلة مؤيد خليل

كلية علوم الحاسوب والرياضيات

جامعة الموصل

تاريخ قبول البحث:2009/9/30

تاريخ استلام البحث:2009/12/28

الملخص

الهدف الرئيسي من هذا البحث هو دراسة الحلقات المنتظمة الضعيفة من النمط– $S\pi$. بالإضافة إلى بعض الخواص الأساسية لهذه الحلقات وعلاقاتها مع الحلقات الأخرى مثل الحلقات من النمط –CS ، الحلقات من النمط –MGP والحلقات من النمط –SSGP . الكلمات المفتاحية: الحلقات المنتظمة الضعيفة من النمط– $S\pi$ ، الحلقات من النمط –CS ، الحلقات من النمط –MGP ،الحلقات من النمط –SSGP .

1- Introduction

Throughout this paper. R is an associative ring with identity. A ring R is said to be right(left) **S-weakly regular ring** if for each $a \in R$, $a \in aRa^2R(a \in Ra^2Ra)$.

This concept was introduced by W.B. Vasantha kandasamy [7]. As a generalization of this concept the authors in [3] defined $S\pi$ – Weakly regular ring that is a ring such that for each $a \in R$, there exists a positive integer n, $a^n \in a^n R a^{2n} R (a^n \in R a^{2n} R a^n)$. In the present work we develop further properties of $S\pi$ – Weakly regular rings, and we give the connection of $S\pi$ – Weakly regular rings.

Recall that:-

- 1- An ideal *I* of a ring *R* is called **right(left) GP- ideal** if for every $a \in R$, there exists $b \in R$ and a positive integer *n* such that $a^n = a^n b(a^n = ba^n)$. [6]
- 2- A ring *R* is said to be a **right MGP-ring** if and only if every maximal right ideal is left GP-ideal.[6]
- 3- R is called **reduced** if it has no non nilpotent elements.
- 4- According to cohn [1], a ring R is called **reversible** if ab = 0 implies ba = 0 for $a, b \in R$. It is easy to see that R is reversible if and only if right (left) annihilator of a in R is two sided ideal.
- 5- A ring R is said to be **right SSGP-ring** if every simple singular right R-module is GP- injective [4].
- 6- J(R) denote the Jacobson radical.

2- $S\pi$ – Weakly regular rings

In this section we give some of basic properties, as well as a connection between CS-rings, MGP-rings, SSGP-rings and $S\pi$ -Weakly regular rings.

begins with the following definition .

Definition 2.1:[3]

R is called **right (left)** $S\pi$ -Weakly regular ring if for each $a \in R$, there exists a positive integer n = n(a) depending on *a* such that $a^n \in a^n R a^{2n} R (a^n \in R a^{2n} R a^n)$. *R* is called $S\pi$ -Weakly regular ring if it is both right and left $S\pi$ -Weakly regular ring.

Theorem2.2:

Let R be $S\pi$ -Weakly regular ring and $a^n R = R a^n$ with $r(a^n) \subseteq r(a)$ for every $a \in R$ and a positive integer n, then J(R) = (0).

Proof:

Let $0 \neq a \in J(R)$, if $aR + r(a) \neq R$, then there exists a maximal right ideal M containing aR + r(a), since R is $S\pi$ -Weakly regular ring,

then there exists $b, c \in R$ and a positive integer *n* such that $a^n = a^n b a^{2n} c$, so $a^n (1-ba^{2n}c) = 0$ implies that $(1-ba^{2n}c) \in r(a^n) \subseteq r(a) \subseteq M$ so $1 \in M$ a contradiction. Therefore aR + r(a) = R, in particular ab + d = 1 for some $b \in R, d \in r(a)$, so $a^2b = a$ implies a(1-ab) = 0 since $a \in J(R)$, so there exists an invertible element *v* in R such that (1-ab)v = 1 multiply in the left by *a*, $(a-a^2b)v = a$ implies a = 0. Therefore J(R) = (0).

Theorem 2.3:

Let *R* be a ring with out identity and with out divisors of zero. Then *R* is $S\pi$ -Weakly regular ring if and only if for every $a \in R$ there exists $b, c \in R$ and a positive integer *n* with $a^n = a^n b a^{2n} c$.

Proof:

Given a ring R with out identity and with out divisors of zero. Let R be $S\pi$ -Weakly regular ring. Then for every $a \in R$ we have $a^n \in a^n Ra^{2n}R$, thus $a^n = a^n ba^{2n}c$ for some $b, c \in R$.

Conversely, if $a^n = a^n b a^{2n} c$ for every $a \in R$, and a positive integer *n* we have obviously *R* to the $S\pi$ – Weakly regular ring and given *R* has no identity and zero divisors.

The following result is a connection between MGP- ring and $S\pi$ – Weakly regular ring by adding reversible condition.

Theorem 2.4:

Let R be a right MGP-ring and reversible ring. Then R is a right $S\pi$ -Weakly regular ring.

Proof:

Let *R* be a right MGP- ring, to prove R is a right $S\pi$ -Weakly regular ring, let $Ra^{2n}R + r(a^n) = R$, if not then there exists a maximal right ideal *M* containing $Ra^{2n}R + r(a^n)$ such that $Ra^{2n}R + r(a^n) \subseteq M$, since R is a right MGP- ring, then every maximal right ideal of R is left GP-ideal. Then for all $a \in M$, there exists $b \in M$ and a positive integer *n* such that $a^n = ba^n$ then $a^n - ba^n = 0$, implies $(1-b)a^n = 0$ and $(1-b) \in l(a^n) = r(a^n) \subseteq M$ (*R* is reversible ring), hence $1 \in M$, a contradiction, hence $Ra^{2n}R + r(a^n) = R$. Then $ba^{2n}c + d = 1$, for some

147

 $b, c \in R$ and $d \in r(a^n)$ implies that $a^n b a^{2n} c + a^n d = a^n$. Therefore $a^n \in a^n R a^{2n} R$, so R is a right $S\pi$ -Weakly regular ring.

Example:

Let Z_{12} be the ring of integers module 12, then the maximal ideals, $I = \{o,3,6,9\}$, $J = \{o,2,4,6,8,10\}$ are GP-ideal, hence Z_{12} is a right MGPring and a right $S\pi$ – Weakly regular ring.

Definition 2.5:[2]

A ring R is said to be **right (left)** CS- ring if every non zero right (left) ideal is essential in a direct summand.

The next result gives a sufficient condition for CS- ring to be $S\pi$ -Weakly regular ring.

Theorem 2.6:

Let *R* be a reversible right CS- ring and $r(a^{2n}) \subseteq r(a^n)$ for every $a \in R$ and a positive integer *n*. Then *R* is a $S\pi$ -Weakly regular ring.

Proof:

Let $0 \neq a \in R$ such that $Ra^{2n}R + r(a^n) = R$, if not then there exists a maximal right ideal M containing $Ra^{2n}R + r(a^n)$ since M is a direct summand, there exists K right ideal such that $M \oplus K = R$, $Ra^{2n}R+r(a^n)\cap K=0,$ this meaning which implies that $Ra^{2n}RK \subseteq MK \subseteq M \cap K = 0$, then $K \in r(a^{2n}) \subseteq r(a^n)$, hence $K \subset r(a^n) \subset M$ but $M \cap K = 0$, contradiction, if $Ka \neq 0$. $Ka \subseteq M \cap K = 0$ implies that Ka = 0, contradiction, hence $Ra^{2n}R + r(a^n) = R$, in particular $ra^{2n}s + t = 1$, where $r, s \in R$ and $t \in r(a^n)$, so $ra^{2n}sa^n + ta^n = a^n$ hencle $ta^n = 0$ (since $t \in r(a^n) = l(a^n)$) R is reversible ring), implies $ra^{2n}sa^n = a^n$, then $a^n \in Ra^{2n}Ra^n$ as well as $a^n r a^{2n} s + a^n t = a^n$, so $a^n \in a^n R a^{2n} R$. Therefore R is a $S\pi$ -Weakly regular ring.

The following result is due to S.B. Nam [4].

Lemma 2.7:[4]

Let R be a SSGP-ring and $l(a) \subseteq r(a)$ for every $a \in R$. Then R is a reduced ring.

Proposition 2.8:

Let R be a SSGP- ring and $l(a) \subseteq r(a)$ for every $a \in R$. Then R is $S\pi$ – Weakly regular ring.

Proof:

Assume that *R* is SSGP- ring and $l(a) \subseteq r(a)$ for every $a \in R$, then by Lemma 2.8, R is reduced ring. We will show that $Ra^{2n}R + r(a^n) = R$, for any $a \in R$ and a positive integer *n*. Suppose that $Ra^{2n}R + r(a^n) \neq R$. Then there exists a maximal right ideal *M* of R containing $Ra^{2n}R + r(a^n) \neq R$. Thus R/M is GP- injective, so any R- homomorphism of $a^{2n}R \to R/M$ extends to one of R into R/M. Let $f: a^{2n}R \to R/M$ be defined by $f(a^{2n}t) = t + M$, for all $t \in R$. Since R is reduced ring, then *f* is a well-defined R- homomorphism. Now, R/M is GP-injective. So there exists $c \in R$ such that $1+M = f(a^{2n}) = ca^{2n} + M$. Hence $1-ca^{2n} \in M$ and so $1 \in M$, which is a contradiction. Therefore $Ra^{2n}R + r(a^n) = R$. In particular, $1 = ba^{2n}d + x$ for some $b, d \in R$ and $x \in r(a^n)$. Therefore $a^n = a^n ba^{2n}d$. So $a^n R = a^n Ra^{2n}R$ and hence R is $S\pi$ -Weakly regular ring.

<u>REFERENCES</u>

- [1] Cohn, P.M. (1999), "Reversible rings", Bull. London Math. Soc. 31, PP. 641-648.
- [2] Gonca, G. (2000), " Strongly prime ideals in CS-rings", Turk J. Math. 24, pp. 233-238.
- [3] Mahmood, R.D. and Abdul-Jabbar A.M. (2007), " $S\pi$ -Weakly regular ring", Raf. J. of Comp. Science and Math. Vol.4, No.2, pp.25-32
- [4] Nam, S.B. (1999), " A note on simple singular GP-injective modules", Kangweon- Kyungki. Math. J. Vo.7, No.2, PP.215-218.
- [5] Odabas, A.(2009), " S- weakly regularity of group algebras with GAP", International Mathematical Forum, 4,no.47, pp.2317-2325.
- [6] Shuker, N.H. and Mahmood, R.D.(2000), " On generalization of pure ideal", J. Edu. and Science, vol.(43), pp.86-90.
- [7] Vasantha Kandasamy, W.B. (1993), "S- weakly regular group rings", Arch. Math. (Brno) Tomus 29, pp.39-41.