Hosoya Polynomials of Steiner Distance of the Sequential Join of Graphs

Herish O. Abdullah
herish_omer@yahoo.com
College of Sciences
University of Salahaddin
Received on: 26/11/2007
Accepted on: 30/01/2008
ABSTRACT
The Hosoya polynomials of Steiner \boldsymbol{n}-distance of the sequential join of graphs $\boldsymbol{J}_{\mathbf{3}}$ and $\boldsymbol{J}_{\mathbf{4}}$ are obtained and the Hosoya polynomials of Steiner 3distance of the sequential join of \boldsymbol{m} graphs $\boldsymbol{J}_{\boldsymbol{m}}$ are also obtained.

Keywords: Steiner \boldsymbol{n}-distance, Hosoya polynomial, Sequential Join.

هيرش عبدالله
كلية العلوم، جامعة صلاح الدين

تاريخ القبول: 2008/01/30
تاريخ الاستلام: 2007/11/26

الملخص
تضمن هذا البحث ايجاد متعددات حدود هوسويا لمسافة ستينر - n لكل من بيانات الجمع

$$
\begin{aligned}
& \text { التتابعي } \\
& \text {. }
\end{aligned}
$$

الكلمات المفتاحية: مسافة ستينر -n، متعددة حدود هوسويا، الجمع التتابعي.

1. Introduction

We follow the terminology of $[\mathbf{2 , 3}]$. For a connected graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ of order \boldsymbol{p}, the Steiner distance $[\mathbf{5 , 6 , 7}]$ of a non-empty subset $\boldsymbol{S} \subseteq \boldsymbol{V}(\boldsymbol{G})$, denoted by $\boldsymbol{d}_{\boldsymbol{G}}(\boldsymbol{S})$, or simply $\boldsymbol{d}(\boldsymbol{S})$, is defined to be the size of the smallest connected subgraph $\boldsymbol{T}(\boldsymbol{S})$ of \boldsymbol{G} that contains $\boldsymbol{S} ; \boldsymbol{T}(\boldsymbol{S})$ is a tree called a Steiner tree of \boldsymbol{S}. If $|\boldsymbol{S}|=\mathbf{2}$, then $\boldsymbol{d}(\boldsymbol{S})$ is the distance between the two vertices of \boldsymbol{S}. For $2 \leq \boldsymbol{n} \leq \boldsymbol{p}$ and $|\boldsymbol{S}|=\boldsymbol{n}$, the Steiner distance of \boldsymbol{S} is called Steiner \boldsymbol{n}-distance of \boldsymbol{S} in \boldsymbol{G}. The Steiner \boldsymbol{n}-diameter of \boldsymbol{G}, denoted by diam $_{n}^{*} \boldsymbol{G}$ or simply $\delta_{n}^{*}(\boldsymbol{G})$, is defined by:
$\operatorname{diam}_{n}^{*} G=\max \left\{d_{G}(S): S \subseteq V(G),|S|=n\right\}$.
Remark 1.1. It is clear that
(1) If $n>m$, then $\operatorname{diam}_{n}^{*} G \geq \operatorname{diam}_{m}^{*} G$.
(2) If $S^{\prime} \subseteq S$, then $d_{G}\left(S^{\prime}\right) \leq d_{G}(S)$.

The Steiner n-distance of a vertex $\boldsymbol{v} \in \boldsymbol{V}(\boldsymbol{G})$, denoted by $\boldsymbol{W}_{n}^{*}(\boldsymbol{v}, \boldsymbol{G})$, is the sum of the Steiner \boldsymbol{n}-distances of all \boldsymbol{n}-subsets containing \boldsymbol{v}. The sum of Steiner \boldsymbol{n}-distances of all \boldsymbol{n}-subsets of $\boldsymbol{V}(\boldsymbol{G})$ is denoted by $\boldsymbol{d}_{\boldsymbol{n}}(\boldsymbol{G})$ or $\boldsymbol{W}_{n}^{*}(\boldsymbol{G})$. It is clear that

$$
\begin{equation*}
W_{n}^{*}(G)=n^{-1} \sum_{v \in V(G)} W_{n}^{*}(v, G) . \tag{1.1}
\end{equation*}
$$

The graph invariant $W_{n}^{*}(G)$ is called Wiener index of the Steiner n-distance of the graph \boldsymbol{G}.
Definition 1.2[1] Let $C_{n}^{*}(\boldsymbol{G}, \boldsymbol{k})$ be the number of n-subsets of distinct vertices of \boldsymbol{G} with Steiner \boldsymbol{n}-distance \boldsymbol{k}. The graph polynomial defined by

$$
\begin{equation*}
H_{n}^{*}(G ; x)=\sum_{k=n-1}^{\delta_{n}^{*}} C_{n}^{*}(G, k) x^{k}, \tag{1.2}
\end{equation*}
$$

where $\delta_{\boldsymbol{n}}^{*}$ is the Steiner \boldsymbol{n}-diameter of \boldsymbol{G}; is called the Hosoya polynomial of Steiner \boldsymbol{n}-distance of \boldsymbol{G}.

It is clear that

$$
\begin{equation*}
W_{n}^{*}(G)=\sum_{k=n-1}^{\delta_{n}^{*}} k C_{n}^{*}(G, k) \tag{1.3}
\end{equation*}
$$

For $1 \leq \boldsymbol{n} \leq \boldsymbol{p}$, let $\boldsymbol{C}_{\boldsymbol{n}}^{*}(\boldsymbol{u}, \boldsymbol{G}, \boldsymbol{k})$ be the number of \boldsymbol{n}-subsets \boldsymbol{S} of distinct vertices of \boldsymbol{G} containing \boldsymbol{u} with Steiner \boldsymbol{n}-distance \boldsymbol{k}. It is clear that $C_{1}^{*}(u, \boldsymbol{G}, 0)=1$.
Define

$$
\begin{equation*}
\boldsymbol{H}_{n}^{*}(u, G ; x)=\sum_{k=n-1}^{\delta_{n}^{*}} C_{n}^{*}(u, G, k) x^{k} . \tag{1.4}
\end{equation*}
$$

Obviously, for $2 \leq \boldsymbol{n} \leq \boldsymbol{p}$

$$
\begin{equation*}
H_{n}^{*}(G ; x)=\frac{1}{n} \sum_{u \in V(G)} H_{n}^{*}(u, G ; x) . \tag{1.5}
\end{equation*}
$$

Ali and Saeed [1] were first who studied this distance-based graph polynomial for Steiner \boldsymbol{n}-distances, and established Hosoya polynomials of Steiner \boldsymbol{n}-distance for some special graphs and graphs having some kind of regularity, and for Gutman's compound graphs $\boldsymbol{G}_{\mathbf{1}} \bullet \boldsymbol{G}_{\mathbf{2}}$ and $\boldsymbol{G}_{\mathbf{1}}: \boldsymbol{G}_{\mathbf{2}}$ in terms of Hosoya polynomials of $\boldsymbol{G}_{\mathbf{1}}$ and $\boldsymbol{G}_{\mathbf{2}}$.
Definition 1.3[2] Let $\boldsymbol{G}_{\mathbf{1}}, \boldsymbol{G}_{\mathbf{2}}, \ldots, \boldsymbol{G}_{\boldsymbol{m}}, \boldsymbol{m} \geq \mathbf{2}$, be vertex disjoint graphs. The sequential join of $\boldsymbol{G}_{\mathbf{1}}, \boldsymbol{G}_{\mathbf{2}}, \ldots, \boldsymbol{G}_{\boldsymbol{m}}$ is a graph denoted by

$$
J_{m}=G_{1}+G_{2}+\ldots+G_{m},
$$

and defined by

$$
\begin{aligned}
& V\left(J_{m}\right)=\bigcup_{i=1}^{m} V\left(G_{i}\right), \\
& E\left(J_{m}\right)=\left\{\bigcup_{i=1}^{m} E\left(G_{i}\right)\right\} \bigcup\left\{u v \mid u \in V_{i} \text { and } v \in V_{i+1}, \text { for } i=1,2, \ldots, m-1\right\}
\end{aligned}
$$

in which $\boldsymbol{V}_{\boldsymbol{i}}=\boldsymbol{V}\left(\boldsymbol{G}_{i}\right)$, as depicted in the following figure.

Fig. $1.1 \boldsymbol{J}_{\boldsymbol{m}}$
It is clear that

$$
p\left(J_{m}\right)=\sum_{i=1}^{m} p_{i}, q\left(J_{m}\right)=q_{m}+\sum_{i=1}^{m-1}\left(q_{i}+p_{i} p_{i+1}\right),
$$

in which
$\boldsymbol{p}_{i}=\boldsymbol{p}\left(\boldsymbol{G}_{i}\right)$ and $\boldsymbol{q}_{i}=\boldsymbol{q}\left(\boldsymbol{G}_{\boldsymbol{i}}\right)$.
One can easily see that for $\boldsymbol{m} \geq 3, \sum_{i=1}^{m} \boldsymbol{G}_{i}$ is not commutative, that is for $m=3 \quad G_{1}+G_{2}+G_{3} \neq G_{1}+G_{3}+G_{2}$.

In [8], Saeed obtained the (ordinary) Hosoya polynomials of $\boldsymbol{J}_{\boldsymbol{m}}$, and in [7], Herish obtained the Steiner \boldsymbol{n}-diameter of the sequential join of \boldsymbol{m} empty graphs and of \boldsymbol{m} complete graphs. Also, the Hosoya polynomials of Steiner distance of the sequential join of \boldsymbol{m} empty graphs and of \boldsymbol{m} complete graphs were obtained. For $\boldsymbol{m} \geq \mathbf{3}$ and $\boldsymbol{n} \geq \mathbf{2}$, the Steiner \boldsymbol{n}-diameter of the sequential join of \boldsymbol{m} complete graphs is given by[7]
diam $_{n}^{*} J_{m}=\left\{\begin{array}{cl}m+n-3, & \text { if } 2 \leq n \leq p_{1}+p_{m} \\ m+n-3-\alpha, & \text { if } p_{1}+p_{m}+1 \leq n \leq p,\end{array}\right.$
where $\boldsymbol{\alpha}$ is the smallest integer such that

$$
\boldsymbol{p}_{1}+\boldsymbol{p}_{\boldsymbol{m}}+1 \leq \boldsymbol{n} \leq \boldsymbol{p}_{1}+\boldsymbol{p}_{\boldsymbol{m}}+\sum_{i=1}^{\alpha} \boldsymbol{r}_{\boldsymbol{i}}
$$

It is obvious that Eq. $\mathbf{1 . 6}$ holds for the sequential join of \boldsymbol{m} graphs $\boldsymbol{J}_{\boldsymbol{m}}$.
In this paper, a generalization of the results obtained in [7] is given. We obtained the Hosoya polynomials of Steiner \boldsymbol{n}-distance of $\boldsymbol{J}_{\mathbf{3}}$ and \boldsymbol{J}_{4}; and the Hosoya polynomials of Steiner 3-distance of $\boldsymbol{J}_{\boldsymbol{m}}, \boldsymbol{m} \geq \mathbf{4}$. We also obtained $\boldsymbol{H}_{n}^{*}\left(\boldsymbol{J}_{3} ; \boldsymbol{x}\right)$, for $n \geq 2$ and $\boldsymbol{H}_{3}^{*}\left(\boldsymbol{J}_{\boldsymbol{m}} ; \boldsymbol{x}\right)$, for $\boldsymbol{m} \geq \mathbf{4}$, where each of \boldsymbol{G}_{i}, for $i=1,2, \ldots, m$ is a special graph.

2. Hosoya Polynomials of Steiner n-Distance of J_{3} and J_{4}

In this section, we consider $\boldsymbol{J}_{\boldsymbol{m}}$, for $\boldsymbol{m}=\mathbf{3}$ and $\boldsymbol{m}=\mathbf{4}$. Let \boldsymbol{S} be any \boldsymbol{n} subset of vertices of $\boldsymbol{J}_{\boldsymbol{m}}$. Let $\boldsymbol{B}\left(\boldsymbol{G}_{\boldsymbol{i}}\right)$, for $\boldsymbol{i}=\mathbf{1 , 2}, \ldots, \boldsymbol{m}$, be the number of all \boldsymbol{n} subsets \boldsymbol{S} such that $\langle\boldsymbol{S}\rangle$ is connected in $\boldsymbol{G}_{\boldsymbol{i}}$. The following proposition determines the Hosoya polynomials of Steiner \boldsymbol{n}-distance of $\boldsymbol{J}_{\mathbf{3}}$.

Proposition 2.1. For $3 \leq n \leq p\left(=p_{1}+p_{2}+p_{3}\right)$,

$$
H_{n}^{*}\left(J_{3} ; x\right)=C_{1} x^{n-1}+C_{2} x^{n},
$$

where

$$
\begin{aligned}
& C_{1}=\binom{p}{n}-\binom{p_{1}+p_{2}}{n}-\binom{p_{2}}{n}+B\left(G_{1}\right)+B\left(G_{2}\right)+B\left(G_{3}\right), \\
& C_{2}=\binom{p_{2}}{n}+\binom{p_{1}+p_{3}}{n}-\left[B\left(G_{1}\right)+B\left(G_{2}\right)+B\left(G_{3}\right)\right],
\end{aligned}
$$

and

$$
\boldsymbol{B}\left(\boldsymbol{G}_{1}\right), \boldsymbol{B}\left(\boldsymbol{G}_{2}\right) \text { and } \boldsymbol{B}\left(\boldsymbol{G}_{3}\right) \text { are as defined above. }
$$

Proof. It is clear that

$$
\operatorname{diam}_{n}^{*} J_{3}=\left\{\begin{array}{ccc}
n, & \text { if } & 3 \leq n \leq p_{1}+p_{3} \\
n-1, & \text { if } & \text { otherwise }
\end{array} .\right.
$$

Therefore,

$$
H_{n}^{*}\left(J_{3} ; x\right)=C_{1} x^{n-1}+C_{2} x^{n}
$$

in which $\boldsymbol{C}_{\mathbf{1}}$ is the number of all \boldsymbol{n}-subsets of $\boldsymbol{V}\left(\boldsymbol{J}_{\mathbf{3}}\right)$ with Steiner distance equals $\boldsymbol{n} \mathbf{- 1}$, and $\boldsymbol{C}_{\mathbf{2}}$ is the number of all \boldsymbol{n}-subsets of $\boldsymbol{V}\left(\boldsymbol{J}_{\mathbf{3}}\right)$ with Steiner distance equals \boldsymbol{n}.
Therefore,

$$
C_{2}=\sum_{i=1}^{3}\left\{\binom{p_{i}}{n}-B\left(G_{i}\right)\right\}+\sum_{j=1}^{n-1}\binom{p_{1}}{j}\binom{p_{3}}{n-j}
$$

$$
=\binom{p_{2}}{n}+\binom{p_{1}+p_{3}}{n}-\left[B\left(G_{1}\right)+B\left(G_{2}\right)+B\left(G_{3}\right)\right] .
$$

Now, since

$$
\boldsymbol{C}_{1}+\boldsymbol{C}_{2}=\binom{p}{n},
$$

therefore

$$
C_{1}=\binom{p}{n}-C_{2}=\binom{p}{n}-\binom{p_{1}+p_{3}}{n}-\binom{p_{2}}{n}+B\left(G_{1}\right)+B\left(G_{2}\right)+B\left(G_{3}\right)
$$

This completes the proof.
The following corollary computes the \boldsymbol{n}-Wiener index of $\boldsymbol{J}_{\mathbf{3}}$.
Corollary 2.2. For $3 \leq n \leq p\left(=p_{1}+p_{2}+p_{3}\right)$,

$$
W_{n}^{*}\left(J_{3}\right)=n\binom{p}{n}-C_{1},
$$

where $\boldsymbol{C}_{\mathbf{1}}$ is given in Proposition 2.1.
Next, we shall find the Hosoya polynomials of Steiner \boldsymbol{n}-distance of $\boldsymbol{J}_{\mathbf{4}}$.
Proposition 2.3. For $3 \leq n \leq p\left(=p_{1}+p_{2}+p_{3}+p_{4}\right)$,

$$
H_{n}^{*}\left(J_{4} ; x\right)=C_{1} x^{n-1}+C_{2} x^{n}+C_{3} x^{n+1},
$$

where

$$
\begin{aligned}
& C_{1}=\sum_{i=1}^{n-2} \sum_{j=1}^{n-1-i}\left[\binom{p_{1}}{i}\binom{p_{2}}{j}\binom{p_{3}}{n-i-j}+\binom{p_{2}}{i}\binom{p_{3}}{j}\binom{p_{4}}{n-i-j}\right] \\
& +\sum_{i=1}^{n-3} \sum_{j=1}^{n-2-i} \sum_{k=1}^{n-1-i-j}\binom{p_{1}}{i}\binom{p_{2}}{j}\binom{p_{3}}{k}\binom{p_{4}}{n-i-j-k}+\sum_{i=1}^{4} B\left(G_{i}\right) \\
& +\binom{p_{1}+p_{2}}{n}+\binom{p_{2}+p_{3}}{n}+\binom{p_{3}+p_{4}}{n}-\binom{p_{1}}{n}-2\binom{p_{2}}{n}-2\binom{p_{3}}{n}-\binom{p_{4}}{n}, \\
& C_{2}=\binom{p}{n}-\sum_{i=1}^{n-2} \sum_{j=1}^{n-1-i}\left[\binom{p_{1}}{i}\binom{p_{2}}{j}\binom{p_{3}}{n-i-j}\right] \\
& -\sum_{i=1}^{n-3} \sum_{j=1}^{n-2-i} \sum_{k=1}^{n-1-i-j}\binom{p_{1}}{i}\binom{p_{2}}{j}\binom{p_{3}}{k}\binom{p_{4}}{n-i-j-k}-\sum_{i=1}^{4} B\left(G_{i}\right) \\
& -\binom{p_{1}+p_{2}}{n}-\binom{p_{2}+p_{3}}{n}-\binom{p_{3}+p_{4}}{n}-\binom{p_{1}+p_{4}}{n}
\end{aligned}
$$

$$
+2\binom{p_{1}}{n}+2\binom{p_{2}}{n}+2\binom{p_{3}}{n}+2\binom{p_{4}}{n},
$$

and
$C_{3}=\binom{p_{1}+p_{4}}{n}-\binom{p_{1}}{n}-\binom{p_{4}}{n}$.
Proof. It is clear that $\boldsymbol{n - 1} \leq \operatorname{diam}_{n}^{*} \boldsymbol{J}_{\mathbf{4}} \leq \boldsymbol{n + 1}$, therefore the Hosoya polynomials of Steiner n-distance of J_{4} has the following form

$$
H_{n}^{*}\left(J_{4} ; x\right)=C_{1} x^{n-1}+C_{2} x^{n}+C_{3} x^{n+1} .
$$

To find $\boldsymbol{C}_{\mathbf{1}}, \boldsymbol{C}_{\mathbf{2}}$ and $\boldsymbol{C}_{\mathbf{3}}$, let \boldsymbol{S} be any \boldsymbol{n}-subset of vertices of \boldsymbol{J}_{4}, then we have the following possibilities for the subset \boldsymbol{S}.
(I) $\boldsymbol{d}(\boldsymbol{S})=\boldsymbol{n - 1}$ if and only if S has any of the following subcases:
(1) \boldsymbol{S} is a subset of $\boldsymbol{V}_{\boldsymbol{i}}$, for $\boldsymbol{i}=\mathbf{1 , 2 , 3 , 4}$ and $\langle\boldsymbol{S}\rangle$ is a connected subgraph of $\boldsymbol{G}_{\boldsymbol{i}}$. The number of these \boldsymbol{n}-subsets is given by

$$
B\left(G_{1}\right)+B\left(G_{2}\right)+B\left(G_{3}\right)+B\left(G_{4}\right) .
$$

(2) $S \subseteq V_{k} \cup V_{k+1}$ and $\left(S \cap V_{k} \neq \varphi \wedge S \cap V_{k+1} \neq \varphi\right), k=1,2,3$.

The number of these subsets S is given by

$$
\begin{aligned}
& \sum_{i=1}^{n-1}\binom{p_{1}}{i}\binom{p_{2}}{n-i}+\sum_{i=1}^{n-1}\binom{p_{2}}{i}\binom{p_{3}}{n-i}+\sum_{i=1}^{n-1}\binom{p_{3}}{i}\binom{p_{4}}{n-i} \\
& =\binom{p_{1}+p_{2}}{n}+\binom{p_{2}+p_{3}}{n}+\binom{p_{3}+p_{4}}{n}-\binom{p_{1}}{n}-2\binom{p_{2}}{n}-2\binom{p_{3}}{n}-\binom{p_{4}}{n},
\end{aligned}
$$

(3) $\left(S \subseteq \bigcup_{i=1}^{3} V_{i} \wedge S \cap V_{i} \neq \varphi\right)$ or $\left(S \subseteq \bigcup_{i=2}^{4} V_{i} \wedge S \cap V_{i} \neq \varphi\right)$. The number of these \boldsymbol{n}-subsets is given by

$$
\sum_{i=1}^{n-2} \sum_{j=1}^{n-1-i}\left[\binom{p_{1}}{i}\binom{p_{2}}{j}\binom{p_{3}}{n-i-j}+\binom{p_{2}}{i}\binom{p_{3}}{j}\binom{p_{4}}{n-i-j}\right]
$$

(4) $\boldsymbol{S} \cap \boldsymbol{V}_{\boldsymbol{i}} \neq \boldsymbol{\varphi}, \boldsymbol{i}=\mathbf{1 , 2 , 3 , 4}$. The number of these \boldsymbol{n}-subsets is given by

$$
\sum_{i=1}^{n-3} \sum_{j=1}^{n-2-i} \sum_{k=1}^{n-1-i-j}\binom{p_{1}}{i}\binom{p_{2}}{j}\binom{p_{3}}{k}\binom{p_{4}}{n-i-j-k}
$$

From (1), (2), (3) and (4), we get $\boldsymbol{C}_{\mathbf{1}}$ as given in the statement of the proposition.
(II) $\boldsymbol{d}(\boldsymbol{S})=\boldsymbol{n + 1}$ if and only if $\boldsymbol{S} \subseteq V_{1} \cup V_{4}$ and $\quad\left(S \cap V_{1} \neq \varphi\right.$ and $\left.S \cap V_{4} \neq \varphi\right)$. The number of these S 's is given by
$\sum_{i=1}^{n-1}\binom{p_{1}}{i}\binom{p_{4}}{n-i}=\binom{p_{1}+p_{4}}{n}-\binom{p_{1}}{n}-\binom{p_{4}}{n}$.
So, \boldsymbol{C}_{3} is as given.
Now, since $\boldsymbol{C}_{\mathbf{1}}+\boldsymbol{C}_{\mathbf{2}}+\boldsymbol{C}_{\mathbf{3}}=\binom{p}{n}$,
therefore

$$
C_{2}=\binom{p}{n}-C_{1}-C_{3}
$$

This completes the proof.
Remark. The triple summation in $\boldsymbol{C}_{\mathbf{1}}$ is taken to be zero when $\boldsymbol{n}=\mathbf{3}$.
The following corollary computes $\boldsymbol{W}_{n}^{*}\left(\boldsymbol{J}_{\mathbf{4}}\right)$.
Corollary 2.4. For $3 \leq n \leq p\left(=p_{1}+p_{2}+p_{3}+p_{4}\right)$,

$$
W_{n}^{*}\left(J_{4}\right)=n\binom{p}{n}-C_{1}+C_{3}
$$

where $\boldsymbol{C}_{\mathbf{1}}$ and $\boldsymbol{C}_{\mathbf{3}}$ are given in Proposition $\mathbf{2 . 3}$
Remark. For $m \geq 5$, the calculation of the coefficients of $\boldsymbol{H}_{\boldsymbol{n}}^{*}\left(\boldsymbol{J}_{\boldsymbol{m}} ; \boldsymbol{x}\right)$ is complicated.

The numbers $\boldsymbol{B}\left(\boldsymbol{G}_{\mathbf{1}}\right), \boldsymbol{B}\left(\boldsymbol{G}_{\mathbf{2}}\right)$ and $\boldsymbol{B}\left(\boldsymbol{G}_{\mathbf{3}}\right)$ are given in Proposition 2.1 can be counted for some specific graphs $\boldsymbol{G}_{\mathbf{1}}, \boldsymbol{G}_{\mathbf{2}}$ and $\boldsymbol{G}_{\mathbf{3}}$ as in the following examples.

Example 2.5. Let $\boldsymbol{N}_{\boldsymbol{p}_{1}}, \boldsymbol{N}_{\boldsymbol{p}_{2}}$ and $\boldsymbol{N}_{\boldsymbol{p}_{3}}$ be empty graphs of orders $\boldsymbol{p}_{\mathbf{1}}, \boldsymbol{p}_{\mathbf{2}}$ and \boldsymbol{p}_{3} respectively, then

$$
B\left(N_{p_{1}}\right)=B\left(N_{p_{2}}\right)=B\left(N_{p_{3}}\right)=0
$$

Example 2.6. Let $\boldsymbol{K}_{\boldsymbol{p}_{1}}, \boldsymbol{K}_{\boldsymbol{p}_{2}}$ and $\boldsymbol{K}_{\boldsymbol{p}_{3}}$ be complete graphs of orders $\boldsymbol{p}_{\mathbf{1}}, \boldsymbol{p}_{\mathbf{2}}$ and \boldsymbol{p}_{3} respectively, then

$$
B\left(K_{p_{i}}\right)=\binom{p_{i}}{n}, \text { for } i=1,2,3
$$

Example 2.7. Let $\boldsymbol{P}_{\boldsymbol{\alpha}_{1}}, \boldsymbol{P}_{\boldsymbol{\alpha}_{2}}$ and $\boldsymbol{P}_{\boldsymbol{\alpha}_{3}}$ be path graphs of orders $\boldsymbol{\alpha}_{\mathbf{1}}, \boldsymbol{\alpha}_{\mathbf{2}}$ and $\boldsymbol{\alpha}_{\mathbf{3}}$ respectively, then

$$
B\left(P_{\alpha_{i}}\right)=\alpha_{i}-n+1, \text { for } i=1,2,3
$$

Example 2.8. Let $\boldsymbol{C}_{\alpha_{1}}, \boldsymbol{C}_{\boldsymbol{\alpha}_{2}}$ and $\boldsymbol{C}_{\boldsymbol{\alpha}_{3}}$ be cycle graphs of orders $\boldsymbol{\alpha}_{\mathbf{1}}, \boldsymbol{\alpha}_{\mathbf{2}}$ and α_{3} respectively, then

$$
B\left(C_{\alpha_{i}}\right)=\alpha_{i}, \text { for } i=1,2,3 .
$$

Example 2.9. Let $\boldsymbol{W}_{\alpha_{1}}, \boldsymbol{W}_{\alpha_{2}}$ and $\boldsymbol{W}_{\alpha_{3}}$ be wheel graphs of orders $\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}$ and α_{3} respectively, then

$$
B\left(W_{\alpha_{i}}\right)=\binom{\alpha_{i}-1}{n-1}+\alpha_{i}-1 \text {, for } i=1,2,3 .
$$

Example 2.10. Let $\boldsymbol{K}_{\alpha_{i}, \beta_{i}}$, for $\boldsymbol{i = 1 , 2 , 3}$, be complete bipartite graphs of partite sets of size $\alpha_{i} \beta_{i}$, then

$$
B\left(K_{\alpha_{i}, \beta_{i}}\right)=\binom{\alpha_{i}+\beta_{i}}{n}-\binom{\alpha_{i}}{n}-\binom{\beta_{i}}{n} \text {, for } i=1,2,3 .
$$

3. Hosoya Polynomials of Steiner 3-Distance of $\boldsymbol{J}_{\boldsymbol{m}}(m \geq 5)$

In this section, we consider $\boldsymbol{J}_{\boldsymbol{m}}=\boldsymbol{G}_{1}+\boldsymbol{G}_{\mathbf{2}}+\ldots+\boldsymbol{G}_{\boldsymbol{m}}$, for $\boldsymbol{m} \geq \mathbf{5}$. The following theorem determines Hosoya polynomials of Steiner 3-distance of J_{m}.

Theorem 3.1. For $m \geq 5$,

$$
\begin{aligned}
H_{3}^{*}\left(J_{m} ; x\right) & =(A+B x) x^{2}+\frac{1}{2} \sum_{j=i+1}^{m} \sum_{i=1}^{m-1} p_{i} p_{j}\left(p_{i}+p_{j}-2\right) x^{j-i+1} \\
& +\sum_{j=i+2}^{m} \sum_{i=1}^{m-2} p_{i} p_{j}\left(\sum_{r=1}^{j-1} p_{r}\right) x^{j-i},
\end{aligned}
$$

where

$$
A=\sum_{i=1}^{m}\left[\sum_{v \in V_{i}}\binom{\operatorname{deg} v}{2}-2 \gamma_{i}\right], B=\sum_{i=1}^{m}\binom{p_{i}}{3}-A,
$$

in which $\boldsymbol{\gamma}_{\boldsymbol{i}}$, for $\boldsymbol{i}=\mathbf{1 , 2}, \ldots, \boldsymbol{m}$ is the number of non-identical triangles $\boldsymbol{K}_{\mathbf{3}}$ as a subgraph in $\boldsymbol{G}_{\boldsymbol{i}}$.

Proof. Let S be any $\mathbf{3}$-subset of vertices of $J_{\boldsymbol{m}}$, then we have three main cases for the subset S.
(I) If $S \subseteq V_{i}$, for $i=1,2, \ldots, m$, then
(a) $\boldsymbol{d}(\boldsymbol{S})=\mathbf{2}$, when $\langle\boldsymbol{S}\rangle$ is a connected subgraph in $\boldsymbol{G}_{\boldsymbol{i}}$, and by Lemma 3.4.4. of [7], the number of such 3 -subsets \boldsymbol{S} is given by

$$
A=\sum_{i=1}^{m}\left[\sum_{v \in V_{i}}\binom{\operatorname{deg} v}{2}-2 \gamma_{i}\right] .
$$

(b) $\boldsymbol{d}(\boldsymbol{S})=\mathbf{3}$, when $\langle\boldsymbol{S}\rangle$ is a disconnected subgraph in $\boldsymbol{G}_{\boldsymbol{i}}$, and the number of such 3 -subsets S is given by

$$
B=\sum_{i=1}^{m}\binom{p_{i}}{3}-A .
$$

Case(I) produces the polynomial

$$
F_{1}(x)=(A+B x) x^{2} .
$$

(II) Either two vertices of S are in $\boldsymbol{V}_{\boldsymbol{i}}$ and one vertex of \boldsymbol{S} in $\boldsymbol{V}_{\boldsymbol{j}}, \boldsymbol{i}<\boldsymbol{j}$, or one vertex of \boldsymbol{S} in $\boldsymbol{V}_{\boldsymbol{i}}$, and two vertices of \boldsymbol{S} in $\boldsymbol{V}_{\boldsymbol{j}}$, for $\mathbf{1} \leq \boldsymbol{i}<\boldsymbol{j} \leq \boldsymbol{m}$. For each such cases of S,

$$
d(S)=j-i+1,
$$

and the number of ways of choosing such S is given by

$$
\sum_{j=i+1}^{m} \sum_{i=1}^{m-1}\left[\binom{\boldsymbol{p}_{\boldsymbol{i}}}{2} \boldsymbol{p}_{j}+\binom{\boldsymbol{p}_{j}}{2} \boldsymbol{p}_{\boldsymbol{i}}\right],
$$

and, this produces the polynomial

$$
\begin{aligned}
\boldsymbol{F}_{2}(\boldsymbol{x}) & =\frac{1}{2} \sum_{j=i+1}^{m} \sum_{i=1}^{m-1}\left[\boldsymbol{p}_{j} \boldsymbol{p}_{i}\left(\boldsymbol{p}_{i}-1\right)+\boldsymbol{p}_{i} \boldsymbol{p}_{j}\left(\boldsymbol{p}_{j}-1\right)\right] \mathrm{x}^{j-i+1} \\
& =\frac{1}{2} \sum_{j=i+1}^{m} \sum_{i=1}^{m-1} \boldsymbol{p}_{i} \boldsymbol{p}_{j}\left(\boldsymbol{p}_{i}+\boldsymbol{p}_{j}-2\right) \boldsymbol{x}^{j-i+1}
\end{aligned}
$$

(III) One vertex of S in $\boldsymbol{V}_{\boldsymbol{i}}$, one vertex in $\boldsymbol{V}_{\boldsymbol{j}}, \boldsymbol{j} \geq \boldsymbol{i}+\mathbf{2}$, and the third vertex in $\boldsymbol{V}_{\boldsymbol{r}}, \boldsymbol{i}<\boldsymbol{r}<\boldsymbol{j}$. For such case

$$
d(S)=j-i
$$

and the number of all possibilities of such S is

$$
\sum_{j=i+2}^{m} \sum_{i=1}^{m-2} \boldsymbol{p}_{i} \boldsymbol{p}_{j}\left(\sum_{r=i+1}^{j-1} \boldsymbol{p}_{r}\right),
$$

and this produces the polynomial

$$
\boldsymbol{F}_{3}(\boldsymbol{x})=\sum_{j=i+2}^{m} \sum_{i=1}^{m-2} \boldsymbol{p}_{i} \boldsymbol{p}_{j}\left(\sum_{r=i+1}^{j-1} \boldsymbol{p}_{r}\right) \boldsymbol{x}^{j-i} .
$$

Now adding the polynomials $\boldsymbol{F}_{1}(\boldsymbol{x}), \boldsymbol{F}_{2}(\boldsymbol{x})$ and $\boldsymbol{F}_{3}(\boldsymbol{x})$ obtained in (I), (II) and (III), we get the required result.

The numbers \boldsymbol{A} and \boldsymbol{B} are given in Theorem 3.1 can be counted when $\boldsymbol{G}_{\boldsymbol{i}}$, for $\boldsymbol{i}=\mathbf{1 , 2}, \ldots, \boldsymbol{m}$, has a special form, as in the following examples.

Example 3.2. Let $N_{p_{i}}$, for $\boldsymbol{i}=\mathbf{1 , 2}, \ldots, \boldsymbol{m}$ be empty graphs of orders \boldsymbol{p}_{i}, then

$$
\boldsymbol{A}=\mathbf{0} \text { and } \boldsymbol{B}=\sum_{i=1}^{m}\binom{\boldsymbol{p}_{i}}{\mathbf{3}} .
$$

 then

$$
\boldsymbol{A}=\sum_{i=1}^{m}\binom{\boldsymbol{p}_{i}}{\mathbf{3}} \text { and } \boldsymbol{B}=\mathbf{0} .
$$

Example 3.4. Let $\boldsymbol{P}_{\boldsymbol{\alpha}_{i}}$, for $\boldsymbol{i}=\mathbf{1 , 2}, \ldots, \boldsymbol{m}$ be path graphs of orders $\boldsymbol{\alpha}_{i}$, then

$$
A=\sum_{i=1}^{m}\left[\alpha_{i}-2\right]=p-2 m \text { and } B=\sum_{i=1}^{m}\binom{\alpha_{i}}{3}-p+2 m .
$$

Example 3.5. Let $\boldsymbol{C}_{\alpha_{i}}$, for $\boldsymbol{i}=\mathbf{1 , 2 , \ldots , \boldsymbol { m }}$ be cycle graphs of orders $\boldsymbol{\alpha}_{i}$, then

$$
A=\sum_{i=1}^{m} \alpha_{i}=p \text { and } B=\sum_{i=1}^{m}\binom{\alpha_{i}}{\mathbf{3}}-p
$$

Example 3.6. Let $\boldsymbol{W}_{\alpha_{i}}$ for $\boldsymbol{i = 1 , 2 , \ldots , m}$ be wheel graphs of orders $\boldsymbol{\alpha}_{i}$, then

$$
\begin{aligned}
A & =\sum_{i=1}^{m}\left[\sum_{v \in V_{i}}\binom{\operatorname{deg} v}{2}-2 \gamma_{i}\right]=\sum_{i=1}^{m}\left[\left(\alpha_{i}-1\right)\binom{3}{2}+\binom{\alpha_{i}-1}{2}-2\left(\alpha_{i}-1\right)\right] \\
& =\sum_{i=1}^{m}\binom{\alpha_{i}}{2},
\end{aligned}
$$

and

$$
B=\sum_{i=1}^{m}\binom{\alpha_{i}}{3}-\sum_{i=1}^{m}\binom{\alpha_{i}}{2}=\frac{1}{6} \sum_{i=1}^{m} \alpha_{i}\left(\alpha_{i}-1\right)\left(\alpha_{i}-5\right) .
$$

Example 3.7. Let $K_{\alpha_{i}, \beta_{i}}$, for $\boldsymbol{i}=\mathbf{1 , 2}, \ldots, \boldsymbol{m}$, be complete bipartite graphs of partite sets of size $\boldsymbol{\alpha}_{i} \boldsymbol{\beta}_{i}$, then it is known that $\boldsymbol{K}_{\alpha_{i} ; \beta_{i}}$ contains no odd cycles, and so $\gamma_{i}=\mathbf{0}$, for $\boldsymbol{i}=\mathbf{1}, \mathbf{2}, \ldots, \boldsymbol{m}$.
Hence,

$$
A=\sum_{i=1}^{m}\left[\alpha_{i}\binom{\beta_{i}}{2}+\beta_{i}\binom{\alpha_{i}}{2}\right]=\frac{1}{2} \sum_{i=1}^{m} \alpha_{i} \beta_{i}\left(\alpha_{i}+\beta_{i}-2\right),
$$

and

$$
B=\sum_{i=1}^{m}\left[\binom{\alpha_{i}+\beta_{i}}{3}-\frac{1}{2} \alpha_{i} \beta_{i}\left(\alpha_{i}+\beta_{i}-2\right)\right] .
$$

REFERENCES

[1] Ali, A.A. and Saeed, W.A; (2006), "Wiener polynomials of Steiner distance of graphs", J. of Applied Sciences, Vol.8, No.2, pp.64-71.
[2] Buckly, F. and Harary, F.;(1990), Distance in Graphs, AddisonWesley, Redwood, California.
[3] Chartrand, G. and Lesniak, L.; (1986), Graphs and Digraphs, $2^{\text {nd }}$ ed., Wadsworth and Brooks/ Cole, California.
[4] Danklemann, P., Swart, H.C. and Oellermann, O.R.; (1997), "On the average Steiner distance of graphs with prescribed properties", Discrete Applied Maths., Vol.79, pp.91-103.
[5] Danklemann, P., Oellermann, O. R. and Swart, H.C.; (1996), " The average Steiner distance of a graph", J. Graph Theory, Vol.22, No.1, pp.15-22.
[6] Henning, M.A., Oellermann, O.R., and Swart, H.C.;(1991), "On vertices with maximum Steiner eccentricity in graphs", Graph Theory, Combinatorics, Algorithms and Applications (eds. Y. Alavi, F.R.K. Chung, R.L. Graham, and D.F. Hsu.), SIAM publication, Philadelphia, pp.393-403.
[7] Herish, O.A.; (2007), Hosoya Polynomials of Steiner Distance of Some Graphs, Ph.D. thesis, Salahaddin University, Erbil.
[8] Saeed, W.A.M.; (1999), Wiener Polynomials of Graphs, Ph.D. thesis, Mosul University, Mosul.

