On Idempotent Elements

Nazar H. Shuker
The Arab Academy for
Financial Science-Jordan
Ala'a A. Hammodat
College of Education
University of Mosul

Received on: 24/07/2007
Accepted on: 04/11/2007
In this paper we study idempotent elements, we give some new properties of idempotent elements and provide some exam we also study central idempotent elements and orthogonal idempotent elements and give some new properties of such idempotent.

Finally we study special ring which satisfies the property $x^{n}=x^{n+1}$ for all x in R and n is a positive integer, we represent such ring in termes of idempotent and nilpotent elements.
Keywords: Rings, idempotent elements, nilpotent elements.
حول العناصر المتحايدة

```
            علاء حمودات
    كلية التربية، جامعة الموصل
    تاريخ القبول: 2007/11/04
```

نزار حمدون شكر

تاريخ الاستلام: 2007/07/24
(الملخص
في هذا البحث درسنا العناصر المتحايدة و أعطينا خواص جديدة لها . و فضلا عن ذلك درسنا العناصر المتحايدة مركزيا و العناصر المتحايدة المتعامدة و أعطينا خواص لهذا النوع من

وأخيرا درسنا حلقة خاصة والتي تحقق الخاصية $x^{n}=x^{n+1}$ ، لكل x فيR وn عدد صحيح موجب ، و أعطينا تمثيلا لهذه الحلقة بدلالة العناصر المتحايدة و المعدومة القوى. الكلمات المفتاحية: الحلقات، العناصر المتحايدة، المعدومة القوى.

1. Introduction :

Throughout this paper R denotes an associative rings with identity . Recall that:
(1)A ring R is said to be reduced if R contains no non zero nilpotent elements.(2) For any element a of a ring R we define the right annihilator of a in R by, $r(a)=\{x \in R: a x=0\}$, and likewise the left annihilator of a.in R (3) A ring R is regular provided that for every x in R , there exists y in R such that $x=x y x$.see[2] (4) An elements e_{1}, e_{2} of a ring R is said to be centeral idempotent elements if $e_{1} e_{2}=e_{2} e_{1}$, and orthogonal idempotent elements if $e_{1} e_{2}=e_{2} e_{1}=0$.

2. Properties of Centeral and Orthogonal Idempotent Elements:

In this section we study centeral and orthogonal idempotent elements and give some basic properties. Also we study special ring which satisfies the relation $x^{n}=x^{n+1}, x \in R, \mathrm{n}$ is a positive integer .

Proposition2-1: If e_{1}, e_{2} are centeral idempotent elements of R , with $r\left(e_{1}+e_{2}\right)=0$,then $\left(1-e_{1}\right),\left(1-e_{2}\right)$ are orthogonal idempotent elements.
Proof:
Consider $\left(e_{1}+e_{2}\right)\left(1-e_{1}-e_{2}+e_{1} e_{2}\right)=e_{1}-e_{1}-e_{1} e_{2}+e_{1} e_{2}+e_{2}-e_{2} e_{1}-e_{2}+e_{2} e_{1} e_{2}=0$, implies $\left(1-e_{1}-e_{2}+e_{1} e_{2}\right) \in r\left(e_{1}+e_{2}\right)=0$, and $e_{1}\left(1-e_{2}\right)=\left(1-e_{2}\right)$ Therefore $\left(1-e_{1}\right)\left(1-e_{2}\right)=0$.

If e_{1}, e_{2} are idempotent elements, then $e_{1} e_{2}$ need not to be idempotent as the following example shows.

Example: let $R\left(Z_{2}\right)$ be the ring of all 2×2 matrices over the ring Z_{2} (the ring of integers modulo 2) which are strictly upper triangular. Then the only idempotent matrices of $R\left(Z_{2}\right)$ are:
$\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\}$
Now, $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ but $\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ is not idempotent.
The following result gives the condition for $e_{1} e_{2}$ to be idempotent
Lemma 2-2: If R is a ring with every idempotent element is centeral, then $e_{1} e_{2}$ is idempotent for every e_{1}, e_{2} are idempotents.
Proof: Trivial.
Theorem 2-3: If e_{1}, e_{2} are centeral idempotent elements of R, and $r\left(e_{1}-e_{2}\right)=0$,then $R=e_{1} R \oplus e_{2} R$.
Proof: Let $x \in e R \cap e_{2} R$.then $x=e_{1} r_{1}$ and $x=e_{2} r_{2}$, for some r_{1}, r_{2} in R
Now, $e_{1} r_{1}=e_{1} e_{2} r_{2}$, but $x=e_{1} r_{1}$, then $x=e_{1} e_{2} r_{2}$.
Multiplication two sided from left by $\left(e_{1}-e_{2}\right)$ we get $\left(e_{1}-e_{2}\right) x=0$, so

$$
x \in r\left(e_{1}-e_{2}\right) \text {.then } e_{1} R \cap e_{2} R \subseteq r\left(e_{1}-e_{2}\right) \text {, but } r\left(e_{1}-e_{2}\right)=0 \text {. So }
$$

$$
\begin{equation*}
e_{1} R \cap e_{2} R=0 . \tag{1}
\end{equation*}
$$

Now, consider $\left(e_{1}-e_{2}\right)\left(e_{1}+e_{2}\right)=\left(e_{1}-e_{2}\right)$ implies $\left(e_{1}-e_{2}\right)\left(e_{1}+e_{2}-1\right)=0$, implies $\left(e_{1}+e_{2}-1\right) \in r\left(e_{1}-e_{2}\right)=0$. Therefore

$$
\begin{equation*}
e_{1} R+e_{2} R=R . \tag{2}
\end{equation*}
$$

from (1) and (2) we get $\quad R=e_{1} R \oplus e_{2} R$.
Proposition2-4: If e_{1}, e_{2} are centeral idempotent elements of R , then.

1. $e_{1} R \cap e_{2} R=e_{1} e_{2} R$.
2. $e_{1} R \cap e_{2} R=r\left(1-e_{1}\right) \cap r\left(1-e_{2}\right)$.
3. $r\left(e_{1}+e_{2}\right)=r\left(e_{1}\right) \cap r\left(e_{2}\right)$ if $e_{1} R \cap e_{2} R=(0)$.

Proof 1: Let $x \in e_{1} R \cap e_{2} R$, then $x=e_{1} r_{1}$ and $x=e_{2} r_{2}$, for some r_{1}, r_{2} in R.
since $e_{1} x=e_{1} r_{1}=x$, then $e_{1} x=e_{1} e_{2} r_{2}$ yields $x=e_{1} e_{2} r_{2} \in e_{1} e_{2} R$, so

$$
\begin{equation*}
e_{1} R \cap e_{2} R \subseteq e_{1} e_{2} R \tag{1}
\end{equation*}
$$

Now, let $y \in e_{1} e_{2} R$, then $y=e_{1} e_{2} r$, for some r in R and this mean $y \in e_{1} \mathrm{R}$.
Since e_{1}, e_{2} are centeral idempotent elements, then $y \in e_{2} R$
implies $y \in e_{1} R \cap e_{2} R$. Therefore $e_{1} e_{2} R \subseteq e_{1} R \cap e_{2} R$.
From (1) and (2) we get $e_{1} R \cap e_{2} R=e_{1} e_{2} R$.
Proof 2: let $x \in e_{1} R \cap e_{2} R$. then $x=e_{1} r_{1}$ and $x=e_{2} r_{2}$, for some r_{1}, r_{2} in R.
Since $e_{1} r_{1}=e_{2} r_{2}=e_{1} e_{2} r_{2}$, so $x=e_{1} e_{2} r_{2}$.
Multiplication two sided from left by $\left(1-e_{1}\right)$ we get $\left(1-e_{1}\right) x=0$, and $x \in r\left(1-e_{1}\right)$.
Similarly we get $x \in r\left(1-e_{2}\right)$, hence $\mathrm{x} \in r\left(1-e_{1}\right) \cap r\left(1-e_{2}\right)$.
Now, let $y \in r\left(1-e_{1}\right) \cap r\left(1-e_{2}\right)$, then $y \in r\left(1-e_{1}\right)$ and $y=e_{1} y \in e_{1} R \quad$ also $y \in r\left(1-e_{2}\right) \quad$ and $\quad y=e_{2} y \in e_{2} R$, so $\quad y \in e_{1} R \cap e_{2} R \quad$ and hence $e_{1} R \cap e_{2} R=r\left(1-e_{1}\right) \cap r\left(1-e_{2}\right)$.
Proof 3: let $x \in r\left(e_{1}\right) \cap r\left(e_{2}\right)$, then $x \in r\left(e_{1}\right)$ and $e_{1} x=0, x \in r\left(e_{2}\right)$ and $e_{2} x=0$
So $\left(e_{1}+e_{2}\right) x=0$ and $x \in r\left(e_{1}+e_{2}\right)$.
Now, let $y \in r\left(e_{1}+e_{2}\right)$.Then $\left(e_{1}+e_{2}\right) y=0$ and $e_{1} y=-e_{2} y$ and $e_{1} y=-e_{1} e_{2} y \in e_{1} R=-e_{2} e_{1} y \in e_{2} R \quad$ (since every idempotent is centeral), then $e_{1} y \in e_{1} R \cap e_{2} R=(0)$ implies $e_{1} y=0$ and $y \in r\left(e_{1}\right)$.
Similarly we get $y \in r\left(e_{2}\right)$, then $y \in r\left(e_{1}\right) \cap r\left(e_{2}\right)$.
Hence $r\left(e_{1}+e_{2}\right)=r\left(e_{1}\right) \cap r\left(e_{2}\right)$.
Following [3] a ring R is said to be right semi-regular ring if for every a in R, there exists b in R such that $a=a b$, and $r(a)=r(b)$.
Proposition 2-5: A ring R is a right semi regular, if and only if, $\mathrm{r}(\mathrm{a})$ is generated by an idempotent.
Proof: see [1], theorem (1-1-12).

Theorem 2-6: If R is a right semi-regular ring with every idempotent is centeral. Then for each a in R, there exists e in R such that $a R \cap R=(0)$.
Proof: let R be a right semi- regular ring, then $r(a)=e R$, where e is idempotent element ,and let $x \in \mathrm{aR} \cap \mathrm{eR}$, then $x=$ ar and $x=\mathrm{e} r^{\prime}$, for some r, r^{\prime} in R .
Now, $\quad x=e r^{\prime}=e . e r^{\prime}=e x$, since $\mathrm{e} \in \mathrm{eR}=\mathrm{r}(\mathrm{a})$, then $\mathrm{ea}=\mathrm{ae}=0$.
Since $x=$ ar ,then $\mathrm{e} x=\mathrm{ear}=0$ but $e x=e r^{\prime}=x$, so $x=0$.
Hence $\mathrm{aR} \cap \mathrm{eR}=(0)$.
Proposition 2-7: If e is centeral idempotent element of R , then for each element x in R there exists y in R such that $x y \mathrm{e}=y x \mathrm{e}=\mathrm{e}$ if and only if $x \mathrm{e}+(1-\mathrm{e})$ invertibility of $y \mathrm{e}+(1-\mathrm{e})$.
Proof: let $\mathrm{u}=x \mathrm{e}+(1-\mathrm{e})$ and $\mathrm{v}=\mathrm{ye}+(1-\mathrm{e})$.
Now, uv $=(x \mathrm{e}+(1-\mathrm{e})) \cdot(y \mathrm{e}+(1-\mathrm{e}))=x$ eye $+x \mathrm{e}-x \mathrm{e}+\mathrm{ye}+1-\mathrm{e}-\mathrm{eye}-\mathrm{e}+\mathrm{e}=1$
So, $v u=1$.
Conversely, let $(x \mathrm{e}+(1-\mathrm{e}))(\mathrm{ye}+(1-\mathrm{e}))=1$, implies $x y \mathrm{e}-\mathrm{e}=0$ and $x y \mathrm{e}=\mathrm{e}$.
Similarly we get $y x e=$.
Theorem 2-8: If $a R=e R$.then $a=e u$, where e is centeral idempotent element and u is unit element of R.
Proof: Let $a R=e R$,where e is centeral idempotent element of R,
Now, $\mathrm{a}=\mathrm{e} \mathrm{a}=\mathrm{ae}$.
Also $\mathrm{e}=\mathrm{a} x$,for some x in R
Put $v=1-e+e x$ and $u=1-e+a$, we find $u v=v u=1$
Now, eu $=e(1-e+a)=a$, Then $a=e u=u e$.
If e_{1}, e_{2} are idempotent element of R , then $\left(e_{1}+e_{2}\right)$ need not to be idempotent as the following example shows.
Example: let $R\left(Z_{2}\right)$ be the ring of all 2×2 matrices over the ring Z_{2} (the ring of integers modulo 2) which are strictly upper triangular. Then the only idempotent matrices of $R\left(Z_{2}\right)$ are:
$\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]\right\}$
Now, $\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]+\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ but $\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ is not idempotent.
Lemma 2-9 : If e_{1}, e_{2} are orthogonal idempotent elements of R , then $\left(e_{1}+e_{2}\right)$ is idempotent element.
Proof: Trivial.

If e_{1}, e_{2} are idempotent elements of R , then $r\left(e_{1}+e_{2}\right) \neq r\left(e_{1}\right) \cap r\left(e_{2}\right)$ in general as the following example shows.

Example: let $R\left(Z_{2}\right)$ be the ring of all 2×2 matrices over the ring Z_{2} (the ring of integers modulo 2) which are strictly upper triangular, then the element of $R\left(Z_{2}\right)$ are:
$\mathrm{I}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], \mathrm{O}=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right] \mathrm{A}=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right], \mathrm{B}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$,
$\mathrm{C}=\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right], \mathrm{D}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right], \mathrm{E}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right], \mathrm{F}=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$.
The only idempotent elements of $R\left(Z_{2}\right)$ are: $\{I, O, A, C, E, F\}$
$\mathrm{r}(\mathrm{I})=\{O\}$
$\mathrm{r}(\mathrm{E})=\{O, F\}$
$\mathrm{r}(\mathrm{I}) \cap \mathrm{r}(\mathrm{E})=\{O\}$ while $\mathrm{r}(\mathrm{I}+\mathrm{E})=\mathrm{r}(\mathrm{F})=\{O, D, E, A\}$
clearly $r(I) \cap r(E) \neq r(I+E)$
Proposition 2-10: If e_{1}, e_{2} is orthogonal idempotent elements of R , then $r\left(e_{1}+e_{2}\right)=r\left(e_{1}\right) \cap r\left(e_{2}\right)$
proof: let $x \in r\left(e_{1}+e_{2}\right)$. Then $\left(e_{1}+e_{2}\right) x=0$ and $e_{1} x=-e_{2} x$ multiplication two sided from left by e_{1} we get $e_{1} x=0$ and $x \in r\left(e_{1}\right)$.
Also multiplication two sided from left by e_{2} we get $e_{2} x=0$ and $x \in r\left(e_{2}\right)$ so, $x \in r\left(e_{1}\right) \cap r\left(e_{2}\right)$.
Now, let $y \in r\left(e_{1}\right) \cap r\left(e_{2}\right)$, then $y \in r\left(e_{1}\right)$ and $e_{1} y=0$, also $y \in r\left(e_{2}\right)$ and $e_{2} y=0$, implies $\left(e_{1}+e_{2}\right) y=0$ and $y \in r\left(e_{1}+e_{2}\right)$, so $r\left(e_{1}+e_{2}\right)=r\left(e_{1}\right) \cap r\left(e_{2}\right)$.

If R is not commutative ring, then $e_{1} R+e_{2} R \neq\left(e_{1}+e_{2}\right) R$ as the following example shows:

Example: let $R\left(Z_{2}\right)$ be the ring of all 2×2 matrices over the ring Z_{2} (the ring of integers modulo 2) which are strictly upper triangular, then the element of $R\left(Z_{2}\right)$ are:
$A=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right], B=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right], C=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right], D=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right], E=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right], F=\left[\begin{array}{ll}0 & 0 \\ 1 & 1\end{array}\right], G=\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right], H=\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]$, $I=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right], J=\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right], K=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right], L=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right], M=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], N=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right], O=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right], P=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$.
the idempotent matrices are : $\{A, C, D, E, F, G, H, M\}$
$\mathrm{ER}=\{A, B, C, E\}$
$\mathrm{MR}=\{A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, p\}$
Now, $\mathrm{ER}+\mathrm{MR}=\{A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P\}$
$(\mathrm{E}+\mathrm{M}) \mathrm{R}=\{A, G, H, N\}$
Its clearly that $\mathrm{ER}+\mathrm{MR} \neq(\mathrm{E}+\mathrm{M}) \mathrm{R}$.
Theorem 2-11: If e_{1}, e_{2} are orthogonal idempotent elements of R , then $e_{1} R+e_{2} R=\left(e_{1}+e_{2}\right) R$
proof: let $x \in\left(e_{1}+e_{2}\right) R$, then $x=\left(e_{1}+e_{2}\right) \mathrm{r}$, for some r in R , and this implies $x=e_{1} r+e_{2} r \in e_{1} R+e_{2} R$
Now, let $y \in e_{1} R+e_{2} R$, then $y=e_{1} r_{1}+e_{2} r_{2}$, for some r_{1}, r_{2} in R
Multiplying two sided from left by $\left(e_{1}+e_{2}\right)$ we get $\left(e_{1}+e_{2}\right) \mathrm{y}=\mathrm{y}$ and $y \in\left(e_{1}+e_{3}\right) R$ and hence $e_{1} R+e_{2} R=\left(e_{1}+e_{2}\right) R$.

Corollary 2-12: If $e_{1}, e_{2}, \ldots \ldots \ldots \ldots \ldots . . e_{r}$ are orthogonal idempotent elements of R , then $\left(e_{1}+e_{2}+\ldots \ldots \ldots .+e_{r+1}\right) R=e_{1} R+e R+\ldots . .+e_{r+1} R$

Proof: by induction

1- when $\mathrm{n}=2$, the equality holds.
2- assume that equality holds when $n=r$.
3- when $\mathrm{n}=\mathrm{r}+1$

$$
\begin{aligned}
\left(\sum_{i=1}^{r+1} e_{i}\right) R & =\left(\sum_{i=1}^{r} e_{i}+e_{r+1}\right) R=\left(\sum_{i=1}^{r} e_{i}\right) R+e_{r+1} R \\
& =\sum_{i=1}^{r} e_{i} R+e_{r+1} R=\sum_{i=1}^{r+1} e_{i} R .
\end{aligned}
$$

Proposition 2-13: If R is a ring and $x^{n}=x^{n+1}$, for all x in R and n is integer, then :

1. $x=\mathrm{e}+\mathrm{p}$, where e is idempotent element and p is nilpotent.
2. Every element of R / N is idempotent .

Proof 1: let $x^{n}=x^{n+1}=x . x^{n}$
First we claim that x^{n} is idempotent element.
Now, $\left(x^{n}\right)^{2}=x^{n} \cdot x^{n}=x \cdot x \cdot x . \ldots \ldots \ldots \ldots\left(x \cdot x^{n}\right)$
n - times
$=x . x . \ldots \ldots \ldots \ldots \ldots\left(x . x^{n}\right)$
(n -1)-times
$=x^{n}$
Now, let $\mathrm{y}=x-x^{n}$, then $\mathrm{y}=x-x^{n+1}$ and this implies $\mathrm{y}=x-x \cdot x^{n}$,so $\mathrm{y}=x\left(1-x^{n}\right)$.

Now, $y^{n}=\left(x\left(1-x^{n}\right)\right)^{n}$ so, $y^{n}=x^{n}\left(1-x^{n}\right)^{n} \quad$ (since every idempotent is centeral) and by [proposition 2-1], (1- x^{n}) is also idempotent and by [if e is idempotent element of R , then e can not to be nilpotent] , (1- x^{n}) can not be nilpotent. So, $y^{n}=x^{n}\left(1-x^{n}\right)=0$ and $\mathrm{y} \in \mathrm{N}$, therefore $x=x^{n}+x-x^{n} \in \mathrm{E}+\mathrm{N}$.
2) let $y=x-x^{2}$

Now, $x^{n-1} \cdot y=x^{x}+x^{n+1}=0$
$0=x^{n-2} \cdot x y=x^{n-2} x^{2} y=x^{n-2}\left(x-x^{2}\right) y=x^{n-2} y^{2}$
$=x^{n-3} \cdot x y^{2}=x^{n-3} x^{2} \tilde{y}^{2}=x^{n-3}\left(x-x^{2}\right) y^{2}=\mathrm{x}^{\mathrm{n}-3} \mathrm{y}^{3}$
$0=y^{m}$ this implies $\left(x-x^{2}\right)^{m}=0$, then $x-x^{2} \in N$.
So, $x+\mathrm{N}=x^{2}+\mathrm{N}$.

REFERENCES

[1] AL-Kouri Mohammed Rashad (1996)," On п-REGULAR RINGS", M.Sc . Thesis, Mosul University.
[2] Goodearl K.R. (1979), " Von Neumann Regular Rings", Monographs and studies in Math. 4 pi tman London.
[3] Shuker N.H. (1994)," On semi-regular rings " J.Educ. and Sci.Vol.(21).(183-186).

