On The Basis Number Of Semi-Strong Product Of K_{2} With Some Special Graphs
 Ghassan T. Marougi
 College of Computer Sciences and Mathematics
 University of Mosul, Iraq

Received on:23/2/2009
Accepted on:24/6/2009
The basis number, $b(G)$,of a graph G is defined to be the smallest positive integer k such that G has a k-fold basis for its cycle space. We investigate the basis number of semi-strong product of K_{2} with a path, a cycle, a star, a wheel and a complete graph
Keywords: Basis number, Cycle space.

$$
\begin{aligned}
& \text { حول العدد الأساس للجداء شبه المتين لبيان K2 مع بعض البيانات الخاصة } \\
& \text { غسان طوبيا مروكي } \\
& \text { كلية علوم الحاسوب والرياضيات، جامعة الموصل }
\end{aligned}
$$

تاريخ القبول: 2009/06/24
تاريخ الاستّلام: 2009/02/23

الملخص
k
 بحيث ان G له قاعدة ذات ثية-k لنضاء داراته .في هذا البحث قمنا بحساب العدد الاساس للجداء

شبه المتين لبيان ${ }_{2}$ مع كل من الارب والدارة والنجمة والعجلة والبيان التام. الكلمات المفتاحية: العدد الأساس، فضـاء الارارات.

1-Introduction.

In recent years, there was a grawing literature on the basis number of graphs. We refer the readers to the papers [1],[2],[3],[4],[5] and [8]. Throughout this paper, we consider only finite, undirected and simple graphs. Our terminology and notations will be standard except as indicated. For undefined terms, see [7] and [11].
Let G be a connected graph, and let $e_{1}, e_{2}, \ldots \ldots, e_{q}$ be an ordering of the edges. Then any subset S of edges corresponds to a (0,1)-vector $\left(a_{1}, a_{2}, \ldots ., a_{q}\right)$ in the usual way, with $a_{i}=1$ if $e_{i} \in S$ and $a_{i}=0$ otherwise, for $i=1,2, \ldots, q$. These vectors form a q-dimensional vector space, denoted by $\left(Z_{2}\right)^{q}$ over the field Z.

The vectors in $\left(Z_{2}\right)^{q}$ which correspond to the cycles in G generate a subspace called the cycle space of G, and denoted by $\xi(G)$. It is well known that

$$
\operatorname{dim} \xi(G)=\gamma(G)=q-p+k,
$$

where p is the number of vertices, k is the number of connected components and $\gamma(G)$ is the cyclomatic number of G. A basis for $\xi(G)$ is called \underline{h}-fold if each edge of G occurs in at most h of the cycles in the basis. The basis
number of G, denoted by $b(G)$, is the smallest positive integer h such that $\xi(G)$ has an h-fold basis, and such a basis is called a required basis of G and denoted by $B_{r}(G)$. If B is a basis for $\xi(G)$ and e is an edge of G, then the fold of e in B, denoted by $f_{B}(e)$ is defined to the number of cycles in B containing e. The first important result of the basis number occured in 1937 when MacLane [9] proved that a graph G is planar if and only if $b(G) \leq 2$.
Definition: The semi-strong product of two disjoint graphs $\mathrm{G}=\left(V_{1, E_{1}}\right)$ and $\mathrm{H}=\left(V_{2}, E_{2}\right)$ is the graph $\mathrm{G}^{*} \mathrm{H}$ with vertex set $V_{1} \times V_{2}$ in which $\left(v_{l, v_{2}}\right)$ is joined to $\left(u_{1}, u_{2}\right)$ whenever $\left[v_{1} u_{1} \in E_{1}\right.$ and $\left.v_{2} u_{2} \in E_{2}\right]$ or $\left[v_{1} u_{1} \in E_{1}\right.$ and $\left.v_{2}=u_{2}\right]$.Note that the semi-strong product of graphs is neither associative nor commutative; so $\mathrm{G}^{*} \mathrm{H}$ and $\mathrm{H}^{*} \mathrm{G}$ are not isomorphic in general. It is clear that

$$
\operatorname{deg}_{G^{*} H}(u, v)=\operatorname{deg}_{G}(u) \cdot \operatorname{deg}_{H}(v)+\operatorname{deg}_{G}(u)
$$

where $\operatorname{deg}_{G}(u)$ is the degree of vertex u in G . Thus the number of edges in $\mathrm{G}^{*} \mathrm{H}$ is $2 q_{1} q_{2}+p_{2} q_{1}$, where p_{i} and $q_{i}, i=1,2$ are the number of vertices and edges respectively in G and H. Moreover $G^{*} H$ contains as subgraphs V_{2} copies of G ; for each vertex $\mathrm{v} \in V_{2}$ there is a v-copy G_{v} of G with vertex $\operatorname{set}\left\{(\mathrm{x}, \mathrm{v}): \mathrm{x} \in V_{l}\right\}$. It is clear that $\bigcup_{v \in V_{2}} G_{v}$ is a subgraph [7] of $\mathrm{G}^{*} \mathrm{H}$.

The basis number of the complete graphs, complete bipartite graphs and n-cube are determined in[10] and [6]. The basis number of the cartesian product of some graphs is determined in [2].

The purpose of this paper is to determine the basis number of the semistrong product of K_{2} with some special graphs. It is proved that

$$
\begin{aligned}
& \mathrm{b}\left(K_{2} * P_{n}\right)=\mathrm{b}\left(P_{n} * K_{2}\right)=2 ; \mathrm{n} \geq 3, \\
& \mathrm{~b}\left(K_{2} * C_{n}\right)=\left\{\begin{array}{l}
2, \text { for even } \mathrm{n} \geq 4, \\
3,
\end{array}, \text { for odd } \mathrm{n} \geq 3,\right. \\
& \mathrm{b}\left(C_{n} * K_{2}\right)=3, \quad \mathrm{n} \geq 4, \\
& \mathrm{~b}\left(K_{2} * S_{n}\right)=\mathrm{b}\left(S_{n} * K_{2}\right)=2 ; \mathrm{n} \geq 3, \\
& \mathrm{~b}\left(W_{n} * K_{2}\right)=3, \quad \mathrm{n} \geq 4,
\end{aligned}
$$

and

$$
\mathrm{b}\left(K_{2} * K_{n}\right)= \begin{cases}3, & \text { for } \mathrm{n}=3,4,5 \text { and } 6 \\ 4, & \text { for } \mathrm{n} \geq 7\end{cases}
$$

2- The basis number of $K_{2} * P_{n}$ and $P_{n *} K_{2}$.

Let the vertex sets of path P_{n} and the cycle C_{n} be the addition group Z_{n} of positive integers residue modulo n. Let the path P_{n} be $0,1,2 \ldots, n-1$ and the cycle C_{n} be $0,1,2, \ldots,(n-1) 0$.It is clear that if $\mathrm{n}=2$, then $K_{2} * P_{2}$ is the 4cycle $(\mathrm{x}, \mathrm{u})(\mathrm{y}, \mathrm{u})(\mathrm{x}, \mathrm{v})(\mathrm{y}, \mathrm{v})(\mathrm{x}, \mathrm{u})$, therefore $\mathrm{b}\left(K_{2} * P_{2}\right)=1$.
It is not difficult to see that $K_{2} * P_{n}, \mathrm{n} \geq 3$ can be embedded in a plane[7]. Therefore, $\mathrm{b}\left(K_{2} * P_{n}\right)=2$, for $\mathrm{n} \geq 3$.

Theorem 1. For every positive integers $\mathrm{n} \geq 3, \mathrm{~b}\left(K_{2} * P_{n}\right)=\mathrm{b}\left(P_{n} * K_{2}\right)=2$.
Proof: One can observe that the graph $K_{2} * P_{n}, \mathrm{n} \geq 3$ can be embedded in the plane, therefore by MacLanes theorem[9], $\mathrm{b}\left(K_{2} * P_{n}\right)=2$.Similarly, the graph $P_{n *} K_{2}, \mathrm{n} \geq 3$ is planar graph (observe that $P_{n^{*}} K_{2}$ is not isomorphic to $\left.K_{2} * P_{n}\right)$,therefore by MacLanes Theorem[9], $\mathrm{b}\left(P_{n} * K_{2}\right)=2$.

3-The basis number of $K_{2} * C_{n}$ and $C_{n} * K_{2}$.
It can be shown that for every even integer $\mathrm{n} \geq 4$,the graph $\boldsymbol{K}_{2} \boldsymbol{C}_{\boldsymbol{n}}$ is cubic having 2 n vertices and can be embedded in a plane, therefore

$$
\mathrm{b}\left(\boldsymbol{K}_{2} \boldsymbol{C}_{\boldsymbol{n}}\right)=2 \text {,for every even } \mathrm{n} \geq 4 \text {. }
$$

Theorem 2. For every even integer $\mathrm{n} \geq 4$, we have $\mathrm{b}\left(\boldsymbol{K}_{2} \boldsymbol{C}_{\boldsymbol{n}}\right)=2$.
Proof. Since the graph $\boldsymbol{K}_{2} * \boldsymbol{C}_{\boldsymbol{n}}, \mathrm{n} \geq 4$ is planar, therefore by MacLanes theorem[9], we have $\mathrm{b}\left(\boldsymbol{K}_{2} * \boldsymbol{C}_{\boldsymbol{n}}\right)=2$.
Theorem 3. For every odd integer $\mathrm{n} \geq 3$, we have $\mathrm{b}\left(K_{2} * \boldsymbol{C}_{\boldsymbol{n}}\right)=3$.
Proof. One can easily show that the graph $\boldsymbol{K}_{2} \boldsymbol{C}_{\boldsymbol{n}}$, for odd $\mathrm{n} \geq 3$ contains subgraph homeomorphic to $\boldsymbol{K}_{3,3}$. Thus the graph $\boldsymbol{K}_{2}{ }^{*} \boldsymbol{C}_{\boldsymbol{n}}$, is non planar and so by MacLanes theorem [9], b($\left.\boldsymbol{K}_{2} * \boldsymbol{C}_{\boldsymbol{n}}\right) \geq 3$. To complete the proof we show a 3 -fold basis for $\xi\left(\boldsymbol{K}_{2} * \boldsymbol{C}_{\boldsymbol{n}}\right)$. Consider the following set of cycles:

$$
\mathrm{B}\left(\boldsymbol{K}_{2} \boldsymbol{C}_{\boldsymbol{n}}\right)=\mathrm{S} \cup \mathrm{~T}
$$

Where,

$$
\mathrm{S}=\{(0, \mathrm{j})(1, \mathfrak{j}+1)(0, \mathrm{j}+1)(1, \mathbf{j})(0, \mathrm{j})\}: \mathrm{j}=0,1,2, \ldots, \mathrm{n}-1 \bmod (\mathrm{n})\},
$$

and

$$
\mathrm{T}=\{(0,0)(1,1)(0,2)(1,3) \ldots(0, \mathrm{n}-1)(1, \mathrm{n}-1)(0,0)\} .
$$

It is clear that the cycles $\mathrm{S} \cup \mathrm{T}-\{\boldsymbol{C}\}$, where $\boldsymbol{C}=\{(0, \mathrm{n}-1)(1,0)(0,0)(1, \mathrm{n}-1)(0, \mathrm{n}-1)\}$ forms boundaries of planar subgraph F of $\boldsymbol{K}_{2} * \boldsymbol{C}_{\boldsymbol{n}}$ (see Figure).Therefore
$\mathrm{S} \cup \mathrm{T}-\{\boldsymbol{C}\}$ is independent set of cycles. On the other hand the cycle \boldsymbol{C} contains the edge $(0, \mathrm{n}-1)(1,0)$ which is not present in any cycle of $\mathrm{S} \cup \mathrm{T}-\{$ $\boldsymbol{C}\}$. Therefore, $\mathrm{S} \cup \mathrm{T}$ is independent set of cycles. Since

$$
\mathrm{B}\left(\boldsymbol{K}_{2} * \boldsymbol{C}_{\boldsymbol{n}}\right)=\mathrm{n}+1=\gamma\left(\boldsymbol{K}_{2} * \boldsymbol{C}_{\boldsymbol{n}}\right),
$$

then $\mathrm{B}\left(\boldsymbol{K}_{2}{ }^{*} \boldsymbol{C}_{\boldsymbol{n}}\right)$ is a basis for $\xi\left(\boldsymbol{K}_{2}{ }^{*} \boldsymbol{C}_{\boldsymbol{n}}\right)$.
To find the fold of the basis $\mathrm{B}\left(\boldsymbol{K}_{2} \boldsymbol{C}_{\boldsymbol{n}}\right)$. It is clear that
$\boldsymbol{f}_{\boldsymbol{S}}(\mathrm{e}) \leq 2, \boldsymbol{f}_{\boldsymbol{T}}(\mathrm{e}) \leq 1$, for each edge $\mathrm{e} \in \mathrm{E}\left(\boldsymbol{K}_{2} * \boldsymbol{C}_{\boldsymbol{n}}\right)-\{\boldsymbol{C}\}$,
$\boldsymbol{f}_{\boldsymbol{S}}(\mathrm{e})=1, \boldsymbol{f}_{\boldsymbol{T}}(\mathrm{e})=1$, for each edge $\mathrm{e} \in\{\boldsymbol{C}\}$,
where
$\boldsymbol{C}=\{(0, \mathrm{n}-1)(1,0)(0,0)(1, \mathrm{n}-1)(0, \mathrm{n}-1)\}$.
Thus, the fold in $\mathrm{B}\left(\boldsymbol{K}_{2} \boldsymbol{C}_{\boldsymbol{n}}\right)$ of every edge of $\boldsymbol{K}_{2} \boldsymbol{C}_{\boldsymbol{n}}$ is not more than 3.
Hence $\mathrm{B}\left(\boldsymbol{K}_{2}{ }^{*} \boldsymbol{C}_{\boldsymbol{n}}\right)$ is a 3 -fold basis. This completes the proof of the theorem.

Figure : The planar subgraph F of $\boldsymbol{K}_{2} * \boldsymbol{C}_{5}$
Now, we consider the semi-strong product $\boldsymbol{C}_{n}{ }^{*} \boldsymbol{K}_{2}$. It is easy to show that $\boldsymbol{C}_{3 *} \boldsymbol{K}_{2}$, is planar graph ,therefore $\mathrm{b}\left(\boldsymbol{C}_{3} * \boldsymbol{K}_{2}\right)=2$.

Theorem 4. For every integers $\mathrm{n} \geq 4$, we have $\mathrm{b}\left(\boldsymbol{C}_{\boldsymbol{n}} * \boldsymbol{K}_{2}\right)=3$.
Proof. One can easily show that the graph $\boldsymbol{C}_{n} * \boldsymbol{K}_{2}, \mathrm{n} \geq 4$ contains subgraph homeomorphic to complete bipartite graph $\boldsymbol{K}_{3,3}$ [7]. Thus
$\boldsymbol{C}_{\boldsymbol{n}} * \boldsymbol{K}_{2}$ is nonplanar and so by MacLanes theorem[9], $\mathrm{b}\left(\boldsymbol{C}_{n} * \boldsymbol{K}_{2}\right) \geq 3$ for $\mathrm{n} \geq 4$.
To complete the proof of the theorem we show a 3 -fold basis for $\xi\left(\boldsymbol{C}_{\boldsymbol{n}} * \boldsymbol{K}_{2}\right)$.
Consider the set of cycles in $\boldsymbol{C}_{\boldsymbol{n}} * \boldsymbol{K}_{2}, \mathrm{~B}\left(\boldsymbol{C}_{\boldsymbol{n}} * \boldsymbol{K}_{2}\right)=\mathrm{A} \cup \mathrm{D} \cup \mathrm{V}$
Where
$\mathrm{A}=\left\{a_{i}=(\mathrm{i}, 0)(\mathrm{i}+1,1)(\mathrm{i}, 1)(\mathrm{i}+1,0)(\mathrm{i}, 0): \mathrm{i}=0,1,2, \ldots, \mathrm{n}-1(\bmod \mathrm{n})\right\}$,
$\mathrm{D}=\left\{d_{i}=(\mathrm{i}, 0)(\mathrm{i}+1,0)(\mathrm{i}+2,0)(\mathrm{i}+1,1)(\mathrm{i}, 0): \mathrm{i}=0,1,2, \ldots, \mathrm{n}-2(\bmod \mathrm{n})\right\}$,
And

```
\(\mathrm{V}=\left\{\begin{array}{l}(0,0)(1,1)(2,0)(3,1)(4,0) \ldots(\mathrm{n}-1,1)(0,0), \\ (0,1)(1,0)(2,1)(3,0)(4,1) \ldots(\mathrm{n}-1,0)(0,1): \text { if } \mathrm{n} \text { odd } \\ (0,0)(1,1)(2,0)(3,1) \ldots(\mathrm{n}-1,0)(0,0),\end{array}\right.\)
\((0,1)(1,0)(2,1)(3,0) \ldots(n-1,1)(0,1): \quad\) if \(n\) even
```

Since

$$
\begin{aligned}
\left|B\left(C_{n} * K_{2}\right)\right| & =\mathrm{n}+(\mathrm{n}-1)+2 \\
& =2 \mathrm{n}+1 \\
& =\gamma\left(\boldsymbol{C}_{\boldsymbol{n}} * K_{2}\right)
\end{aligned}
$$

It is clear that the cycles A, D and V are independent since they are boundaries of planar graph. Also, $\mathrm{A} \cup \mathrm{D}$ is independent set of cycles since if a_{i} is any cycle generated from cycles of A , then a_{i} contains an edge $(\mathrm{i}+1,1)(\mathrm{i}, 1)$ For each $\mathrm{i}=0,1,2, \ldots, \mathrm{n}-1(\bmod \mathrm{n})$ which is not present in any cycle of D . Moreover if c_{i} is any cycle generated from cycles of $\mathrm{A} \cup \mathrm{D}$, then c_{i} contains an edge of the form (i,0)(i+1,0) for each $\mathrm{i}=0,1,2, \ldots, \mathrm{n}-2$ which is not present in any cycle of V , therefore $\mathrm{A} \cup \mathrm{D} \cup \mathrm{V}$ is independent set of cycles and so it is a basis for $\xi\left(\boldsymbol{C}_{n} * \boldsymbol{K}_{2}\right)$.

To find the fold of $\mathrm{B}\left(\boldsymbol{C}_{\boldsymbol{n}} \boldsymbol{K}_{\boldsymbol{K}}\right)$, partition the edge set $\mathrm{E}\left(\boldsymbol{C}_{\boldsymbol{n}} * \boldsymbol{K}_{2}\right)$ into $L \cup M \cup N$, where

$$
\begin{aligned}
& \mathrm{L}=\{\mathrm{i}, 0)(\mathrm{i}+1,1),(\mathrm{i}, 1)(\mathrm{i}+1,0): \mathrm{i}=0,1,2, \ldots, \mathrm{n}-1(\bmod \mathrm{n})\}, \\
& \mathrm{M}=\{(0, \mathrm{j})(\mathrm{n}-1, \mathrm{j}): \mathrm{j}=0,1\},
\end{aligned}
$$

and

$$
N=\{i, j)(i+1, j): i=0,1,2, \ldots, n-2(\bmod n) \text { and } j=0,1\} .
$$

Then one may verify that

$$
\begin{aligned}
& f_{A}(\mathrm{e})=1, \quad f_{D}(\mathrm{e}) \leq 1, \quad f_{V}(\mathrm{e}) \leq 1, \text { for each edge } \mathrm{e} \in \mathrm{~L} \\
& \boldsymbol{f}_{A}(\mathrm{e})=1, \quad \boldsymbol{f}_{D}(\mathrm{e}) \leq 1, \quad f_{V}(\mathrm{e}) \leq 1, \text { for each edge } \mathrm{e} \in \mathrm{M} ; \\
& \boldsymbol{f}_{A}(\mathrm{e})=1, \quad \boldsymbol{f}_{D}(\mathrm{e}) \leq 2 \quad \boldsymbol{f}_{V}(\mathrm{e})=0, \text { for each edge } \mathrm{e} \in \mathrm{~N} .
\end{aligned}
$$

Thus the fold in $\mathrm{B}\left(C_{n^{*}} K_{2}\right)$ of every edge of $C_{n^{*}} K_{2}$ is not more than 3. Hence $\mathrm{B}\left(C_{n} * K_{2}\right)$ is a 3-fold basis for $\xi\left(C_{n} * K_{2}\right)$. The proof is complete.

4. The basis number of $K_{2} * S_{n}$ and $S_{n} * K_{2}$.

In this section we consider the semi-strong product of K_{2} with a star S_{n} which is isomorphic to complete bipartite graph $\boldsymbol{K}_{1, n-1}$.Denote the vertex set of the star $\boldsymbol{S}_{\boldsymbol{n}}$ by $0123 \ldots(\mathrm{n}-1)$, where $\operatorname{deg}_{S_{n}}(0)=n-1$, and all other vertices are of degree 1 .Since $S_{2}=P_{2}$, therefore the graph $K_{2} * S_{2}$ is the cycle $\{(0,0)(1,1)(0,1)(1,0)(0,0)\}$, therefore $\mathrm{b}\left(K_{2} * S_{2}\right)=1$.
Similarly, $\mathrm{b}\left(S_{2} * K_{2}\right)=1$. On the other hand, for $\mathrm{n} \geq 3$, the graph $K_{2} * S_{n}$ is planar graph ,therefore $\mathrm{b}\left(K_{2} * S_{n}\right)=2$. Similarly, for $\mathrm{n} \geq 3$, the graph $S_{n} * K_{2}$ is planar graph ,therefore $\mathrm{b}\left(S_{n} * K_{2}\right)=2$.

5. The basis number of $W_{n} * K_{2}$ and $K_{2} * K_{n}$

In this section we consider the semi-strong product of a wheel with \boldsymbol{K}_{2}, where $\boldsymbol{W}_{\boldsymbol{n}}$ is the join of the cycle $123 \ldots(\mathrm{n}-1) 1$ with the vertex 0 . That is, $W_{n}=C_{n-1}+K_{1}$.
Theorem 5. For every integers $\mathrm{n} \geq 4$, we have $\mathrm{b}\left(\boldsymbol{W}_{n} * \boldsymbol{K}_{2}\right)=3$.
Proof. One can easily show that the graph $\boldsymbol{W}_{n} * \boldsymbol{K}_{2}, \mathrm{n} \geq 4$ contains subgraph homeomorphic to complete bipartite graph $\boldsymbol{K}_{3,3}$.Thus $\boldsymbol{W}_{\boldsymbol{n}} \boldsymbol{K}_{\boldsymbol{2}}$ is nonplanar and so by MacLanes theorem[9], $\mathrm{b}\left(\boldsymbol{W}_{n^{*}} \boldsymbol{K}_{2}\right) \geq 3$. To complete the proof of the theorem we show a 3 -fold basis for $\xi\left(\boldsymbol{W}_{n} * \boldsymbol{K}_{2}\right)$. Consider the set of cycles in $\boldsymbol{W}_{n}{ }^{*} \boldsymbol{K}_{2}$:

$$
B\left(\boldsymbol{W}_{n} * \boldsymbol{K}_{2}\right)=\bigcup_{j=0}^{1} B_{r}\left(W_{n}^{j}\right) \cup \mathrm{A} \cup \mathrm{D} \cup \mathrm{E} \cup \mathrm{C},
$$

Where $B_{r}\left(W_{n}^{j}\right)$ is a required basis for a j -copy, $W_{n}{ }^{j}$. That is,

$$
\begin{aligned}
& B_{r}\left(W_{n}^{j}\right)=\{(0, \mathrm{j})(\mathrm{i}, \mathrm{j})(\mathrm{i}+1, \mathrm{j})(0, \mathrm{j}): \mathrm{i}=1,2, \ldots, \mathrm{n}-1 \bmod (\mathrm{n}-1) \text { and } \mathrm{j}=0,1\}, \\
& \mathrm{A}=\{(\mathrm{i}, 0)(\mathrm{i}+1,1)(\mathrm{i}, 1)(\mathrm{i}+1,0)(\mathrm{i}, 0): \mathrm{i}=1,2, \ldots, \mathrm{n}-1 \bmod (\mathrm{n}-1)\}, \\
& \mathrm{D}=\{(0,0)(\mathrm{i}, 1)(0,1)(\mathrm{i}, 0)(0,0): \mathrm{i}=1,2, \ldots, \mathrm{n}-1\}, \\
& \mathrm{E}=\{(\mathrm{i}, 1)(\mathrm{i}+1,1)(\mathrm{i}+2,0)(\mathrm{i}+1,0)(\mathrm{i}, 1),(\mathrm{i}, 0)(\mathrm{i}+1,0)(\mathrm{i}+2,1)(\mathrm{i}+1,1)(\mathrm{i}, 0): \\
&\mathrm{i}=0,1,2, \ldots, \mathrm{n}-3\},
\end{aligned}
$$

and

$$
\mathrm{C}=\{(0,0)(1,1)(\mathrm{n}-1,1)(0,0)\} .
$$

It is clear that

$$
\begin{aligned}
\left|B\left(W_{n} * L_{m}\right)\right| & =2(\mathrm{n}-1)+(\mathrm{n}-1)+(\mathrm{n}-1)+2(\mathrm{n}-2)+1 \\
& =6 \mathrm{n}-7=\gamma\left(\boldsymbol{W}_{n} * \boldsymbol{K}_{\mathbf{2}}\right) .
\end{aligned}
$$

It is clear that $\bigcup_{j=0}^{1} B_{r}\left(W_{n}^{j}\right)$ is a 2 -fold required basis of W_{n}^{j}. Also,
A,D,E and C are independent set of cycles because they are boundaries of planar subgraph of $\boldsymbol{W}_{n} * \boldsymbol{K}_{2}$. Moreover, $\mathrm{A} \cup \mathrm{D}$ is independent since it is edgedisjoint cycles. On the other hand, if c_{i} is any cycle generated from cycles in $\mathrm{A} \cup \mathrm{D}$, then c_{i} belong to A or D since $\mathrm{A} \cup \mathrm{D}$ is edge-disjoint cycles, hence if $c_{i} \in \mathrm{~A}$, then cycle c_{i} contains an edge of the form $(\mathrm{i}, 0)(\mathrm{i}+1,1)$, for each $\mathrm{i}=1,2, \ldots, \mathrm{n}-1 \bmod (\mathrm{n}-1)$, which is not present in any cycle of E ; if $c_{i} \in \mathrm{D}$, then there is no edge in common with the cycles of E . Therefore, $\mathrm{A} \cup \mathrm{D} \cup \mathrm{E}$ is independent set of cycles. Furthermore if a_{i} is any cycle generated from cycles in $\mathrm{A} \cup \mathrm{D} \cup \mathrm{E}$, then a_{i} contains an edge of the form ($\mathrm{i}, 0$)($\mathrm{i}+1,1$), $(\mathrm{i}, 1)(\mathrm{i}+1,0),(0,0)(\mathrm{i}+1,1)$ or $(0,1)(\mathrm{i}+1,0)$ for each
$\mathrm{i}=0,1,2, \ldots, \mathrm{n}-2$ which is not present in any cycle of $\bigcup_{j=0}^{1} B_{r}\left(W_{n}^{j}\right)$,therefore $\bigcup_{j=0}^{1} B_{r}\left(W_{n}^{j}\right) \cup A \cup D \cup E$ is independent set of cycles. To prove that C is independent of $\bigcup_{j=0}^{1} B_{r}\left(W_{n}^{j}\right) \cup A \cup D \cup E$. Suppose that C is a sum modulo 2 of cycles in $\bigcup_{j=0}^{1} B_{r}\left(W_{n}^{j}\right) \cup \mathrm{A} \cup \mathrm{D} \cup \mathrm{E}$. Then $\mathrm{C}=\sum_{j=1}^{m} d_{j}(\bmod 2)$, where d_{j} is a linear combination of cycles in $\bigcup_{j=0}^{1} B_{r}\left(W_{n}^{j}\right) \cup \mathrm{A} \cup \mathrm{D} \cup \mathrm{E}$. Thus $d_{1}=C \oplus \sum_{i=2}^{m} d_{i}(\bmod$ 2).Therefore

$$
d_{1}=C \oplus d_{2} \oplus d_{3} \oplus \ldots \oplus d_{m} \subseteq E(A \bigcup D),
$$

where \oplus is the ring sum. But
$\mathrm{E}(\mathrm{A} \cup \mathrm{D})=\{(\mathrm{i}, 0)(\mathrm{i}+1,1)\} \cup\{(\mathrm{i}, 0)(\mathrm{i}+1,0)\} \cup\{(0,0)(\mathrm{i}, 1)\}$
which is an edge set of a forest. This contradicts the fact that d_{1} is a cycle or edge disjoint union cycles. Thus $\left(\bigcup_{j=0}^{1} B_{r}\left(W_{n}^{j}\right) \cup A \cup D \cup E\right) \cup C$, is a basis for $\xi\left(\boldsymbol{W}_{n} * \boldsymbol{K}_{2}\right)$.

To find the fold of $\mathrm{B}\left(\boldsymbol{W}_{n} * \boldsymbol{K}_{2}\right)$, partition the edge set of $\boldsymbol{W}_{n^{*}} \boldsymbol{K}_{2}$ into
$Q_{1}=E\left(\bigcup_{j=0}^{1} C_{n-1}^{j}\right), \quad Q_{2}=E\left(\bigcup_{j=0}^{1} S_{n}^{j}\right)$,
$Q_{3}=\{(0,0)(\mathrm{i}, 1),(0,1)(\mathrm{i}, 1): \mathrm{i}=1,2, \ldots, \mathrm{n}-1\}$,
and
$Q_{4}=\mathrm{E}\left(\boldsymbol{W}_{\boldsymbol{n}} \boldsymbol{K}_{2}\right)-\left\{Q_{1} \bigcup Q_{2} \bigcup Q_{3}\right\}$.
Therefore, if $\mathrm{G}=\bigcup_{j=0}^{1} B_{r}\left(W_{n}^{j}\right)$, then
$f_{G}(\mathrm{e})=1, f_{A}(\mathrm{e})=1, f_{D}(\mathrm{e})=0, \boldsymbol{f}_{E U C}(\mathrm{e}) \leq 1$, for each edge $\mathrm{e} \in Q_{1}$,
$f_{G}(\mathrm{e})=1, f_{A}(\mathrm{e})=0, f_{D}(\mathrm{e})=1, f_{E U C}(\mathrm{e})=0$, for each edge $\mathrm{e} \in Q 2$,
$f_{G}(\mathrm{e})=0, f_{A}(\mathrm{e})=0, f_{D}(\mathrm{e})=1, \boldsymbol{f}_{E U C}(\mathrm{e}) \leq 1$, for each edge $\mathrm{e} \in Q 3$,
$f_{G}(\mathrm{e})=0, f_{A}(\mathrm{e}) \leq 1, f_{D}(\mathrm{e})=0, \boldsymbol{f}_{E U C}(\mathrm{e}) \leq 2$, for each edge $\mathrm{e} \in Q 4$.
Thus $\mathrm{B}\left(\boldsymbol{W}_{n} * \boldsymbol{K}_{2}\right)$ is a 3 -fold basis for $\xi\left(\boldsymbol{W}_{n} * \boldsymbol{K}_{2}\right)$. The proof is complete.
Now, consider the basis number of $\boldsymbol{K}_{2}{ }^{*} \boldsymbol{K}_{\boldsymbol{n}}$.

It is clear that the graph $\boldsymbol{K}_{2} * \boldsymbol{K}_{\boldsymbol{n}}$ is a complete bipartite graph $\boldsymbol{K}_{n, n}$. Schmeichel [10] proved that $\mathrm{b}\left(\boldsymbol{K}_{m, n}\right)=4$ for $\mathrm{m}, \mathrm{n} \geq 5$ except for the following: $\boldsymbol{K}_{5, r}$ and $\boldsymbol{K}_{6, s}$ where $\mathrm{r}=5,6,7,8$ and $\mathrm{s}=6,7,8,10$. Also, Alsardary and Ali [4] proved that $\mathrm{b}\left(\boldsymbol{K}_{5, r}\right)=\mathrm{b}\left(\boldsymbol{K}_{6, s}\right)=3$ for $\mathrm{r}=5,6,7,8$ and $\mathrm{s}=6,7,8,10$. Therefore the following proposition follows from [4] and [10].

Proposition. $\mathrm{b}\left(\boldsymbol{K}_{2} * \boldsymbol{K}_{n}\right)=\left\{\begin{array}{l}3, \text { for } \mathrm{n}=3,4,5 \text { and } 6 \\ 4, \text { for } \mathrm{n} \geq 7 .\end{array}\right.$

REFERENCES

[1] Ali, A.A., Marougi,G.T.,(1993), The basis number of the lexicographic product of graphs, Ars Combinatoria, 36, 271-282.
[2] Ali, A.A., Marougi, G.T.,(1992), The basis number of the Cartesian product of some graphs, J. Indian Math.Soc. 58,No.2, 123-134.
[3] Al-Rhayyel, A.A. , Jaradat, M.M,(1996), On the basis number of the direct product of some graphs, Bull. Cal. Math. Soc. 88,No.6, 509516.
[4] Alsardary, S.Y. Ali, A.A.,(2003), The basis number of some special non planar graphs, Czechoslovak Math. J., 53,No.2, 225-240.
[5] Alzoubi, M. Y., Jaradat,M.M.,(2005),On the basis number of the composition of different ladders with some graphs, International Journalof Mathematics and Mathematical Sciences,12,1861-1868.
[6] Banks ,J.A., Schmeichel, E.F.,(1982),The basis number of the n cube, J. Combin. Theory, ser. $B, 33$, No.2, 95-100.
[7] Harary, F.,(1972), Graph Theory, $3^{\text {rd }}$ pr. Reading- Massachusetts, Addison-Wesly .
[8] Jaradat, M.M.,(2003), On the basis number of the direct product of graphs, Australas J.Combin. 27,293-306.
[9] MacLane, S.,(1937), A combinatorial condition for planar graphs, Fund. Math. 28 ,22-32.
[10] Schmeichel, E.F.,(1981), The basis number of a graph, J. Combin. Theory, Ser. B, 30,No.2, 123-129.
[11] West,D.B.,(1999) Introduction to graph theory, New Delhi. Prentice-Hall of India .

