Hosoya Polynomials of Steiner Distance of the Sequential Join of Graphs

Herish O. Abdullah

herish_omer@yahoo.com College of Sciences University of Salahaddin Received on: 26/11/2007 Ac

Accepted on: 30/01/2008

ABSTRACT

The Hosoya polynomials of Steiner *n*-distance of the sequential join of graphs J_3 and J_4 are obtained and the Hosoya polynomials of Steiner 3-distance of the sequential join of *m* graphs J_m are also obtained.

Keywords: Steiner *n*-distance, Hosoya polynomial, Sequential Join.

متعددات حدود هوسوبا لمسافة ستينر –n لبيانات الجمع التتابعي

هيرش عبدالله

كلية العلوم، جامعة صلاح الدين

تاريخ القبول: 2008/01/30

تاريخ الاستلام: 2007/11/26

الملخص

تضمن هذا البحث ايجاد متعددات حدود هوسويا لمسافة ستينر – n لكل من بيانات الجمع التتابعي J_3 و J_4 كما تم ايجاد متعددات حدود هوسويا لمسافة ستينر – s لبيان الجمع التتابعي J_m ل m من البيانات. الكلمات المفتاحية: مسافة ستينر – n، متعددة حدود هوسويا، الجمع التتابعي.

1. Introduction

We follow the terminology of [2,3]. For a connected graph G = (V, E) of order p, the *Steiner distance*[5,6,7] of a non-empty subset $S \subseteq V(G)$, denoted by $d_G(S)$, or simply d(S), is defined to be the size of the smallest connected subgraph T(S) of G that contains S; T(S) is a tree called a *Steiner tree* of S. If |S|=2, then d(S) is the distance between the two vertices of S. For $2 \le n \le p$ and |S|=n, the Steiner distance of S is called *Steiner n-distance of* S in G. The *Steiner n-diameter* of G, denoted by $d_{am_n^*}G$ or simply $\delta_n^*(G)$, is defined by:

 $diam_n^* G = \max\{d_G(S): S \subseteq V(G), |S| = n\}.$

Remark 1.1. It is clear that

- (1) If n > m, then $diam_n^* G \ge diam_m^* G$.
- (2) If $S' \subseteq S$, then $d_G(S') \le d_G(S)$.

The Steiner *n*-distance of a vertex $v \in V(G)$, denoted by $W_n^*(v,G)$, is the sum of the Steiner *n*-distances of all *n*-subsets containing *v*. The sum of Steiner *n*-distances of all *n*-subsets of V(G) is denoted by $d_n(G)$ or $W_n^*(G)$. It is clear that

$$W_n^*(G) = n^{-1} \sum_{\nu \in V(G)} W_n^*(\nu, G) . \qquad \dots (1.1)$$

The graph invariant $W_n^*(G)$ is called Wiener index of the Steiner n-distance of the graph G.

Definition 1.2[1] Let $C_n^*(G,k)$ be the number of n-subsets of distinct vertices of G with Steiner *n*-distance k. The graph polynomial defined by

$$H_n^*(G;x) = \sum_{k=n-1}^{\delta_n} C_n^*(G,k) x^k , \qquad \dots (1.2)$$

where δ_n^* is the Steiner *n*-diameter of *G*; is called the *Hosoya polynomial* of Steiner *n*-distance of *G*.

It is clear that

$$W_n^*(G) = \sum_{k=n-1}^{\delta_n} k C_n^*(G,k) \qquad \dots (1.3)$$

For $1 \le n \le p$, let $C_n^*(u,G,k)$ be the number of *n*-subsets *S* of distinct vertices of *G* containing *u* with Steiner *n*-distance *k*. It is clear that

 $C_1^*(u,G,0) = 1.$

Define

$$H_n^*(u,G;x) = \sum_{k=n-1}^{\delta_n^*} C_n^*(u,G,k) x^k . \qquad \dots (1.4)$$

Obviously, for $2 \le n \le p$

$$H_n^*(G;x) = \frac{1}{n} \sum_{u \in V(G)} H_n^*(u,G;x). \qquad \dots (1.5)$$

Ali and Saeed [1] were first who studied this distance-based graph polynomial for Steiner *n*-distances, and established Hosoya polynomials of Steiner *n*-distance for some special graphs and graphs having some kind of regularity, and for Gutman's compound graphs $G_1 \bullet G_2$ and $G_1:G_2$ in terms of Hosoya polynomials of G_1 and G_2 .

Definition 1.3[2] Let $G_1, G_2, ..., G_m, m \ge 2$, be vertex disjoint graphs. The sequential join of $G_1, G_2, ..., G_m$ is a graph denoted by

$$J_m = G_1 + G_2 + \dots + G_m,$$

and defined by
$$V(J_m) = \bigcup_{i=1}^m V(G_i),$$
$$E(J_m) = \left\{ \bigcup_{i=1}^m E(G_i) \right\} \bigcup \left\{ uv \mid u \in V_i \text{ and } v \in V_{i+1}, \text{ for } i = 1, 2, \dots, m-1 \right\}$$

in which $V_i = V(G_i)$, as depicted in the following figure.

Fig. 1.1 J_m

It is clear that

$$p(J_m) = \sum_{i=1}^m p_i \cdot q(J_m) = q_m + \sum_{i=1}^{m-1} (q_i + p_i p_{i+1}),$$

in which

 $p_i = p(G_i)$ and $q_i = q(G_i)$.

One can easily see that for $m \ge 3$, $\sum_{i=1}^{m} G_i$ is not commutative, that is for m=3 $G_1 + G_2 + G_3 \ne G_1 + G_3 + G_2$.

In [8], Saeed obtained the (ordinary) Hosoya polynomials of J_m , and in [7], Herish obtained the Steiner *n*-diameter of the sequential join of *m* empty graphs and of *m* complete graphs. Also, the Hosoya polynomials of Steiner distance of the sequential join of *m* empty graphs and of *m* complete graphs were obtained. For $m \ge 3$ and $n \ge 2$, the Steiner *n*-diameter of the sequential join of *m* complete graphs is given by [7]

$$diam_n^* J_m = \begin{cases} m+n-3, & \text{if } 2 \le n \le p_1 + p_m \\ m+n-3-\alpha, & \text{if } p_1 + p_m + 1 \le n \le p, \end{cases}$$

where α is the smallest integer such that ...(1.6)

$$p_1 + p_m + 1 \le n \le p_1 + p_m + \sum_{i=1}^{\alpha} r_i$$

It is obvious that Eq. 1.6 holds for the sequential join of m graphs J_m .

In this paper, a generalization of the results obtained in [7] is given. We obtained the Hosoya polynomials of Steiner *n*-distance of J_3 and J_4 ; and the Hosoya polynomials of Steiner 3-distance of J_m , $m \ge 4$. We also obtained $H_n^*(J_3;x)$, for $n \ge 2$ and $H_3^*(J_m;x)$, for $m \ge 4$, where each of G_i , for i = 1, 2, ..., m is a special graph.

2. Hosoya Polynomials of Steiner n-Distance of J_3 and J_4

In this section, we consider J_m , for m=3 and m=4. Let S be any *n*-subset of vertices of J_m . Let $B(G_i)$, for i=1,2,...,m, be the number of all *n*-subsets S such that $\langle S \rangle$ is connected in G_i . The following proposition determines the Hosoya polynomials of Steiner *n*-distance of J_3 .

Proposition 2.1. For $3 \le n \le p(=p_1 + p_2 + p_3)$,

$$H_n^*(J_3;x) = C_1 x^{n-1} + C_2 x^n,$$

where

$$C_{1} = {\binom{p}{n}} - {\binom{p_{1} + p_{2}}{n}} - {\binom{p_{2}}{n}} + B(G_{1}) + B(G_{2}) + B(G_{3})$$
$$C_{2} = {\binom{p_{2}}{n}} + {\binom{p_{1} + p_{3}}{n}} - [B(G_{1}) + B(G_{2}) + B(G_{3})],$$

and

 $B(G_1), B(G_2)$ and $B(G_3)$ are as defined above.

Proof. It is clear that

$$diam_n^* J_3 = \begin{cases} n, & if \quad 3 \le n \le p_1 + p_3 \\ n-1, & if \quad otherwise \end{cases}$$

Therefore,

 $H_n^*(J_3;x) = C_1 x^{n-1} + C_2 x^n$

in which C_1 is the number of all *n*-subsets of $V(J_3)$ with Steiner distance equals *n*-1, and C_2 is the number of all *n*-subsets of $V(J_3)$ with Steiner distance equals *n*.

Therefore,

$$C_{2} = \sum_{i=1}^{3} \left\{ \binom{p_{i}}{n} - B(G_{i}) \right\} + \sum_{j=1}^{n-1} \binom{p_{1}}{j} \binom{p_{3}}{n-j}$$

$$= \begin{pmatrix} p_2 \\ n \end{pmatrix} + \begin{pmatrix} p_1 + p_3 \\ n \end{pmatrix} - \begin{bmatrix} B(G_1) + B(G_2) + B(G_3) \end{bmatrix}$$

Now, since

$$\boldsymbol{C}_1 + \boldsymbol{C}_2 = \begin{pmatrix} \boldsymbol{p} \\ \boldsymbol{n} \end{pmatrix},$$

therefore

$$C_{1} = {\binom{p}{n}} - C_{2} = {\binom{p}{n}} - {\binom{p_{1} + p_{3}}{n}} - {\binom{p_{2}}{n}} + B(G_{1}) + B(G_{2}) + B(G_{3})$$

This completes the proof. \blacksquare

The following corollary computes the *n*-Wiener index of J_3 .

Corollary 2.2. For
$$3 \le n \le p(=p_1 + p_2 + p_3)$$
,

$$W_n^*(J_3) = n \binom{p}{n} - C_1,$$

where C_1 is given in Proposition 2.1.

Next, we shall find the Hosoya polynomials of Steiner *n*-distance of J_4 .

Proposition 2.3. For $3 \le n \le p(=p_1 + p_2 + p_3 + p_4)$,

$$H_n^*(J_4;x) = C_1 x^{n-1} + C_2 x^n + C_3 x^{n+1},$$

where

$$\begin{split} C_1 &= \sum_{i=1}^{n-2} \sum_{j=1}^{n-1-i} \left[\binom{p_1}{i} \binom{p_2}{j} \binom{p_3}{n-i-j} + \binom{p_2}{i} \binom{p_3}{j} \binom{p_4}{n-i-j} \right] \\ &+ \sum_{i=1}^{n-3} \sum_{j=1}^{n-2-i} \sum_{k=1}^{n-1-i-j} \binom{p_1}{i} \binom{p_2}{j} \binom{p_3}{k} \binom{p_4}{n-i-j-k} + \sum_{i=1}^{4} B(G_i) \\ &+ \binom{p_1+p_2}{n} + \binom{p_2+p_3}{n} + \binom{p_3+p_4}{n} - \binom{p_1}{n} - 2\binom{p_2}{n} - 2\binom{p_3}{n} - \binom{p_4}{n}, \end{split}$$

$$\begin{split} C_{2} = & \begin{pmatrix} p \\ n \end{pmatrix} - \sum_{i=1}^{n-2} \sum_{j=1}^{n-1-i} \left[\begin{pmatrix} p_{1} \\ i \end{pmatrix} \begin{pmatrix} p_{2} \\ j \end{pmatrix} \begin{pmatrix} p_{3} \\ n-i-j \end{pmatrix} \right] \\ & -\sum_{i=1}^{n-3} \sum_{j=1}^{n-2-i} \sum_{k=1}^{n-1-i-j} \begin{pmatrix} p_{1} \\ i \end{pmatrix} \begin{pmatrix} p_{2} \\ j \end{pmatrix} \begin{pmatrix} p_{3} \\ k \end{pmatrix} \begin{pmatrix} p_{4} \\ n-i-j-k \end{pmatrix} - \sum_{i=1}^{4} B(G_{i}) \\ & - \begin{pmatrix} p_{1} + p_{2} \\ n \end{pmatrix} - \begin{pmatrix} p_{2} + p_{3} \\ n \end{pmatrix} - \begin{pmatrix} p_{3} + p_{4} \\ n \end{pmatrix} - \begin{pmatrix} p_{1} + p_{4} \\ n \end{pmatrix} \end{split}$$

$$+2\binom{p_1}{n}+2\binom{p_2}{n}+2\binom{p_3}{n}+2\binom{p_4}{n},$$

and

$$C_3 = \begin{pmatrix} p_1 + p_4 \\ n \end{pmatrix} - \begin{pmatrix} p_1 \\ n \end{pmatrix} - \begin{pmatrix} p_4 \\ n \end{pmatrix}.$$

Proof. It is clear that $n-1 \le diam_n^* J_4 \le n+1$, therefore the Hosoya polynomials of Steiner *n*-distance of J_4 has the following form

 $H_n^*(J_4;x) = C_1 x^{n-1} + C_2 x^n + C_3 x^{n+1}.$

To find C_1 , C_2 and C_3 , let S be any *n*-subset of vertices of J_4 , then we have the following possibilities for the subset S.

(I) d(S) = n-1 if and only if S has any of the following subcases:

- (1) S is a subset of V_i , for i = 1, 2, 3, 4 and $\langle S \rangle$ is a connected subgraph of
 - G_i . The number of these *n*-subsets is given by

$$\begin{split} B(G_{1}) + B(G_{2}) + B(G_{3}) + B(G_{4}). \\ (2) \quad S \subseteq V_{k} \bigcup V_{k+1} \text{ and } (S \cap V_{k} \neq \varphi \land S \cap V_{k+1} \neq \varphi), \ k = 1, 2, 3. \\ \text{The number of these subsets } S \text{ is given by} \\ \sum_{i=1}^{n-1} \binom{p_{1}}{i} \binom{p_{2}}{n-i} + \sum_{i=1}^{n-1} \binom{p_{2}}{i} \binom{p_{3}}{n-i} + \sum_{i=1}^{n-1} \binom{p_{3}}{i} \binom{p_{4}}{n-i} \\ = \binom{p_{1} + p_{2}}{n} + \binom{p_{2} + p_{3}}{n} + \binom{p_{3} + p_{4}}{n} - \binom{p_{1}}{n} - 2\binom{p_{2}}{n} - 2\binom{p_{3}}{n} - \binom{p_{4}}{n}, \\ (3) \quad (S \subseteq \bigcup_{i=1}^{3} V_{i} \land S \cap V_{i} \neq \varphi) \quad \text{or } (S \subseteq \bigcup_{i=2}^{4} V_{i} \land S \cap V_{i} \neq \varphi). \\ \text{ these } n \text{-subsets is given by} \\ \sum_{i=1}^{n-2} \sum_{j=1}^{n-1-i} \left[\binom{p_{1}}{i} \binom{p_{2}}{j} \binom{p_{3}}{n-i-j} + \binom{p_{2}}{i} \binom{p_{3}}{j} \binom{p_{4}}{n-i-j} \right] \\ (4) \quad S \cap V_{i} \neq \varphi, \ i = 1, 2, 3, 4. \\ \text{ The number of these } n \text{-subsets is given by} \\ \sum_{i=1}^{n-3} \sum_{j=1}^{n-2-i} \sum_{k=1}^{n-1-i-j} \binom{p_{1}}{i} \binom{p_{2}}{j} \binom{p_{3}}{k} \binom{p_{4}}{n-i-j-k} \end{split}$$

From (1), (2), (3) and (4), we get
$$C_1$$
 as given in the statement of the proposition.

(II) d(S) = n+1 if and only if $S \subseteq V_1 \cup V_4$ and $(S \cap V_1 \neq \varphi)$ and $S \cap V_4 \neq \varphi$. The number of these S's is given by

$$\sum_{i=1}^{n-1} {p_1 \choose i} {p_4 \choose n-i} = {p_1 + p_4 \choose n} - {p_1 \choose n} - {p_4 \choose n}.$$

So, C_3 is as given.

Now, since $C_1 + C_2 + C_3 = \begin{pmatrix} p \\ n \end{pmatrix}$,

therefore

$$C_2 = \binom{p}{n} - C_1 - C_3$$

This completes the proof. ■

Remark. The triple summation in C_1 is taken to be zero when n=3.

The following corollary computes $W_n^*(J_4)$.

Corollary 2.4. For $3 \le n \le p(=p_1 + p_2 + p_3 + p_4)$, $W_n^*(J_4) = n \binom{p}{n} - C_1 + C_3$,

where C_1 and C_3 are given in Proposition 2.3.

Remark. For $m \ge 5$, the calculation of the coefficients of $H_n^*(J_m;x)$ is complicated.

The numbers $B(G_1)$, $B(G_2)$ and $B(G_3)$ are given in Proposition 2.1 can be counted for some specific graphs G_1 , G_2 and G_3 as in the following examples.

Example 2.5. Let N_{p_1} , N_{p_2} and N_{p_3} be empty graphs of orders p_1 , p_2 and p_3 respectively, then

$$B(N_{p_1}) = B(N_{p_2}) = B(N_{p_3}) = 0$$

Example 2.6. Let K_{p_1} , K_{p_2} and K_{p_3} be complete graphs of orders p_1 , p_2 and p_3 respectively, then

$$B(K_{p_i}) = \binom{p_i}{n}, \text{ for } i = 1, 2, 3$$

Example 2.7. Let P_{α_1} , P_{α_2} and P_{α_3} be path graphs of orders α_1 , α_2 and α_3 respectively, then

 $B(P_{\alpha_i}) = \alpha_i - n + 1$, for i = 1, 2, 3.

Example 2.8. Let C_{α_1} , C_{α_2} and C_{α_3} be cycle graphs of orders α_1 , α_2 and α_3 respectively, then

 $B(C_{\alpha_i}) = \alpha_i$, for i = 1, 2, 3.

Example 2.9. Let W_{α_1} , W_{α_2} and W_{α_3} be wheel graphs of orders α_1 , α_2 and α_3 respectively, then

$$B(W_{\alpha_i}) = \begin{pmatrix} \alpha_i - 1 \\ n - 1 \end{pmatrix} + \alpha_i - 1, \text{ for } i = 1, 2, 3$$

Example 2.10. Let K_{α_i,β_i} , for i = 1,2,3, be complete bipartite graphs of partite sets of size $\alpha_i \beta_i$, then

$$B(K_{\alpha_i,\beta_i}) = {\alpha_i + \beta_i \choose n} - {\alpha_i \choose n} - {\beta_i \choose n}, \text{ for } i = 1,2,3.$$

3. Hosoya Polynomials of Steiner 3-Distance of J_m $(m \ge 5)$

In this section, we consider $J_m = G_1 + G_2 + ... + G_m$, for $m \ge 5$. The following theorem determines Hosoya polynomials of Steiner 3-distance of J_m .

Theorem 3.1. For $m \ge 5$,

$$\begin{split} H_{3}^{*}(J_{m};x) &= (A+Bx)x^{2} + \frac{1}{2}\sum_{j=i+1}^{m}\sum_{i=1}^{m-1}p_{i}p_{j}(p_{i}+p_{j}-2)x^{j-i+1} \\ &+ \sum_{j=i+2}^{m}\sum_{i=1}^{m-2}p_{i}p_{j}\left(\sum_{r=1}^{j-1}p_{r}\right)x^{j-i}, \end{split}$$

where

$$A = \sum_{i=1}^{m} \left[\sum_{v \in V_i} \left(\frac{\deg v}{2} \right) - 2\gamma_i \right], \ B = \sum_{i=1}^{m} \left(\frac{p_i}{3} \right) - A,$$

in which γ_i , for i = 1, 2, ..., m is the number of non-identical triangles K_3 as a subgraph in G_i .

<u>Proof.</u> Let *S* be any 3-subset of vertices of J_m , then we have three main cases for the subset *S*.

- (I) If $S \subseteq V_i$, for i = 1, 2, ..., m, then
 - (a) d(S) = 2, when $\langle S \rangle$ is a connected subgraph in G_i , and by Lemma **3.4.4.** of [7], the number of such 3-subsets S is given by

$$A = \sum_{i=1}^{m} \left[\sum_{v \in V_i} \left(\frac{\deg v}{2} \right) - 2\gamma_i \right]$$

(b) d(S)=3, when $\langle S \rangle$ is a disconnected subgraph in G_i , and the number of such 3-subsets S is given by

$$B = \sum_{i=1}^{m} \binom{p_i}{3} - A$$

Case(I) produces the polynomial

$$F_1(x) = (A + Bx)x^2.$$

(II) Either two vertices of S are in V_i and one vertex of S in V_j , i < j, or one vertex of S in V_i , and two vertices of S in V_j , for $1 \le i < j \le m$. For each such cases of S,

$$d(S) = j - i + 1,$$

and the number of ways of choosing such S is given by

$$\sum_{j=i+1}^{m}\sum_{i=1}^{m-1} \left[\binom{p_i}{2} p_j + \binom{p_j}{2} p_i \right],$$

and, this produces the polynomial

$$F_{2}(\mathbf{x}) = \frac{1}{2} \sum_{j=i+1}^{m} \sum_{i=1}^{m-1} [p_{j}p_{i}(p_{i}-1) + p_{i}p_{j}(p_{j}-1)]\mathbf{x}^{j-i+1}$$
$$= \frac{1}{2} \sum_{j=i+1}^{m} \sum_{i=1}^{m-1} p_{i}p_{j}(p_{i}+p_{j}-2)\mathbf{x}^{j-i+1}$$

(III) One vertex of S in V_i , one vertex in V_j , $j \ge i + 2$, and the third vertex

in V_r , i < r < j. For such case

$$d(S) = j - i,$$

and the number of all possibilities of such S is

$$\sum_{j=i+2}^{m}\sum_{i=1}^{m-2}p_ip_j\left(\sum_{r=i+1}^{j-1}p_r\right),$$

and this produces the polynomial

$$F_{3}(x) = \sum_{j=i+2}^{m} \sum_{i=1}^{m-2} p_{i} p_{j} \left(\sum_{r=i+1}^{j-1} p_{r} \right) x^{j-i} .$$

Now adding the polynomials $F_1(x)$, $F_2(x)$ and $F_3(x)$ obtained in (I), (II) and (III), we get the required result.

The numbers A and B are given in Theorem 3.1 can be counted when G_i , for i = 1, 2, ..., m, has a special form, as in the following examples.

Example 3.2. Let N_{p_i} , for i = 1, 2, ..., m be empty graphs of orders p_i , then

A = 0 and $B = \sum_{i=1}^{m} {p_i \choose 3}$.

Example 3.3. Let K_{p_i} , for i = 1, 2, ..., m be complete graphs of orders p_i , then

$$A = \sum_{i=1}^{m} \binom{p_i}{3} \text{ and } B = 0$$

Example 3.4. Let P_{α_i} , for i = 1, 2, ..., m be path graphs of orders α_i , then

Example 3.5. Let C_{α_i} , for i = 1, 2, ..., m be cycle graphs of orders α_i , then

$$A = \sum_{i=1}^{m} \alpha_i = p \text{ and } B = \sum_{i=1}^{m} \binom{\alpha_i}{3} - p$$

Example 3.6. Let W_{α_i} for i = 1, 2, ..., m be wheel graphs of orders α_i , then

$$A = \sum_{i=1}^{m} \left[\sum_{\nu \in V_i} {\operatorname{deg} \nu \choose 2} - 2\gamma_i \right] = \sum_{i=1}^{m} \left[(\alpha_i - 1) {3 \choose 2} + {\alpha_i - 1 \choose 2} - 2(\alpha_i - 1) \right]$$
$$= \sum_{i=1}^{m} {\alpha_i \choose 2},$$

and

$$B = \sum_{i=1}^{m} {\alpha_i \choose 3} - \sum_{i=1}^{m} {\alpha_i \choose 2} = \frac{1}{6} \sum_{i=1}^{m} \alpha_i (\alpha_i - 1)(\alpha_i - 5)$$

Example 3.7. Let K_{α_i,β_i} , for i = 1, 2, ..., m, be complete bipartite graphs of partite sets of size $\alpha_i \ \beta_i$, then it is known that K_{α_i,β_i} contains no odd cycles, and so $\gamma_i = 0$, for i = 1, 2, ..., m. Hence,

,

$$A = \sum_{i=1}^{m} \left[\alpha_i \begin{pmatrix} \beta_i \\ 2 \end{pmatrix} + \beta_i \begin{pmatrix} \alpha_i \\ 2 \end{pmatrix} \right] = \frac{1}{2} \sum_{i=1}^{m} \alpha_i \beta_i (\alpha_i + \beta_i - 2)$$

and

$$B = \sum_{i=1}^{m} \left[\begin{pmatrix} \alpha_i + \beta_i \\ 3 \end{pmatrix} - \frac{1}{2} \alpha_i \beta_i (\alpha_i + \beta_i - 2) \right]$$

<u>REFERENCES</u>

- [1] Ali, A.A. and Saeed, W.A; (2006), "Wiener polynomials of Steiner distance of graphs", J. of Applied Sciences, Vol.8, No.2, pp.64-71.
- [2] Buckly, F. and Harary, F.;(1990), **Distance in Graphs**, Addison-Wesley, Redwood, California.
- [3] Chartrand, G. and Lesniak, L.; (1986), **Graphs and Digraphs**, 2nd ed., Wadsworth and Brooks/ Cole, California.
- [4] Danklemann, P., Swart, H.C. and Oellermann, O.R.; (1997), "On the average Steiner distance of graphs with prescribed properties", Discrete Applied Maths., Vol.79, pp.91-103.
- [5] Danklemann, P., Oellermann, O. R. and Swart, H.C.; (1996), "The average Steiner distance of a graph", J. Graph Theory, Vol.22, No.1, pp.15-22.
- [6] Henning, M.A., Oellermann, O.R., and Swart, H.C.;(1991), "On vertices with maximum Steiner eccentricity in graphs", Graph Theory, Combinatorics, Algorithms and Applications (eds. Y. Alavi, F.R.K. Chung, R.L. Graham, and D.F. Hsu.), SIAM publication, Philadelphia, pp.393-403.
- [7] Herish, O.A.; (2007), Hosoya Polynomials of Steiner Distance of Some Graphs, Ph.D. thesis, Salahaddin University, Erbil.
- [8] Saeed, W.A.M.; (1999), **Wiener Polynomials of Graphs**, Ph.D. thesis, Mosul University, Mosul.