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ABSTRACT

The n-Wiener polynomials of the Cartesian products of a complete
graph K: with another complete graph K, a star graph S;, a complete
bipartite graph Krs, a wheel W,, and a path graph P, are obtained in this
paper. The n-diameters and the n-Wiener indices of KixK;, KixSy, KixKs,
KW, and KxP; are also obtained.
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1. Introduction.

We follow the terminology of [5] and [6]. Let v be a vertex of a
connected graph G and let S be an (n-1)-subset of vertices of V(G), n>2,
then the n-distance dn(v,S) is defined as follows[7]

dn(v,S)=min{d(v,u):ueS}. .(1.1)

Sometimes, we refer to the n-distance of the pair (v,S) in G by
dn(v,S | G). The n-diameter diam,G of G is defined by

diamnG=max{dn(v,S): ve V(G), ScV(G), S| =n-1}. ..(1.2)
It is clear that for all 2<m<n<p,
diamnG< diammG< diamG. ..(1.3)
The n-Wiener index of G denoted by Wi (G) is defined as
Wn(G)=>" dn(v,S), (1.4)
(vs)

117



Ali. A. Ali and Haveen G. Ahmed

where the summation is taken over all pairs (v,S) for which veV(G),
ScV(G) and | S| =n-1. The n-average distance pin(G) is defined as
p-1
un(G)= Wn(G)/p( J 3<n<p. ...(L.5)
n-1

Let v be any vertex of G, then the n-distance of v denoted dn(Vl G)
or simply dn(V) is defined as

da(v)= > dn(v,S) |8l =n-1. ...(1.6)

ScV(G)

The Wiener polynomial of G with respect to the n-distance, which is

called n-Wiener polynomial and defined as below.

Definition 1.1.[2]. Let Cn(G,k) be the number of pairs (v,S), |S|=n-1,3<n<p,
such that dn(v,S)=k, for each 0<k<§é.. Then, the n-Wiener polynomial
Wi(G;x) is defined by
§n
Whn(G;x)= > Ca(G,K)x*, (L)
k=0
in which d is the n-diameter of G .
One may easily see [2] that for 3<n<p, the number of all (v,S) pairs is

p(pJ,and [1]

0. p-1 p-1
Cn(G,k):p[ ] Cn(G,O):p( J ...(1.8)
k=1 n-1 n-2
p-1 p-1-dleg ™)
Cn(G,1)=p£ ] D ...(1.9)
n-1/ VeV(G) n-1

Definition 1.2[1] Let v be a vertex of G, and let Cn(v,G,k) be the number of
(n-1)-subsets of vertices of G such that

dn(v,SI G)=k , for n>3, 0<k<8.
Then, the n-Wiener polynomial of vertex v, denoted by Whn(v,G;x) is
defined as

Wa(v,G;x)= D" Cn(V,G,k)x*. ...(1.10)
k>0
It is clear that for all k>0,
D Ca(v,G,k)=Cn(G k), ...(1.11)
veV (G)

and
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D Wa(v,G,X)=Wh(G;X) . ...(1.12)

veV (G)

There are many classes of graphs G in which for each k,1<k<dn ,
Cn(v,G,K) is the same for every vertex veV(G); such graphs are called [1]
vertex-n-distance regular. If G is of order p and it is vertex-n-distance
regular, then

Whn(G;X)=pWh(v,G;X), ...(1.13)

where v is any vertex of G.
The authors of references [2],[3] and [4] obtained the n-Wiener polynomials
of some special graphs and some types of composite graphs. In this paper,
we obtain n-Wiener polynomials of the Cartesian products KixK;, KixS;,
Kthr,s, KtXWr and KtxPr.

2. The Cartesian Product of a Complete Graph and a Star

Let K be a complete graph with V(K¢)={uz,u,...,ut}, and Sy be a star
of center vo and end vertices vi,vz,...,vr-1. Each vertex of KixS; is an ordered
pair (ui,vj), 1<i<t, 0<j<r-1. Let K{ be the clique graph [6] of order t of vertex
set {(ui,vj): i=1,2,....,t, 0<j<r-1}. The graph KxS; is depicted in Fig. 2.1.

(us,vo) (ut,Vo)

Fig. 2.1. The graph KixS;.

It is clear that 0<d((ui,V;),(U1,Vm))<3. Thus,
diamn KthrEdiam Kthr <3.
Proposition 2.1. For t>2, r>3, the n-diameter of K{xS; is given by
3, if 2<n<(t-1)(r-2)+1,
diamp KixSi= 1 2, if 1+(t-1)(r-2)<n<t(r-1),
1, if t(r-1)<n<rt.
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Proof. The proof is clear from Fig. 2.1. m
The following theorem gives us the n-Wiener polynomial of K¢xS;. It
is clear that the order of KixS;is p=rt.

Theorem 2.2. For t>2, r>3, 3<n<rt,

ol ol o}
M [ ptr+1J LDy [ ptlj _ L p21r+2j 10

p-2t-r+2
+t(r-1) [ ]x3.
n-1

Proof. It is clear that each vertex of K is of degree r+t-2, and each vertex
of Kd, 1<j<r-1, is of degree t. Therefore, by (1.9) we obtained Cn(KxS,1) as
given in the theorem.

To find Cn(KixSy,3), we notice that there are (t-1)(r-2) vertices each of
distance 3 from each vertex (u,v) of K¢, 1<j<r-1. Thus,

(t-1)(r-2)
Cn(KtXSr,s):t(r'l) [ J .

n-1
Finally, by (1.8) and Proposition 2.1, we get
p-1
Cn(Kthr,Z):p[ J 'Cn(Kthr,l)'Cn(Kthr,s)

n-1

p-t-r+l p-t-1 p-2t-r+2
:t[( ]M[ ]-(r-l)[ J].
n-1 n-1 n-1
Hence, the proof.m

Corollary 2.3. For t>2, r>3, 3<n<rt,

Wi(KixS)=p ( pl} +H[(r-1) ["tj +["”“] +(r-1) [ pz”“] ] =

3. The Cartesian Product of Complete Graphs
Let K: and K; be disjoint complete graphs, and let
(uz,v1),(uz,v2)eV(Kex Ky), then it is clear that
diam KixK=2.
Thus,
diamn KixK<2, 2<n<rt.
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If ui#u2 and vi£vy, then (ug,vi), (U2,v2) are non-adjacent in KixKy; and (u,
vi1), (U1,Vv2), (u2,v2) is a path of length 2. Therefore,

d((ug,v1),(uz,v2))=2.
The degree of each vertex (u,vi1) is r+t-2. Thus, the number of vertices of
distance 2 from (u,v1) is rt-r-t+1. Hence, we have the following result.

Proposition 3.1. For t,r>2,
2 if 2<n<rt-r-t+2,
diamp KixKe=
1 if rt-r-t+3<n<rt.
Now, we find the n-Wiener polynomial of KixK:.

Theorem 3.2. For r,t>2, 3<n<rt

rt-1 rt-1 rt—r—t+1 rt—r—t+1
Wn(KtXKr;x):rt[ J+rt[[ J[ J]x+rt( sz.
n-2 n-1 n-1 n-1

Proof. Itis clear that K¢xK; is vertex-n-distance regular. Thus,
Cn(KtxKr,2):rtCn((U1,V1), Kthr,Z).

Since the number of vertices of distance 2 from (u1,v1) is rt-r-t+1, and there

is no vertex of distance more than 2 from (us,v1), then

re—r-t+l
Cn((ul,vl), Kthr,Z): ( J-

n-1
The constant term and the coefficient of x follow from (1.8) and (1.9).m

Corollary 3.3. Forr,t>2, 3<n<rt,

Wn(Ktx Kr):rt[(rt J +£rtrt+ J ]'-

4. The Cartesian Product of a Complete Graph and a Complete Bipartite
Graphs
Let Kis be a complete bipartite graph of bipartite sets of vertices
Vi={vy,Vo,...,vi}, Vo={W1,Wa,...,ws}; r>s, and let
V(Ky)={uz,ua,...,ut},
then it is clear that in KixK s
d((ui,vn),(uj,vk))=3 when i#j, h#k,
because there is a shortest path
(ui,vh), (uj,vh), (u;,w), (Uj,vk), weVa.
Similarly,
d((ui,wn),(uj,wk))=3 when i#j, h#k.
Moreover,
d((ui,vn), (ui,vi))= d((ui,wn),(ui,wk))=2.
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Therefore,

diam Kthr,s:S,
and so

diamp KixKs<3, 2<n<p, p=t(r+s).
For any vertex (ui,vn), the number of vertices of distance 3 from (ui,vn) in
KixKrsis (t-1)(r-1). Similarly, there are (t-1)(s-1) vertices of distance 3 from
(ui,wk). Moreover, the degree of each vertex of KixK;s is either r+t-1 or s+t-
1

Thus, we have the following result.

Proposition 4.1. For t,r,s>2, r>s, then the n-diameter of KixK;s is given
3, for 2<n<tr-t-r+2,
diamy KixKrs=+4 2, for tr-t-rt3<n<p-t-s,
1, for p-t-s+1<n<p.
|
The next theorem determines the n-Wiener polynomial of KixKjs.

Theorem 4.2. For t,r,s>2, 3<n<p, p=t(r+s),

Wh(KxKrs;X)=p ( plj +[p ( le it L p”] " [ DStJ .
+{rt[ L pStJ ) Lrttrﬂj s ( pm] _ (tstsﬂ] 1
+[rt [rt—t—rﬂJ it (ts—t—sﬂ] ]X3.

Proof. Cn(KxK;s,0) and Cn(KixK;s,1) are obtained from (1.8) and (1.9). To
find the other coefficients, we notice that Cn((a,b), KixK:s,K) is the same for
every vertex (a,b)eV(Ky)xV1, and Cn((c,d),KixKrs,K) is the same for every
vertex (c,d)eV(Ky)xV2, for k=2,3. Since the number of vertices of distance
3 from vertex (a,b) is (t-1)(r-1), and the number of vertices of distance 3
from vertex (c,d) is (t-1)(s-1), then we get the coefficient of x3 as given in
the statement of the theorem.

Finally, Cn(KxKys,2) is obtained using the relation (1.8) and the coefficients
already obtained. This completes the proof. m

Corollary 4.3. For t,r,s>2, and 3<n<p in which p=t(r+s),

p-1 p-s-t re—t—r+1
Win(KxKjs)= P( J*‘ rt[( J"‘{ }]
n-1 n-1 n-1
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p-r-t ts—t—r+1
+st[[ J{ ]] :
n-1 n-1
Proof. The n-Wiener index is obtained from W,(KxK;s;x) by taking the

derivative with respect to x, and then put x=1, and simplified the
expression.m

5. The Cartesian Product of a Complete Graph and a Wheel
Let W be a wheel of order >4 and let its center be denoted by vo
and its other vertices be vi,va,...,vr.1. Moreover, let V(K¢)={uz,u,...,us}. The
order of KixW; is p=rt, and in KixW;
deg(ui,vj)=t+2, for 1<i<t, 1<j<r-1,
deg(ui,vo)=t+r-2.
One can easily see that in KixW;
d((ui,vo),(uj,vh))=2, for i#j, h#0,
d((ui,vn),(uj,vm))=3, for i#j, h#m, h,m#0,
because (ui,vn), (Uj,vh), (Uj,Vvo), (Uj,vm) is a shortest (ui,vh)-(uj,vm) when
VhVmée W, Thus,
diam KxW,=3, when r>5.
Thus, for r>5, t=2,
diamn KixW<3.
Since for each vertex (ui,vn), 1<i<t, h#0 there are (t-1)(r-4) vertices of
distance 3 from (ui,vn), and deg(ui,vn)=t+2, then we have the following
result.

Proposition 5.1. For t>2, r>5, the n-diameter of KxW, is given by

3, for 2<n<1+(t-1)(r-4),
diamny KexWi= 4 2, for 2+(t-1)(r-4)<n<p-t-2,
1, for p-t-1<n<p. [
The following theorem gives us the n-Wiener polynomial of KixW,.

Theorem 5.2. For t>2, r>5, 3<n<p, p=tr

S G IVTECN
+[t(r-1) [ptj + L ptrﬂ] 1) L pr4t+4j e

p-r—4t+4
+t(r-1) [ ] x3.

n-1

Proof. The coefficients of x° and x are obtained using (1.8) and (1.9). To
obtain the coefficient of x3, we notice that for any (ui,vo), 1<i<t and every
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(n-1)-set of vertices S, dn((ui,vo0),S)<2. But for every vertex (Uj,vj), 1<i<t,
1<j<r-1, there are (t-1)(r-4) vertices each of distance 3 from (ui,v;).
p-r-4t+4

Therefore, there are [ ] sets S, |S|=n-1, such that dn((ui,v;),S)=3.

n-1

Thus,

p-r-4t+4
Cn(KtXWr,s):t(r'l) [ ] .
n-1

We obtain Cn(KixW},2) by using (1.8). Hence, the proof. m
Corollary 3.4.3. For t>2, r>5 and 3<n<rt,

p-1 p—t-3 p-r—t+1 p-r-4t+4
Wn(Kthr):p[ ] +t(r-1) ( } +t( J +t(r-1) [ j
n-2 n-1 n-1 n-1

Proof. The proof follows from Theorem 5.2 and the fact
Wn(Kthr): WDn(Kthr;l). [ |

6. The Cartesian Product of a Path and a Complete Graph
Let Py, ©>2 be a path graph of order r and
Prvi,vo,...vr,
and let
V(Ki)={ug,uz,...,ut}, t=3.
The Cartesian product K¢xP; is shown in Fig. 6.1. The following proposition
determines the n-diameter of KxP; .

Proposition 6.1. For r>2, t>3, 2<n<rt,
diamn KexP=r+1 n/t].

37V o (Ut;Vl)
T -

(Uz,v2)  (us,V2)

(ug,v1

(u,v2)

(Ul,Vr-l) --- (Ut,Vr.l)

(Uz,vr) --- (usvr)
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Fig.6.1. The graph KxPr

Proof. From Fig. 6.1, we notice that dn((u,v),S), |S|=n-1 has maximum value
when (u,v) is one of the vertices in AiUA,, where

Ai={(u;,vi): j=1,2,...,t},
and S is the (n-1)-set of vertices farthest from (u,v) in K¢xP;. Thus, we may
take the vertex (ui,vr), and S consisting of vertices of Ai,Ao,...,Aiand some
vertices of Ai+1-{(u1,vi+1)} when

it<n-1<t(i+1)-1;
and when

2<n<t, then ScAr-{(u1,v1)}.
In the last case,

diamn KxPy=r ;
and in general case of n,

diamn KixPy=r-i, it+1<n<(i+1)t.
One can easily see that

i<l n/t 1.
Hence, in any case of the value of n,
diamn KexPr =r+1-n/t]. m
Now, we obtain the n-Wiener polynomial of KxP; in the following

two theorems.

Theorem 6.2. Let r=2s, s>1, t>3 and 3<n<rt. Then

o,
Wh(KxPr:x)=>" Cn(KixPr,K)X,
k

=0

where
rt-1
Cn(KtxPr,O):rt( J )
n-2
re-1 re—t-1 re—t-2
cn(Ktxpr,l)zrt( ]-2{ ]-t(r-a( J
n-1 n-1 n-1
for 2<k<s
k-1 [ a+t-ti a—it a+2t-tk-1 a-tk
CrlkoPk=2t2 S M J}+2{[ j[ J}
i=1 n-1 n-1 n-1 n-1
a+2t-tk-1 a-tk-1
+(S-k){( J( J}],
n-1 n-1
for k>s+1
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cn(Ktxpr,k)zthS: {(wﬁ)-[atj},

n-1 n-1

in which

a=p-t(k-1)-1.
Proof. Cn(KxPy,0) and Cn(KxPy,1) are obtained from (1.8) and (1.9). For
2<k<dn we shall consider three cases for the values of k.
(1) If 2<k<s, then for each 1<i<s the number of vertices of distance k
from any vertex, say (u;,vi), of Ai is t and the number of vertices of distance
more than k from (uj,vi) is p-t(i+k-1)-1=a-ti when 1<i<k-1 which gives us

a:kal:[ }[ " ] (6.1)

If i=k, then there are 2t-1 vertices of distance k from (uj,vi), and there
are p-t(2k-1)-1 vertices of distance more than k. This gives us

n-1( 2t-1\( p-2kt+t-1
S
=L\ n-1-j
p-2kt+3t-2 p—2kt+t-1
)
a+2t-tk-1 a—kt
( N } 62
n-1 n-1

If k+1<i<s, then there are 2t vertices of distance k from (uj,vi) and
there are p-t(2k-1)-2 vertices of distance more than k. This gives us

=331
:<s-k)[(_ J( _]1.
=(s-k)[[a ](]] (63)

Since r=2s and each Ai consists of t vertices,
Cn(KtxPr,k)=2t(atb+c) when 2<k<s.
2 If k=s, then using the same reasoning as in case (1) we find that (6.1)
and (6.2) are true for this case, and (6.3) does not hold. Thus,
Cn(KixPy,k)=2t(a+b) when k=s.
(3) If k>s+1, then it is clear that both (6.2) and (6.3) do not hold. Thus,
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Cn(KtxPr,k)==2ta when k>s+1.
Substituting a, b and ¢, we get the required results. m

Theorem 6.3. Let r=2s+1, s>1, t>3 and 3<n<rt.
Then
§n
Wn(KtXPr,X): Cn(KtXPr,k)Xk,

=0

=~

where

Cn(KtXPr,O):rt J ,

Cn(Ktxpr,l) rt[rt 1] (rt t 1} _t(r_z) (rtth’
Cn(KtXP“k):Art[ kz,i a+t—ti] B {a—it)} N (oﬁ-Zt—tk—lJ ] {a—ﬂ(] ]

1
a+2t—tk-1 a-tk-1
+t(r-2k){ ( ] ( j }
for k=s+1,

Cn(KxPr,k)= 2t|21: {(w “] [ J}+t( J

for s+1<k<dn,

Cn(KxPy,k)= ZtZ {[M “] [ ]},

=1

for 2<k<s

in which
a=p-t(k-1)-1.

Proof. The proof of Cn(KXPy,k) for k#s+1 is similar to that for even r given

in Theorem 6.2. For k=s+1 we add the number of pairs ((uj,Vs+1),S) of n-
2t-2

distance s+1, which equals ( J for each 1<j<t. m

n-1
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