On Representation Theorem for Algebras with Three Commuting Involutions

Amir A. MohammedBaida S. AbdullahNadwa S. Younisamirabdulillah64@gmail.com

College of Education University of Mosul, Iraq

Received on: 26/08/2007

Accepted on: 30/01/2008

ABSTRACT

Algebras with three commuting involutions are represented as commutants of one-generated $\diamondsuit - \Box - \bigcirc$ subalgebras of algebras of vector-space endomorphisms where $\diamondsuit - \Box$ and \bigcirc are involutions of a prefixed type.

Keywords: Algebras, commuting involutions.

حول نظرية التمثيل للجبريات مع ثلاث تشابكات إبدالية

ندوة يونس

بيداء عبد الله كلية التربية، جامعة الموصل

تاريخ القبول: 2008/01/30

تاربخ الاستلام: 2007/08/26

عامر عبد الاله محمد

الملخص

تم تقديم الجبريات مع ثلاثة تشابكات ابدالية كمولد واحد للجبور الجزئية </ -
 <tr>
 - الجرور فضاء متجه التطبيقات الخطية حيث
 - - موز التشابكات المثبتة المذكورة آنفاً.

 الكلمات المفتاحية: الجبريات، تشابكات ابدالية.

Introduction and Preliminaries

Throughout this paper (k, -) denotes a field with an involution and the terminology of algebra and algebra involution is relative to (k, -). A systematic study of representation theory for algebras with involutions was given in [6] by Quebbemann and he proved that (involutive unital finitedimensional algebras can be represented as commutants of one-generated self-adjoint subalgebras of algebras of vector-space endomorphisms) and later the representation theory for algebras with involutions has been extend to algebras with two commuting involutions by Cabrera and Mohammed see [1].

We begin by summarizing some definitions and fundamental concepts. An involution * in an algebra A is a mapping $a \rightarrow a^*$ of A into it self satisfying $(a+b)^* = a^* + b^*$, $(\alpha a)^* = \overline{\alpha} \Box a^*$ (where – denote the conjecate of complex number), $(ab)^{*}=b^*a^*$ and $a^{**}=a$ for all a, b in A and α in k see[1]. A subalgebra of A globally invariant by * is called a

* – subalgebra. If B is a * – subalgebra of A, then its centralizer in A given by

 $\{a \in A : ab=ba \text{ for all } b \text{ in } B \}$, is also a * – subalgebra of A see [1].

Involutive algebras can be constructed from the consideration of nondegenerate hermitian spaces. Recall that, for Σ in k satisfying $\Sigma \overline{\Sigma} = 1$, a nondegenerate Σ -hermitian form in a vector – space M over k is a mapping <. , .> from $M \ge M$ into k satisfying

 $< m_1 + m_2, m' > = < m_1, m' > + < m_2, m' >, < \alpha m, m' > = \alpha < m, m' > < < m, m' > = \Sigma < m', m >$

for all m_1 , m_2 , m, m' in M and α in k, and < m, m' > = 0 for all m' implies m=0 see [1]. If M has finite dimension, then the algebra $\operatorname{End}_k(M)$ of all endomorphisms of M with the adjoint involution $F \rightarrow F^{\diamond}$ given by $< F(m), m' > = < m, F^{\diamond}(m') >$ for all m, m' in M see [1].

If $(A, *, \#, \delta)$, (B, \diamond, \Box, O) are algebras with three commuting involutions, an isomorphism between $(A, *, \#, \delta)$ and (B, \diamond, \Box, O) is an algebra isomorphism ϕ from A onto B satisfying $\phi(a^*) = \phi(a)^{\diamond}$, $\phi(a^{\#}) = \phi(a)^G$ and $\phi(a^{\delta}) = \phi(a)^F$ for all a in A. In this case $(A, *, \#, \delta)$ and (B, \diamond, \Box, O) are said to be isomorphic see [1].

Our main result is the following :

Theorem 1. Let $(A, *, \#, \delta)$ be a unital finite-dimensional algebra with commuting involutions over (k, -) and let $\Sigma, \Sigma', \Sigma''$ in k such that $\Sigma\overline{\Sigma} = \Sigma'\overline{\Sigma}' = \Sigma''\overline{\Sigma}'' = 1$. Then there exist a finite-dimensional vector space w over k, a nondegenerate Σ -hermitian form <., .>, a nondegenerate Σ' -hermitian form [., .], and F in End_k(w) such that $(A, *, \#, \delta)$ is isomorphic to the centralizer of the $\Diamond - \Box - \bigcirc$ subalgebra of End_k(w) generated by F, where \Diamond , \Box and \bigcirc are adjoint involutions in End_k(w) determined by <., .>, [., .] and (., .), respectively.

We will follow the lines of the following lemma : Let (A, *, #) be a unital finite-dimensional algebra with commuting involutions over (K, -) and let Σ , Σ' in K such that $\Sigma\overline{\Sigma} = \Sigma'\overline{\Sigma'} = 1$. Then there exist a finite-dimensional vector space W over K, a nondegenerate Σ -hermitian form $\langle .,. \rangle$ in W, a nodegenerate Σ' -hermitian from [.,.] in W, and F in $End_K(W)$ such that (A, *, #) is isomorphic to the centralizer of the $\Diamond - \Box$ - subalgebra of $End_K(W)$ generated by F, where \Diamond and \Box are adjoint involutions in $End_K(W)$ determined by $\langle .,. \rangle$ and [.,.] respectively.

Proof : see [1, Theorem 1]

The first part of the proof consists in finding a nondegenerate $\Sigma - \Sigma' - \Sigma''$ -hermitian space w_o over k such that $(A, *, \#, \delta)$ is embedded into $\operatorname{End}_k(w_o)$ in such a way that w_o is a balanced A-module (that is, $A = \operatorname{End}_B(w_o)$) if $B = \operatorname{End}_A(w_o)$). Our construction involves the three commuting involutions of A and consists in a convenient triple of the representation used in [1].

Theorem 2. let $(A, *, \#, \delta)$ be a unital finite-dimensional algebra with commuting involutions over (k, -) and let $\Sigma, \Sigma', \Sigma''$ in k such that $\Sigma\overline{\Sigma} = \Sigma'\overline{\Sigma}'$ $= \Sigma''\overline{\Sigma}'' = I$. Then there exists $(w_o, <., .>, [., .], (., .))$, where w_o is a finite-dimensional vector space over k which is a balanced left A-module (in fact, w_o contains A as a direct summand) and <., .>, [., .],(., .) are nondegenerate Σ -hermitian, Σ' -hermitian and Σ'' -hermitian forms in w_o , respectively, in such a way that the associated representation of A in w_o becomes an isomorphism of algebras with three involutions of $(A, *, \#, \delta)$ into $(\text{End}_k(w_o), \diamondsuit, \Box, \mathcal{O})$, where \diamondsuit, \Box and \mathcal{O} are adjoint involutions in $\text{End}_k(w_o)$ determined by <., .>, [., .] and (., .), respectively.

Proof. Consider the vector space $w_0 := U_1 \oplus U_2 \oplus U_3 \oplus U_4 \oplus U_5 \oplus U_6$, where $U_1 = U_3 = U_5 = A$ and $U_2 = U_4 = U_6 = Hom_k (A, k)$. Endow w_o with the structure of faithful left A-module given by :

 $a (x_1, f_1, x_2, f_2, x_3, f_3) := (ax_1, f_1 o L_a *, a^{*\#} x_2, f_2 o L_{a\#}, a^{*\#\delta} x_3, f_3 o L_a \delta)$ for all a in A and $(x_1, f_1, x_2, f_2, x_3, f_3)$ in w_0 . The mapping <. , .> from $w_0 \ge w_0$ in to k defined by

 $\frac{\langle (x_1, f_1, x_2, f_2, x_3, f_3), (y_1, g_1, y_2, g_2, y_3, g_3) \rangle :=}{f_1(y_1) + f_2(y_2) + f_3(y_3)} + \sum (g_1(x_1) + g_2(x_2) + g_3(x_3))$

is a nondegenerate $\Sigma\text{-hermitian}$ form satisfying

 $< a (x_1, f_1, x_2, f_2, x_3, f_3), (y_1, g_1, y_2, g_2, y_3, g_3) > =$ $< (x_1, f_1, x_2, f_2, x_3, f_3), a^*(y_1, g_1, y_2, g_2, y_3, g_3) > ,$

and therefore the representation of A on w_o becomes an isomorphism of involutive algebras from (A, *) into $(End_k (w_o), \diamond)$, where \diamond denotes the adjoint involution with respect to <. , .>. Furthermore, the mapping [. , .] from $w_o \ge w_o$ into k defined by

 $\frac{[(x_1, f_1, x_2, f_2, x_3, f_3), (y_1, g_1, y_2, g_2, y_3, g_3)] :=}{f_1(y_2) + f_2(y_3) + f_3(y_1) + \Sigma' (g_1(x_2) + g_2(x_3) + g_3(x_1))}$ is a nondegenerate Σ' -hermitian form satisfying

 $\begin{bmatrix} a (x_1, f_1, x_2, f_2, x_3, f_3), (y_1, g_1, y_2, g_2, y_3, g_3) \end{bmatrix} = \begin{bmatrix} (x_1, f_1, x_2, f_2, x_3, f_3), a^{\#}(y_1, g_1, y_2, g_2, y_3, g_3) \end{bmatrix},$

and so the representation of A on w_o also becomes an isomorphism of involutive algebras from (A, #) into $(End_k (w_o), G)$, where G denotes the adjoint involution with respect to [.,.]. furthermore, the mapping (. , .) from $w_o \ge w_o$ into k defined by

 $\frac{((x_1, f_1, x_2, f_2, x_3, f_3), (y_1, g_1, y_2, g_2, y_3, g_3)) :=}{f_1(y_3) + f_2(y_1) + f_3(y_2) + \Sigma'' (g_1(x_3) + g_2(x_1) + g_3(x_2))}$ is a nondegenerate Σ'' -hermitian form satisfying $[a (x_1, f_1, x_2, f_2, x_3, f_3), (y_1, g_1, y_2, g_2, y_3, g_3)] =$ $[(x_1, f_1, x_2, f_2, x_3, f_3), a^{\delta}(y_1, g_1, y_2, g_2, y_3, g_3)],$

and so the representation of A on w_o also becomes an isomorphism of involutive algebras from (A, δ) into $(\operatorname{End}_k(w_o), F)$, where F denotes the adjoint involution with respect to (., .). Therefore, the representation of A on w_o is an isomorphism of algebras with three involutions. Since w_o contains the "regular" A-module A as a direct summand, it is balanced (see [4, P. 451]).

Remark 1. The involutions \Diamond , \Box and O in End_k(w_o) obtained in the above proof are not necessarily commuting. Since $w_o = U_1 \oplus U_2 \oplus U_3 \oplus U_4 \oplus U_5 \oplus U_6$ we can represent each *T* in End_k (w_o) as a 6x6 homomorphism matrix.

$$T = egin{pmatrix} T_{11} & T_{12} & T_{13} & T_{14} & T_{15} & T_{16} \ T_{21} & T_{22} & T_{23} & T_{24} & T_{25} & T_{26} \ T_{31} & T_{32} & T_{33} & T_{34} & T_{35} & T_{36} \ T_{41} & T_{42} & T_{43} & T_{44} & T_{45} & T_{46} \ T_{51} & T_{52} & T_{53} & T_{54} & T_{55} & T_{56} \ T_{61} & T_{62} & T_{63} & T_{64} & T_{65} & T_{66} \end{pmatrix}$$

Where $T_{ij} \in Hom_k(U_j, U_i)$ for $i, j \in \{1, 2, 3, 4, 5, 6\}$. It is easy to verify that

$$T^{\diamond} = \begin{pmatrix} T'_{22} & \overline{\Sigma}T'_{12} & T'_{42} & \overline{\Sigma}T'_{32} & T'_{62} & \overline{\Sigma}T'_{52} \\ \overline{\Sigma}T'_{21} & T'_{11} & \overline{\Sigma}T'_{41} & T'_{31} & \overline{\Sigma}T'_{61} & T'_{51} \\ T'_{24} & \overline{\Sigma}T'_{14} & T'_{44} & \overline{\Sigma}T'_{34} & T'_{64} & \overline{\Sigma}T'_{54} \\ \overline{\Sigma}T'_{23} & T'_{13} & \overline{\Sigma}T'_{43} & T'_{33} & \overline{\Sigma}T'_{63} & T'_{53} \\ T'_{26} & \overline{\Sigma}T'_{16} & T'_{46} & \overline{\Sigma}T'_{36} & T'_{66} & \overline{\Sigma}T'_{56} \\ \overline{\Sigma}T'_{25} & T'_{15} & \overline{\Sigma}T'_{45} & T'_{35} & \overline{\Sigma}T'_{65} & T'_{55} \end{pmatrix},$$

$$T^{\Box} = \begin{pmatrix} T'_{66} & \overline{\Sigma'} T'_{56} & T'_{46} & \overline{\Sigma'} T'_{36} & T'_{26} & \overline{\Sigma'} T'_{16} \\ \Sigma'T'_{65} & T'_{55} & \Sigma'T'_{45} & T'_{35} & \Sigma'T'_{25} & T'_{15} \\ T'_{64} & \overline{\Sigma'}T'_{54} & T'_{44} & \overline{\Sigma'}T'_{34} & T'_{24} & \overline{\Sigma'}T'_{14} \\ \Sigma'T'_{63} & T'_{53} & \Sigma'T'_{43} & T'_{33} & \Sigma'T'_{23} & T'_{13} \\ T'_{62} & \overline{\Sigma'}T'_{52} & T'_{42} & \overline{\Sigma'}T'_{32} & T'_{22} & \overline{\Sigma'}T'_{12} \\ \Sigma'T'_{61} & T'_{51} & \Sigma'T'_{41} & T'_{31} & \Sigma'T'_{21} & T'_{11} \end{pmatrix}$$

And

$$T^{\mathcal{O}} = \begin{pmatrix} T'_{44} & \overline{\Sigma}'' T'_{14} & T'_{64} & \overline{\Sigma}'' T'_{34} & T'_{24} & \overline{\Sigma}''T'_{54} \\ \Sigma''T'_{41} & T'_{11} & \Sigma'T'_{61} & T'_{31} & \Sigma''T'_{21} & T'_{51} \\ T'_{46} & \overline{\Sigma}''T'_{16} & T'_{66} & \overline{\Sigma}''T'_{36} & T'_{26} & \overline{\Sigma}''T'_{56} \\ \Sigma''T'_{43} & T'_{13} & \Sigma''T'_{63} & T'_{33} & \Sigma''T'_{23} & T'_{53} \\ T'_{42} & \overline{\Sigma}''T'_{12} & T'_{62} & \overline{\Sigma}''T'_{32} & T'_{22} & \overline{\Sigma}''T'_{52} \\ \Sigma''T'_{45} & T'_{15} & \Sigma''T'_{65} & T'_{35} & \Sigma''T'_{25} & T'_{55} \end{pmatrix}$$

Therefore

$$T^{\Box \diamondsuit} = \begin{pmatrix} T_{55}' & \overline{\Sigma}' \Sigma T_{56}' & T_{53}' & \overline{\Sigma}' \Sigma T_{54}' & T_{51}' & \overline{\Sigma}' \Sigma T_{52}' \\ \Sigma' \overline{\Sigma} T_{65}' & T_{66}' & \Sigma' \overline{\Sigma} T_{63}' & T_{64}' & \Sigma' \overline{\Sigma} T_{61}' & T_{62}' \\ T_{35}' & \overline{\Sigma}' \Sigma T_{36}' & T_{33}' & \overline{\Sigma}' \Sigma T_{34}' & T_{31}' & \overline{\Sigma}' \Sigma T_{32}' \\ \Sigma' \overline{\Sigma} T_{45}' & T_{46}' & \Sigma' \overline{\Sigma} T_{43}' & T_{44}' & \Sigma' \overline{\Sigma} T_{41}' & T_{42}' \\ T_{15}' & \overline{\Sigma}' \Sigma T_{16}' & T_{13}' & \overline{\Sigma}' \Sigma T_{14}' & T_{11}' & \overline{\Sigma}' \Sigma T_{12}' \\ \Sigma' \overline{\Sigma} T_{25}' & T_{26}' & \Sigma' \overline{\Sigma} T_{23}' & T_{24}' & \Sigma' \overline{\Sigma} T_{21}' & T_{22}' \end{pmatrix}$$

$$T^{\Box \diamondsuit} = \begin{pmatrix} T_{55}' & \overline{\Sigma} \Sigma' T_{56}' & T_{53}' & \overline{\Sigma} \Sigma' T_{54}' & T_{51}' & \overline{\Sigma} \Sigma' T_{52}' \\ \overline{\Sigma} \overline{\Sigma}' T_{65}' & T_{66}' & \Sigma \overline{\Sigma}' T_{63}' & T_{64}' & \Sigma \overline{\Sigma}' T_{61}' & T_{62}' \\ T_{35}' & \overline{\Sigma} \Sigma' T_{36}' & T_{33}' & \overline{\Sigma} \Sigma' T_{34}' & T_{31}' & \overline{\Sigma} \Sigma' T_{32}' \\ \Sigma \overline{\Sigma}' T_{45}' & T_{46}' & \Sigma \overline{\Sigma}' T_{43}' & T_{44}' & \Sigma \overline{\Sigma}' T_{41}' & T_{42}' \\ T_{15}' & \overline{\Sigma} \Sigma' T_{16}' & T_{13}' & \overline{\Sigma} \Sigma' T_{14}' & T_{11}' & \overline{\Sigma} \Sigma' T_{12}' \\ \Sigma \overline{\Sigma}' T_{25}' & T_{26}' & \Sigma \overline{\Sigma}' T_{23}' & T_{24}' & \Sigma \overline{\Sigma}' T_{21}' & T_{22}' \end{pmatrix}$$

And

,

$$T^{\diamond \mathcal{O}} = \begin{pmatrix} T'_{55} & \overline{\Sigma''}\Sigma T'_{56} & T'_{53} & \overline{\Sigma''}\Sigma T'_{54} & T'_{51} & \overline{\Sigma''}\Sigma T'_{52} \\ \Sigma''\overline{\Sigma} T'_{65} & T'_{66} & \Sigma''\overline{\Sigma} T'_{63} & T'_{64} & \Sigma''\overline{\Sigma} T'_{61} & T'_{62} \\ T'_{35} & \overline{\Sigma''}\Sigma T'_{36} & T'_{33} & \overline{\Sigma''}\Sigma T'_{34} & T'_{31} & \overline{\Sigma''}\Sigma T'_{32} \\ \Sigma''\overline{\Sigma} T'_{45} & T'_{46} & \Sigma''\overline{\Sigma} T'_{43} & T'_{44} & \Sigma''\overline{\Sigma} T'_{41} & T'_{42} \\ T'_{15} & \overline{\Sigma''}\Sigma T'_{16} & T'_{13} & \overline{\Sigma''}\Sigma T'_{14} & T'_{11} & \overline{\Sigma''}\Sigma T'_{12} \\ \Sigma''\overline{\Sigma} T'_{25} & T'_{26} & \Sigma''\overline{\Sigma} T'_{23} & T'_{24} & \Sigma''\overline{\Sigma} T'_{21} & T'_{22} \end{pmatrix}$$

As a result, \diamondsuit , \square and \bigcirc are commuting if and only if $\overline{\Sigma'} \Sigma = \overline{\Sigma} \Sigma' = \overline{\Sigma''} \Sigma = \overline{\Sigma} \Sigma'' = \overline{\Sigma} \Sigma'' \Sigma = \overline{\Sigma} \Sigma''$, or equivalently $\Sigma^2 = \Sigma'^2 = \Sigma''^2$.

Proof of Theorem 1. let $(A, *, #, \delta)$ be a unital finite-dimensional algebra with commuting involutions over (k, -) and let $\Sigma, \Sigma', \Sigma''$ in k such that $\Sigma \overline{\Sigma} = \Sigma' \overline{\Sigma'} = \overline{\Sigma'' \overline{\Sigma''}} = 1$. By Theorem 2 there exists $(w_o, <.,.>, [.,.], (.,.))$, where wo is a finite-dimensional vector space over k which is a balanced left A-module and $\langle ., . \rangle$, [., .] and (., .) are nondegenerate Σ -hermitian, Σ' hermitian and Σ "-hermitian forms in w_o , respectively, in such a way the associated representation of A in w_o becomes an isomorphism from (A, *, #, δ) into (End_k(w_o), \Diamond , \Box , O), where \Diamond , \Box and O are adjoint involutions in $End_k(w_o)$ determined by <...>, [...] and (...), respectively. Let m denote the dimension of $B = \text{End}_A(w_o)$. Put $(w, <...,>, [...], (...)) := (w_o, <...>, [...], (...))$ \oplus m+2 \oplus $(w_o, <...>, [...], (...))$, and consider End_k (w_o) embedded diagonally in $End_k(w)$. By the final step of the proof of theorem 1 in [1] applied to <...>, [...] and (...) there exists F in End_k(w) such that A=End_C(w) = End_D(w) = End_H(w), where C and D (resp. H) denotes the \diamondsuit – subalgebra and \square – subalgebra (resp. O – subalgebra) of End_K(w) generated by F. Let us denote by E the $\Diamond - \Box - O$ subalgebra of End_k(w) generated by F. Since C, D, $H \subseteq E$, it follows that $End_E(w) \subseteq End_C(w) = End_D(w) = End_H(w)$ = A. On the other hand, A is a $\Diamond - \Box - O$ subalgebra of $End_k(w)$ whose elements commute with F, therefore $End_A(w)$ is a $\Diamond - \Box - O$ - subalgebra of $\operatorname{End}_{k}(w)$ containing *F*, and so $E \subseteq \operatorname{End}_{A}(w)$. From this, $A \subseteq \operatorname{End}_{E}(w)$.

No. of involution	Underliny vector – space of represented algebra	Construction of Nondegenerate form with respect to involution	Generator of represented algebra with involution	The condition on the element of the field k, where $\Sigma, \overline{\Sigma}, \dots \in k$
N=1	$w_o = U_1 \oplus U_2$	<.,.>	$\label{eq:constraint} \begin{split} T \in End_k(w_o) \\ \text{and} \ T \in M_{2x2}({\mbox{\boldmathφ}}) \end{split}$	$\Sigma\overline{\Sigma}=1$
N=2	$w_o = U_1 \oplus U_2 \oplus U_3 \oplus U_4$	<.,.>,[.,.]	$\label{eq:constraint} \begin{array}{l} T \in End_k(w_o) \\ \text{and} \ T \in M_{4x4}({\mbox{\boldmathξ}}) \end{array}$	$\Sigma \overline{\Sigma} = \Sigma' \overline{\Sigma}' = 1$
N=3	$w_o = U_1 \oplus \dots \oplus U_6$	<. , .> , [. , .] , (. , .)	$\label{eq:constraint} \begin{array}{l} T \in End_k(w_o) \\ \text{and} \ T \in M_{6x6}(\mbox{\boldmathξ}) \end{array}$	$\begin{split} \Sigma\overline{\Sigma} &= \Sigma'\overline{\Sigma}' = \\ \Sigma''\overline{\Sigma}'' &= 1 \end{split}$
N=4	$w_o = U_1 \oplus \dots \oplus U_8$	<.,.> , [.,.] , (.,.) , {.,.}	$\label{eq:constraint} \begin{array}{l} T \in End_k(w_o) \\ \text{and } T \in M_{8x8}({\mbox{\boldmathξ}}) \end{array}$	$\Sigma \overline{\Sigma} = \Sigma' \overline{\Sigma'} =$ $\Sigma'' \overline{\Sigma''} = \Sigma''' \overline{\Sigma'''} = 1$
N=5	$w_o = U_1 \oplus \dots \oplus \oplus U_{10}$	<.,,>, [. , .], (. , .), {. , .}, ((. , .))	$\label{eq:tau} \begin{array}{l} T \in End_k(w_o) \\ \text{and } T \! \in \! M_{10x10}(\boldsymbol{\varepsilon}) \end{array}$	$\begin{split} \Sigma\overline{\Sigma} &= \Sigma'\overline{\Sigma}' = \\ \Sigma''\overline{\Sigma}'' = \Sigma'''\overline{\Sigma}''' = \\ \Sigma'''\overline{\Sigma}'''' &= 1 \end{split}$
•				
	•	•		•

Remark 2. The process of representing the algebras of commuting involutions can be explained through the following diagram :

<u>REFERENCES</u>

- [1] M. Cabrera and Amir A. Mohammed, "A representation theorem for algebras with commuting involutions", (2000), Linear algebra and its Applications 306 (25-31).
- [2] M. Cabrera, A. Moreno, A. Rodriguez, E. I. zel'manov, "Jordan Polynomials can be analytically recognized," (1996), Studia Math, 137-147.
- [3] N. Jacobson, "Lectures in abstract algebra II, Linear algebra", (1953), Grad, Texts in Mathematics, Vol., 31, Springer, New York.
- [4] S. Lang, "Algebra, third edition", (1971), Addison-Wesley, New York.
- [5] A. Moreno, "Extending the norm from special Jordan triple systems to their associative envelopes", Banach Algebras '97, Proc. 13th Internat. Conf. on Banach Algebras, July 20-August 3, 1997, Walter de gruyter, Berlin, 1998, pp. 363-375.
- [6] H. G. Quebbemann, "A representation theorem for algebras with involution", linear algebra Appl., (1987), 193-195.