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ABSTRACT 

The basis number, b(G) ,of a graph G is defined to be the smallest 

positive integer  k such that G has a k-fold basis for its cycle space. We 

investigate the basis number of semi-strong product of 2K  with a path, a 

cycle, a star, a wheel and a complete graph. 
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 الخاصة اتبيانعض المع ب K2للجداء شبه المتين لبيان ساس حول العدد الأ

 يكمروطوبيا غسان 

 جامعة الموصل ، كلية علوم الحاسوب والرياضيات
 24/06/2009القبول:  اريخت                                       23/02/2009تاريخ الاستلام: 

 الملخص

 kعلى انه العدد الصحيح الموجب الاصغر   G  لبيان b(G)يعرف العدد الاساس، 
لفضاء داراته .في هذا البحث قمنا بحساب العدد الاساس للجداء  k-له قاعدة ذات ثنيةG بحيث ان 

 والبيان التام. مع كل من الدرب والدارة والنجمة والعجلة  2Kشبه المتين لبيان 
 العدد الأساس، فضاء الدارات. الكلمات المفتاحية: 

1-Introduction.  

In recent years, there was a grawing literature on the basis number of 

graphs. We refer the readers to the papers [1],[2],[3],[4],[5] and [8]. 

Throughout this paper, we consider only finite, undirected and simple 

graphs. Our terminology and notations will be standard except as indicated. 

For undefined terms, see [7] and [11]. 

Let G be a connected graph, and let e1, e2,……, eq be an ordering of the edges. 

Then any subset S of edges corresponds to a (0,1)-vector (a1, a2,….., aq) in the 

usual way, with ai =1 if ei S and ai =0 otherwise, for i=1,2, …,q. These 

vectors form a q-dimensional vector space, denoted by (Z2)
q over the field 

Z2. 

The vectors in (Z2)
q which correspond to the cycles in G generate a 

subspace called the cycle space of G, and denoted by (G). It is well known 

that 

dim (G)=  (G)=q- p+ k, 

where p is the number of vertices, k is the number of connected components 

and (G) is the cyclomatic number of G. A basis for (G) is called h-fold if 

each edge of G occurs in at most h of the cycles in the basis. The basis 
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number of G, denoted by b(G), is the smallest positive integer h such that 

(G) has an h-fold basis, and such a basis is called a required basis of G and 

denoted by Br(G). If B is a basis for (G) and e is an edge of G, then the fold 

of e in B, denoted by fB(e) is defined to the number of cycles in B containing 

e. The first important result of the basis number occured in 1937 when 

MacLane [9] proved that a graph G is planar if and only if b(G)≤2.  

Definition: The semi-strong product of two disjoint graphs G=(V1,E1) 

and H=(V2,E2) is the graph G*H with vertex set V1V2 in which (v1,v2) is 

joined to (u1,u2) whenever [v1u1E1 and v2u2E2] or [v1u1E1 and 

v2=u2].Note that the semi-strong product of graphs is neither associative 

nor commutative; so G*H and H*G are not isomorphic in general. It is clear 

that 

),(deg * vuHG = )(deg uG . )(deg vH + )(deg uG  

where )(deg uG  is the degree of vertex u in G. Thus the number of edges in 

G*H is  ,2 1221 qpqq + where ip and 2,1, =iqi  are the number of vertices and 

edges respectively in G and H. Moreover G*H contains as subgraphs  

2V copies of G; for each vertex v 2V  there is a v-copy vG of G with vertex 

set{(x,v):xV1}. It is clear that 
2Vv

vG



 is a subgraph [7] of G*H. 

    The basis number of the complete graphs, complete bipartite graphs and 

n-cube are determined in[10] and [6]. The basis number of the cartesian 

product of some graphs is determined in [2]. 

     The purpose of this paper is to determine the basis number of the semi-

strong product of 2K with some special graphs. It is proved that 

b( 2K *Pn) = b(Pn* 2K ) = 2;   n 3, 

                              2,   for even n 4, 

b( 2K *Cn) =   

                              3,   for odd n 3, 

b(Cn* 2K ) = 3,   n4, 

b( 2K *Sn) = b(Sn* 2K ) = 2;   n3, 

b(Wn* 2K ) = 3,   n 4, 

and 

 

                                     3,   for n = 3,4,5 and 6 

b( 2K *Kn) = 

                                      4,   for n 7 
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2- The basis number of 2K *Pn and Pn* 2K . 

Let the vertex sets of path Pn and the cycle Cn be the addition group 

Zn of positive integers residue modulo n. Let the path Pn be 0,1,2…,n-1 and 

the cycle Cn be 0,1,2,…,(n-1)0.It is clear that if n=2,then 2K *P2 is the 4-

cycle (x,u)(y,u)(x,v)(y,v)(x,u), therefore b( 2K *P2)=1. 

It is not difficult to see that 2K *Pn , n 3 can be embedded in a 

plane[7].Therefore, b( 2K *Pn) = 2, for n 3. 

Theorem 1. For every positive integers n 3, b( 2K *Pn)= b(Pn*K 2 )=2. 

Proof: One can observe that the graph 2K *Pn , n 3 can be embedded in the 

plane, therefore by MacLanes theorem[9],b( 2K *Pn)=2.Similarly,the graph 

Pn* 2K , n 3 is planar graph (observe that Pn* 2K  is not isomorphic to 

2K *Pn ),therefore by MacLanes Theorem[9], b(Pn* 2K ) = 2. 

3-The basis number of K2*Cn and Cn*K2 . 

It can be shown that for every even integer n 4,the graph K2*Cn is 

cubic having 2n vertices and can be embedded in a plane, therefore 

 b(K2*Cn) = 2,for every even n 4. 

Theorem 2. For every even integer n 4,we have b(K2*Cn) = 2. 

Proof. Since the graph K2*Cn, n 4 is planar, therefore by MacLanes 

theorem[9], we have b(K2*Cn) = 2. 

Theorem 3. For every odd integer n 3,we have b( 2K *Cn)=3. 

Proof. One can easily show that the graph K2*Cn, for odd 

n 3 contains subgraph homeomorphic to K3,3. Thus the graph K2*Cn, is non 

planar and so by MacLanes theorem [9], b(K2*Cn)   3. To complete the 

proof we show a 3-fold basis for ( K2*Cn). Consider the following set of 

cycles: 

B(K2*Cn) = ST 

Where, 

S = {(0,j)(1,j+1)(0,j+1)(1,j)(0,j)}:  j=0,1,2,…,n-1 mod(n)},  

and 

T = {(0,0)(1,1)(0,2)(1,3)…(0,n-1)(1,n-1)(0,0)}. 

It is clear that the cycles S T-{ C},where 

C ={(0,n-1)(1,0)(0,0)(1,n-1)(0,n-1)} forms boundaries of planar subgraph F 

of K2*Cn(see Figure).Therefore 
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ST-{ C} is independent set of cycles. On the other hand  the cycle C  

contains the edge (0,n-1)(1,0) which is not present in any cycle of S T-{ 

C}.Therefore, ST is independent set of cycles. Since 

B(K2*Cn) = n+1= ( K2*Cn),               

then B(K2*Cn) is a basis for ( K2*Cn). 

To find the fold of the basis B(K2*Cn). It is clear that  

fS(e) 2,   fT(e) 1, for each edge e E(K2*Cn)- { C}, 

fS(e) = 1,   fT(e) = 1, for each edge e { C}, 

where 

C = {(0,n-1)(1,0)(0,0)(1,n-1)(0,n-1)}. 

Thus, the fold in B(K2*Cn) of every edge of K2*Cn is not more than 3. 

Hence B(K2*Cn) is a 3-fold basis. This completes the proof of the theorem.  

 

 

 

 

 

 

 

 

 

 

 

Figure : The planar subgraph F of K2*C5 

Now, we consider the semi-strong product Cn*K2 .It is easy to show 

that C3*K2 , is  planar graph ,therefore b(C3*K2) = 2. 

Theorem 4. For every integers n 4 ,we have b(Cn*K2) = 3. 

Proof. One can easily show that the graph Cn*K2 , n 4  contains subgraph 

homeomorphic to complete bipartite graph K3,3 [7].Thus 

Cn*K2 is nonplanar and so by MacLanes theorem[9], b(Cn*K2)  3 for n 4 . 

To complete the proof of the theorem we show a 3-fold basis for ( Cn*K2). 

Consider the set of cycles in Cn*K2 , B(Cn*K2)=ADV 

Where 

A = { ia =(i,0)(i+1,1)(i,1)(i+1,0)(i,0): i=0,1,2,…,n-1(mod n) },  

D = { id = (i,0)(i+1,0)(i+2,0)(i+1,1)(i,0): i=0,1,2,…,n-2(mod n) }, 

And 
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           (0,0)(1,1)(2,0)(3,1)(4,0)…(n-1,1)(0,0), 

           ( 0,1)(1,0)(2,1)(3,0)(4,1)…(n-1,0)(0,1):   if n odd          

V= 
             

           (0,0)(1,1)(2,0)(3,1)…(n-1,0)(0,0), 

           (0,1)(1,0)(2,1)(3,0)…(n-1,1)(0,1):     if n even   
              

Since 

)*( 2KCB n  = n+(n-1)+2 

                  = 2n+1 

                 =  ( Cn*K2) 

 It is clear that the cycles A,D and V are independent since they are 

boundaries of planar graph. Also, AD is independent set of cycles since if 

ia  is any cycle generated from cycles of A, then ia  contains an edge 

(i+1,1)(i,1) For each i=0,1,2,…,n-1(mod n) which is not present in any cycle 

of D. Moreover if ic  is any cycle generated from cycles of AD, then  ic  

contains an edge of the form (i,0)(i+1,0) for each i=0,1,2,…,n-2   which is 

not present in any cycle of V, therefore ADV is independent set of 

cycles and so it is a basis for ( Cn*K2). 

To find the fold of B(Cn*K2),partition the edge set E(Cn*K2) into 

LMN, where 

L = { i,0)(i+1,1),(i,1)(i+1,0): i=0,1,2,…,n-1(mod n) },  

M = {(0,j)(n-1,j):j=0,1}, 

and 

N = { i,j)(i+1,j): i=0,1,2,…,n-2(mod n) and j=0,1}. 

Then one may verify that 

fA(e) = 1,   fD(e) 1,   fV(e) 1,  for each edge eL; 

fA(e) = 1,   fD(e) 1,   fV(e) 1,  for each edge eM; 

fA(e) = 1,   fD(e) 2   fV(e)= 0,  for each edge eN. 

Thus the fold in B(Cn*K2) of every edge of Cn*K2 is not more than 3. Hence 

B(Cn*K2) is a 3-fold basis for ( Cn*K2). The proof is complete. 

4. The basis number of  K2*Sn and Sn*K2 . 

In this section we consider the semi-strong product of  K2 with a star 

Sn which is isomorphic to complete bipartite graph K1,n-1 .Denote the vertex 

set of the star Sn by 0123…(n-1), where 1)0(deg −= nSn ,and all other 

vertices are of degree 1.Since S2=P2 ,therefore the graph K2*S2  is the cycle 

{(0,0)(1,1)(0,1)(1,0)(0,0)},therefore b(K2*S2)=1. 

Similarly , b(S2*K2)=1. On the other hand, for  n 3,the graph K2*Sn  is 

planar graph  ,therefore b(K2*Sn)=2.Similarly, for  n 3,the graph Sn*K2  is 

planar graph  ,therefore b(Sn*K2)=2.  
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5. The basis number of  Wn*K2 and K2*Kn  

In this section we consider the semi-strong product of a wheel with  

K2, where  Wn is the join of the cycle 123…(n-1)1 with the vertex 0. That is, 

Wn= Cn-1+ K1 . 

Theorem 5. For every integers n 4 ,we have b(Wn*K2) = 3. 

Proof. One can easily show that the graph Wn*K2 , n 4  contains subgraph 

homeomorphic to complete bipartite graph K3,3 .Thus Wn*K2 is nonplanar 

and so by  MacLanes theorem[9], b(Wn*K2)  3. To complete the proof of 

the theorem we show a 3-fold basis for ( Wn*K2).Consider the set of cycles 

in Wn*K2 : 

B( Wn*K2) = 
1

0

)(

=j

j
nr WB  AD EC , 

Where )( j

nr WB  is a required basis for a j-copy, j

nW .That is, 

)( j
nr WB  = {(0,j)(i,j)(i+1,j)(0,j): i=1,2,…,n-1 mod(n-1) and j=0,1}, 

A = {(i,0)(i+1,1)(i,1)(i+1,0)(i,0): i=1,2,…,n-1 mod(n-1) },   

D = {(0,0)(i,1)(0,1)(i,0)(0,0): i=1,2,…,n-1 },  

E = {(i,1)(i+1,1)(i+2,0)(i+1,0)(i,1), (i,0)(i+1,0)(i+2,1)(i+1,1)(i,0):  

        i=0,1,2,…,n-3 }, 

 and       

C = {(0,0)(1,1)(n-1,1)(0,0)}.  

It is clear that 

)*( mn LWB  = 2(n-1)+(n-1)+(n-1)+2(n-2)+1 

         = 6n-7=  ( Wn*K2).                

It is clear that 
1

0

)(

=j

j
nr WB  is a 2-fold required basis of j

nW . Also, 

A,D,E and C are independent set of cycles because they are boundaries of 

planar subgraph of Wn*K2. Moreover, AD is independent since it is edge-

disjoint cycles. On the other hand, if ic is any cycle generated from cycles in 

AD, then ic  belong to A or D since AD is edge-disjoint cycles, hence 

if ic A, then cycle ic  contains an edge of the form (i,0)(i+1,1), for each  

i=1,2,…,n-1 mod(n-1) ,which is not present in any cycle of E; if ic D, then 

there is no edge in common with the cycles of E. Therefore, AD E is 

independent set of cycles. Furthermore if ia  is any cycle generated from 

cycles in AD E, then ia  contains an edge of the form (i,0)(i+1,1), 

(i,1)(i+1,0), (0,0)(i+1,1) or (0,1)(i+1,0) for each  
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 i = 0,1,2,…,n-2  which is not present in any cycle of
1

0

)(

=j

j
nr WB  ,therefore 


1

0

)(

=j

j
nr WB  ADE  is independent set of cycles. To prove that C is 

independent of 
1

0

)(

=j

j
nr WB  ADE . Suppose that C is a sum modulo 2 of 

cycles in  
1

0

)(

=j

j
nr WB  ADE. Then C=

=

m

j

jd

1

)2(mod ,where jd  is a linear 

combination of cycles in 
1

0

)(

=j

j
nr WB  ADE . Thus 

=

=

m

i

idCd

2

1  (mod 

2).Therefore 

 ),(...321 DAEdddCd m =  

where   is the ring sum. But 

E(AD)= {(i,0)(i+1,1)}  {(i,0)(i+1,0)}  {(0,0)(i,1)} 

which is an edge set of a forest. This contradicts the fact that 1d  is a cycle or 

edge disjoint union cycles. Thus (
1

0

)(

=j

j
nr WB ADE) C, is a basis for 

( Wn*K2). 

To find the fold of B(Wn*K2), partition the edge set of Wn*K2 into 

 

 

 

3Q = {(0,0)(i,1), (0,1)(i,1): i=1,2,…,n-1 }, 

and 

4Q = E(Wn*K2)-{   321 QQQ }.  

Therefore, if  G=
1

0

)(

=j

j
nr WB , then 

fG(e) =  1,   fA(e) = 1,   fD(e) = 0,  fEUC (e)   1,  for each edge  e 1Q , 

fG(e) = 1,   fA(e) = 0,   fD(e) = 1, fEUC (e) = 0,  for each edge  e 2Q , 

fG(e) = 0,   fA(e) = 0,   fD(e) = 1, fEUC (e)   1,  for each edge  e 3Q , 

fG(e) =  0,   fA(e)   1,   fD(e) = 0, fEUC (e)   2,  for each edge  e 4Q . 

Thus B(Wn*K2) is a 3-fold basis for ( Wn*K2). The proof is complete.  

 Now, consider the basis number of K2*Kn . 

),(

1

0

11 
=

−=

j

j
nCEQ ),(

1

0

2 
=

=

j

j
nSEQ
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It is clear that the graph K2*Kn  is a complete bipartite graph Kn,n . 

Schmeichel [10] proved that b(Km,n ) = 4 for m,n 5 except for the 

following: K5,r and K6,s  where r=5,6,7,8  and s=6,7,8,10 . Also, Alsardary 

and Ali [4] proved that b(K5,r ) = b(K6,s  ) = 3 for  r=5,6,7,8  and s=6,7,8,10 . 

Therefore the following proposition follows from [4] and [10]. 

                                    

                                            3,  for  n=3,4,5 and 6 
 

Proposition. b(K2*Kn)=    
                                4,  for  n 7. 
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