On Representation Theorem for Algebras with Three Commuting Involutions

Amir A. Mohammed
Baida S. Abdullah Nadwa S. Younis amirabdulillah64@gmail.com

College of Education
University of Mosul, Iraq
Received on: 26/08/2007
Accepted on: 30/01/2008

Abstract

Algebras with three commuting involutions are represented as commutants of one-generated $\diamond-\square-\bigcirc$ subalgebras of algebras of vectorspace endomorphisms where $\diamond-\square$ and \bigcirc are involutions of a prefixed type. Keywords: Algebras, commuting involutions.

تاريخ القبول: 2008/01/30

الملخص

جبور فضاء متجه التطبيقات الخطية حيث \bigcirc - $-\square$ رموز التثابكات المثبتة المذكورة آنفاً. الكلمات المفتاحية: الجبريات، تشابكات ابدالية.

Introduction and Preliminaries

Throughout this paper (k, -) denotes a field with an involution and the terminology of algebra and algebra involution is relative to ($k,-$). A systematic study of representation theory for algebras with involutions was given in [6] by Quebbemann and he proved that (involutive unital finitedimensional algebras can be represented as commutants of one-generated self-adjoint subalgebras of algebras of vector-space endomorphisms) and later the representation theory for algebras with involutions has been extend to algebras with two commuting involutions by Cabrera and Mohammed see [1].

We begin by summarizing some definitions and fundamental concepts. An involution * in an algebra A is a mapping $a \rightarrow a^{*}$ of A into it self satisfying $(a+b)^{*}=a^{*}+b^{*},(\alpha a)^{*}=\alpha \square a^{*}$ (where - denote the conjecate of complex number), $(a b)^{*}=b^{*} a^{*}$ and $a^{* *}=a$ for all a, b in A and α in k see[1]. A subalgebra of A globally invariant by $*$ is called a

* - subalgebra. If B is a *-subalgebra of A, then its centralizer in A given by
$\{a \in A: a b=b a$ for all b in $B\}$,
is also a * - subalgebra of A see [1].
Involutive algebras can be constructed from the consideration of nondegenerate hermitian spaces. Recall that, for Σ in k satisfying $\Sigma \bar{\Sigma}=1$, a nondegenerate Σ-hermitian form in a vector - space M over k is a mapping <., , > from $M \times M$ into k satisfying
$\left\langle m_{l}+m_{2}, m^{\prime}\right\rangle=\left\langle m_{l}, m^{\prime}\right\rangle+\left\langle m_{2}, m^{\prime}\right\rangle,\left\langle\alpha m, m^{\prime}\right\rangle=\alpha\left\langle m, m^{\prime}\right\rangle$ $\left.\left\langle m, m^{\prime}\right\rangle=\Sigma \overline{m^{\prime}, m}\right\rangle$
for all $m_{1}, m_{2}, m, m^{\prime}$ in M and α in k, and < $\left.m, m^{\prime}\right\rangle=0$ for all m^{\prime} implies $m=0$ see [1]. If M has finite dimension, then the algebra $\operatorname{End}_{k}(M)$ of all endomorphisms of M with the adjoint involution $F \rightarrow F^{\diamond}$ given by
$\left\langle F(m), m^{\prime}\right\rangle=\left\langle m, F^{\diamond}\left(m^{\prime}\right)\right\rangle$
for all m, m^{\prime} in M see [1].
If $\left(A,{ }^{*}, \#, \delta\right),(B, \diamond, \square, O)$ are algebras with three commuting involutions, an isomorphism between $(A, *, \#, \delta)$ and $(B, \diamond, \square, O)$ is an algebra isomorphism ϕ from A onto B satisfying $\phi\left(a^{*}\right)=\phi(a)^{\diamond}, \phi\left(a^{\#}\right)=$ $\phi(a)^{\boldsymbol{G}}$ and $\phi\left(a^{\delta}\right)=\phi(a)^{F}$ for all a in A. In this case $(A, *, \#, \delta)$ and $(B, \diamond, \square$,O) are said to be isomorphic see [1].

Our main result is the following :
Theorem 1. Let ($A,{ }^{*}, \#, \delta$) be a unital finite-dimensional algebra with commuting involutions over ($k,-$) and let $\Sigma, \Sigma^{\prime}, \Sigma^{\prime \prime}$ in k such that $\Sigma \bar{\Sigma}=\Sigma \bar{\Sigma}^{\prime}$ $=\Sigma^{\prime} \bar{\Sigma}^{\prime \prime}=1$. Then there exist a finite-dimensional vector space w over k, a nondegenerate Σ-hermitian form <., .>, a nondegenerate Σ^{\prime}-hermitian form [. , .], a nondegenerate Σ "-hermitian form [. , .], and F in $\operatorname{End}_{k}(w)$ such that ($A,{ }^{*}, \#, \delta$) is isomorphic to the centralizer of the $\quad \diamond-\square-O$ subalgebra of $\operatorname{End}_{k}(w)$ generated by F, where \diamond, \square and O are adjoint involutions in $\operatorname{End}_{k}(w)$ determined by <., .> , [. . .] and (. . .), respectively.

We will follow the lines of the following lemma : Let (A, *, \#) be a unital finite-dimensional algebra with commuting involutions over ($K,-$) and let Σ, Σ^{\prime} in K such that $\Sigma \bar{\Sigma}=\Sigma^{\prime} \bar{\Sigma}^{\prime}=1$. Then there exist a finitedimensional vector space W over K, a nondegenerate Σ-hermitian form <.,.> in W, a nodegenerate Σ^{\prime}-hermitian from [. , .] in W, and F in $E n d_{K}(W)$ such that ($A, *, \#$) is isomorphic to the centralizer of the $\diamond-\square$ subalgebra of $E n d_{K}(W)$ generated by F, where \diamond and \square are adjoint involutions in $\operatorname{End}_{K}(W)$ determined by <. . . > and [. , .] respectively.
Proof : see [1, Theorem 1]

The first part of the proof consists in finding a nondegenerate $\Sigma-\Sigma^{\prime \prime}-\Sigma^{\prime \prime}$-hermitian space w_{o} over k such that ($A, *, \#, \delta$) is embedded into $\operatorname{End}_{k}\left(w_{o}\right)$ in such a way that w_{o} is a balanced A-module (that is, $A=\operatorname{End}_{\mathrm{B}}$ (w_{o}) if $B=\operatorname{End}_{\mathrm{A}}\left(w_{o}\right)$). Our construction involves the three commuting involutions of A and consists in a convenient triple of the representation used in [1].

Theorem 2. let $(A, *, \#, \delta)$ be a unital finite-dimensional algebra with commuting involutions over ($k,-$) and let $\Sigma, \Sigma^{\prime}, \Sigma^{\prime \prime}$ in k such that $\Sigma \bar{\Sigma}=\Sigma \bar{\Sigma}^{\prime}$ $=\Sigma^{\prime \prime} \bar{\Sigma}^{\prime \prime}=1$. Then there exists ($w_{o},\langle.,\rangle,.[.,],.(.,$.$)), where w_{o}$ is a finite-dimensional vector space over k which is a balanced left A-module (in fact, w_{o} contains A as a direct summand) and <. , .> , [. , .] , (. , .) are nondegenerate Σ-hermitian, Σ^{\prime}-hermitian and $\Sigma^{\prime \prime}$-hermitian forms in w_{o}, respectively, in such a way that the associated representation of A in w_{o} becomes an isomorphism of algebras with three involutions of ($A,{ }^{*}, \#, \delta$) into $\left(\operatorname{End}_{k}\left(w_{o}\right), \diamond, \square, O\right)$, where \diamond, \square and O are adjoint involutions in $\operatorname{End}_{k}\left(w_{o}\right)$ determined by <., .> , [., .] and (., .), respectively.

Proof. Consider the vector space $\mathrm{w}_{\mathrm{o}}:=U_{1} \oplus U_{2} \oplus U_{3} \oplus U_{4} \oplus U_{5} \oplus U_{6}$, where $U_{1}=U_{3}=U_{5}=A$ and $U_{2}=U_{4}=U_{6}=\operatorname{Hom}_{k}(A, k)$. Endow w_{o} with the structure of faithful left A-module given by :
$a\left(x_{1}, f_{1}, x_{2}, f_{2}, x_{3}, f_{3}\right):=\left(a x_{1}, f_{1} o L_{a^{*}}, a^{* \#} x_{2}, f_{2} o L_{a \#,} a^{* \# \delta} x_{3}, f_{3} o L_{a \delta}\right)$ for all a in A and ($x_{1}, f_{1}, x_{2}, f_{2}, x_{3}, f_{3}$) in w_{o}. The mapping <., .> from $w_{o} \mathrm{x} w_{o}$ in to k defined by
$\left\langle\left(x_{1}, f_{1}, x_{2}, f_{2}, x_{3}, f_{3}\right),\left(y_{1}, g_{1}, y_{2}, g_{2}, y_{3}, g_{3}\right)\right\rangle:=$
$f_{1}\left(y_{1}\right)+f_{2}\left(y_{2}\right)+f_{3}\left(y_{3}\right)+\Sigma\left(g_{1}\left(x_{1}\right)+g_{2}\left(x_{2}\right)+g_{3}\left(x_{3}\right)\right)$
is a nondegenerate Σ-hermitian form satisfying
$\left\langle a\left(x_{1}, f_{1}, x_{2}, f_{2}, x_{3}, f_{3}\right),\left(y_{1}, g_{1}, y_{2}, g_{2}, y_{3}, g_{3}\right)\right\rangle=$
$\left\langle\left(x_{1}, f_{1}, x_{2}, f_{2}, x_{3}, f_{3}\right), a *\left(y_{1}, g_{1}, y_{2}, g_{2}, y_{3}, g_{3}\right)\right\rangle$,
and therefore the representation of A on w_{o} becomes an isomorphism of involutive algebras from $\left(A,^{*}\right)$ into $\left(\operatorname{End}_{\mathrm{k}}\left(w_{o}\right), \diamond\right)$, where \diamond denotes the adjoint involution with respect to <., .>. Furthermore, the mapping [. , .] from $w_{o} \mathrm{x} w_{o}$ into k defined by
$\left[\left(x_{1}, f_{1}, x_{2}, f_{2}, x_{3}, f_{3}\right),\left(y_{1}, g_{1}, y_{2}, g_{2}, y_{3}, g_{3}\right)\right]:=$
$\overline{f_{1}\left(y_{2}\right)+f_{2}\left(y_{3}\right)+f_{3}\left(y_{1}\right)}+\Sigma^{\prime}\left(g_{1}\left(x_{2}\right)+g_{2}\left(x_{3}\right)+g_{3}\left(x_{1}\right)\right)$
is a nondegenerate Σ^{\prime}-hermitian form satisfying
$\left[a\left(x_{1}, f_{1}, x_{2}, f_{2}, x_{3}, f_{3}\right),\left(y_{1}, g_{1}, y_{2}, g_{2}, y_{3}, g_{3}\right)\right]=$
$\left[\left(x_{1}, f_{1}, x_{2}, f_{2}, x_{3}, f_{3}\right), a^{\#}\left(y_{1}, g_{1}, y_{2}, g_{2}, y_{3}, g_{3}\right)\right]$,
and so the representation of A on w_{o} also becomes an isomorphism of involutive algebras from (A, \#) into $\left(\operatorname{End}_{\mathrm{k}}\left(w_{o}\right), \boldsymbol{G}\right)$, where \boldsymbol{G} denotes the adjoint involution with respect to [..,]. furthermore, the mapping (. , .) from $w_{o} \mathrm{x} w_{o}$ into k defined by
$\left(\left(x_{1}, f_{1}, x_{2}, f_{2}, x_{3}, f_{3}\right),\left(y_{1}, g_{1}, y_{2}, g_{2}, y_{3}, g_{3}\right)\right):=$
$\overline{f_{1}\left(y_{3}\right)+f_{2}\left(y_{1}\right)+f_{3}\left(y_{2}\right)}+\Sigma^{\prime \prime}\left(g_{1}\left(x_{3}\right)+g_{2}\left(x_{1}\right)+g_{3}\left(x_{2}\right)\right)$
is a nondegenerate $\Sigma^{\prime \prime}$-hermitian form satisfying
$\left[a\left(x_{1}, f_{1}, x_{2}, f_{2}, x_{3}, f_{3}\right),\left(y_{1}, g_{1}, y_{2}, g_{2}, y_{3}, g_{3}\right)\right]=$
$\left[\left(x_{1}, f_{1}, x_{2}, f_{2}, x_{3}, f_{3}\right), a^{\delta}\left(y_{1}, g_{1}, y_{2}, g_{2}, y_{3}, g_{3}\right)\right]$,
and so the representation of A on w_{o} also becomes an isomorphism of involutive algebras from (A, δ) into $\left(\operatorname{End}_{k}\left(w_{o}\right), \boldsymbol{F}\right)$, where \boldsymbol{F} denotes the adjoint involution with respect to (., .). Therefore, the representation of A on w_{o} is an isomorphism of algebras with three involutions. Since w_{o} contains the "regular" A-module A as a direct summand, it is balanced (see [4, P. 451]).
Remark 1. The involutions \diamond, \square and O in $\operatorname{End}_{k}\left(w_{o}\right)$ obtained in the above proof are not necessarily commuting. Since $w_{o}=U_{1} \oplus U_{2} \oplus U_{3} \oplus U_{4} \oplus U_{5}$ $\oplus U_{6}$ we can represent each T in $\operatorname{End}_{\mathrm{k}}\left(w_{o}\right)$ as a 6×6 homomorphism matrix.
$T=\left(\begin{array}{llllll}T_{11} & T_{12} & T_{13} & T_{14} & T_{15} & T_{16} \\ T_{21} & T_{22} & T_{23} & T_{24} & T_{25} & T_{26} \\ T_{31} & T_{32} & T_{33} & T_{34} & T_{35} & T_{36} \\ T_{41} & T_{42} & T_{43} & T_{44} & T_{45} & T_{46} \\ T_{51} & T_{52} & T_{53} & T_{54} & T_{55} & T_{56} \\ T_{61} & T_{62} & T_{63} & T_{64} & T_{65} & T_{66}\end{array}\right)$
Where $T_{i j} \in \operatorname{Hom}_{k}\left(U_{j}, U_{i}\right)$ for $i, j \in\{1,2,3,4,5,6\}$. It is easy to verify that
$T^{\diamond}=\left(\begin{array}{cccccc}T_{22}^{\prime} & \bar{\Sigma} T_{12}^{\prime} & T_{42}^{\prime} & \bar{\Sigma} T_{32}^{\prime} & T_{62}^{\prime} & \bar{\Sigma} T_{52}^{\prime} \\ \Sigma T_{21}^{\prime} & T_{11}^{\prime} & \Sigma T_{41}^{\prime} & T_{31}^{\prime} & \Sigma T_{61}^{\prime} & T_{51}^{\prime} \\ T_{24}^{\prime} & \bar{\Sigma} T_{14}^{\prime} & T_{44}^{\prime} & \bar{\Sigma} T_{34}^{\prime} & T_{64}^{\prime} & \bar{\Sigma} T_{54}^{\prime} \\ \Sigma T_{23}^{\prime} & T_{13}^{\prime} & \Sigma T_{43}^{\prime} & T_{33}^{\prime} & \Sigma T_{63}^{\prime} & T_{53}^{\prime} \\ T_{26}^{\prime} & \bar{\Sigma} T_{16}^{\prime} & T_{46}^{\prime} & \bar{\Sigma} T_{36}^{\prime} & T_{66}^{\prime} & \bar{\Sigma} T_{56}^{\prime} \\ \Sigma T_{25}^{\prime} & T_{15}^{\prime} & \Sigma T_{45}^{\prime} & T_{35}^{\prime} & \Sigma T_{65}^{\prime} & T_{55}^{\prime}\end{array}\right)$
$T^{\square}=\left(\begin{array}{cccccc}T_{66}^{\prime} & \overline{\Sigma^{\prime}} T_{56}^{\prime} & T_{46}^{\prime} & \overline{\Sigma^{\prime}} T_{36}^{\prime} & T_{26}^{\prime} & \overline{\Sigma^{\prime}} T_{16}^{\prime} \\ \Sigma^{\prime} T_{65}^{\prime} & T_{55}^{\prime} & \Sigma^{\prime} T_{45}^{\prime} & T_{35}^{\prime} & \Sigma^{\prime} T_{25}^{\prime} & T_{15}^{\prime} \\ T_{64}^{\prime} & \overline{\Sigma^{\prime}} T_{54}^{\prime} & T_{44}^{\prime} & \overline{\Sigma^{\prime}} T_{34}^{\prime} & T_{24}^{\prime} & \overline{\Sigma^{\prime}} T_{14}^{\prime} \\ \Sigma^{\prime} T_{63}^{\prime} & T_{53}^{\prime} & \Sigma^{\prime} T_{43}^{\prime} & T_{33}^{\prime} & \Sigma^{\prime} T_{23}^{\prime} & T_{13}^{\prime} \\ T_{62}^{\prime} & \overline{\Sigma^{\prime}} T_{52}^{\prime} & T_{42}^{\prime} & \overline{\Sigma^{\prime}} T_{32}^{\prime} & T_{22}^{\prime} & \overline{\Sigma^{\prime}} T_{12}^{\prime} \\ \Sigma^{\prime} T_{61}^{\prime} & T_{51}^{\prime} & \Sigma^{\prime} T_{41}^{\prime} & T_{31}^{\prime} & \Sigma^{\prime} T_{21}^{\prime} & T_{11}^{\prime}\end{array}\right)$
And
$T^{\circ}=\left(\begin{array}{cccccc}T_{44}^{\prime} & \overline{\Sigma^{\prime \prime}} T_{14}^{\prime} & T_{64}^{\prime} & \overline{\Sigma^{\prime \prime}} T_{34}^{\prime} & T_{24}^{\prime} & \overline{\Sigma^{\prime \prime}} T_{54}^{\prime} \\ \Sigma^{\prime \prime} T_{41}^{\prime} & T_{11}^{\prime} & \Sigma^{\prime} T_{61}^{\prime} & T_{31}^{\prime} & \Sigma^{\prime \prime} T_{21}^{\prime} & T_{51}^{\prime} \\ T_{46}^{\prime} & \overline{\Sigma^{\prime \prime}} T_{16}^{\prime} & T_{66}^{\prime} & \overline{\Sigma^{\prime \prime}} T_{36}^{\prime} & T_{26}^{\prime} & \overline{\Sigma^{\prime \prime}} T_{56}^{\prime} \\ \Sigma^{\prime \prime} T_{43}^{\prime} & T_{13}^{\prime} & \Sigma^{\prime \prime} T_{63}^{\prime} & T_{33}^{\prime} & \Sigma^{\prime \prime} T_{23}^{\prime} & T_{53}^{\prime} \\ T_{42}^{\prime} & \overline{\Sigma^{\prime \prime}} T_{12}^{\prime} & T_{62}^{\prime} & \bar{\Sigma}^{\prime \prime} T_{32}^{\prime} & T_{22}^{\prime} & \overline{\Sigma^{\prime \prime}} T_{52}^{\prime} \\ \Sigma^{\prime \prime} T_{45}^{\prime} & T_{15}^{\prime} & \Sigma^{\prime \prime} T_{65}^{\prime} & T_{35}^{\prime} & \Sigma^{\prime \prime} T_{25}^{\prime} & T_{55}^{\prime}\end{array}\right)$
Therefore

$$
\begin{aligned}
& T^{\diamond \square}=\left(\begin{array}{cccccc}
T_{55}^{\prime} & \overline{\Sigma^{\prime}} \Sigma T_{56}^{\prime} & T_{53}^{\prime} & \overline{\Sigma^{\prime}} \Sigma T_{54}^{\prime} & T_{51}^{\prime} & \overline{\Sigma^{\prime}} \Sigma T_{52}^{\prime} \\
\Sigma^{\prime} \bar{\Sigma} T_{65}^{\prime} & T_{66}^{\prime} & \Sigma^{\prime} \bar{\Sigma} T_{63}^{\prime} & T_{64}^{\prime} & \Sigma^{\prime} \bar{\Sigma} T_{61}^{\prime} & T_{62}^{\prime} \\
T_{35}^{\prime} & \overline{\Sigma^{\prime}} \Sigma T_{36}^{\prime} & T_{33}^{\prime} & \overline{\Sigma^{\prime}} T_{34}^{\prime} & T_{31}^{\prime} & \overline{\Sigma^{\prime}} \Sigma T_{32}^{\prime} \\
\Sigma^{\prime} \bar{\Sigma} T_{45}^{\prime} & T_{46}^{\prime} & \Sigma^{\prime} \bar{\Sigma} T_{43}^{\prime} & T_{44}^{\prime} & \Sigma^{\prime} \bar{\Sigma} T_{41}^{\prime} & T_{42}^{\prime} \\
T_{15}^{\prime} & \overline{\Sigma^{\prime}} \Sigma T_{16}^{\prime} & T_{13}^{\prime} & \overline{\Sigma^{\prime}} \Sigma T_{14}^{\prime} & T_{11}^{\prime} & \overline{\Sigma^{\prime}} \Sigma T_{12}^{\prime} \\
\Sigma^{\prime} \bar{\Sigma} T_{25}^{\prime} & T_{26}^{\prime} & \Sigma^{\prime} \bar{\Sigma} T_{23}^{\prime} & T_{24}^{\prime} & \Sigma^{\prime} \bar{\Sigma} T_{21}^{\prime} & T_{22}^{\prime}
\end{array}\right) \\
& T^{\square \Delta}=\left(\begin{array}{cccccc}
T_{55}^{\prime} & \bar{\Sigma} \Sigma^{\prime} T_{56}^{\prime} & T_{53}^{\prime} & \bar{\Sigma} \Sigma^{\prime} T_{54}^{\prime} & T_{51}^{\prime} & \bar{\Sigma} \Sigma^{\prime} T_{52}^{\prime} \\
\Sigma \overline{\Sigma^{\prime}} T_{65}^{\prime} & T_{66}^{\prime} & \Sigma \bar{\Sigma}^{\prime} T_{63}^{\prime} & T_{64}^{\prime} & \Sigma \overline{\Sigma^{\prime} T_{61}^{\prime}} & T_{62}^{\prime} \\
T_{35}^{\prime} & \overline{\Sigma \Sigma^{\prime} T_{36}^{\prime}} & T_{33}^{\prime} & \overline{\Sigma \Sigma^{\prime} T_{34}^{\prime}} & T_{31}^{\prime} & \overline{\Sigma^{\prime} T_{32}^{\prime}} \\
\Sigma \Sigma^{\prime} T_{45}^{\prime} & T_{46}^{\prime} & \Sigma \Sigma^{\prime} T_{43}^{\prime} & T_{44}^{\prime} & \Sigma \Sigma^{\prime} T_{41}^{\prime} & T_{42}^{\prime} \\
T_{15}^{\prime} & \overline{\Sigma \Sigma^{\prime} T_{16}^{\prime}} & \frac{T_{13}^{\prime}}{\Sigma^{\prime} \Sigma_{14}^{\prime}} & \frac{T_{11}^{\prime}}{\Sigma^{\prime} \Sigma^{\prime} T_{12}^{\prime}} \\
\Sigma \bar{\Sigma}_{26}^{\prime} & \Sigma_{23}^{\prime} & T_{24}^{\prime} & \Sigma \Sigma^{\prime} T_{21}^{\prime} & T_{22}^{\prime}
\end{array}\right)
\end{aligned}
$$

And

$$
T^{\diamond \circ}=\left(\begin{array}{cccccc}
T_{55}^{\prime} & \overline{\Sigma^{\prime \prime}} \Sigma T_{56}^{\prime} & T_{53}^{\prime} & \overline{\Sigma^{\prime \prime}} \Sigma T_{54}^{\prime} & T_{51}^{\prime} & \overline{\Sigma^{\prime \prime}} \Sigma T_{52}^{\prime} \\
\Sigma^{\prime \prime} \bar{\Sigma} T_{65}^{\prime} & T_{66}^{\prime} & \Sigma^{\prime \prime} \bar{\Sigma} T_{63}^{\prime} & T_{64}^{\prime} & \Sigma^{\prime \prime} \bar{\Sigma} T_{61}^{\prime} & T_{62}^{\prime} \\
T_{35}^{\prime} & \overline{\Sigma^{\prime \prime} \Sigma T_{36}^{\prime}} & T_{33}^{\prime} & \overline{\Sigma^{\prime \prime}} \Sigma T_{34}^{\prime} & T_{31}^{\prime} & \overline{\Sigma^{\prime \prime}} \Sigma T_{32}^{\prime} \\
\Sigma^{\prime \prime} \bar{\Sigma} T_{45}^{\prime} & T_{46}^{\prime} & \Sigma^{\prime \prime} \bar{\Sigma} T_{43}^{\prime} & T_{44}^{\prime} & \Sigma^{\prime \prime} \bar{\Sigma} T_{41}^{\prime} & T_{42}^{\prime} \\
T_{15}^{\prime} & \overline{\Sigma^{\prime \prime}} \Sigma T_{16}^{\prime} & T_{13}^{\prime} & \overline{\Sigma^{\prime \prime}} \Sigma T_{14}^{\prime} & T_{11}^{\prime} & \overline{\Sigma^{\prime \prime}} \Sigma T_{12}^{\prime} \\
\Sigma^{\prime \prime} \bar{\Sigma} T_{25}^{\prime} & T_{26}^{\prime} & \Sigma^{\prime \prime} \bar{\Sigma} T_{23}^{\prime} & T_{24}^{\prime} & \Sigma^{\prime \prime} \bar{\Sigma} T_{21}^{\prime} & T_{22}^{\prime}
\end{array}\right)
$$

As a result, \diamond, \square and O are commuting if and only if $\overline{\Sigma^{\prime}} \Sigma=\bar{\Sigma} \Sigma^{\prime}=\overline{\Sigma^{\prime \prime}} \Sigma=$ $\bar{\Sigma} \Sigma^{\prime \prime}$, or equivalently $\Sigma^{2}=\Sigma^{2}=\Sigma^{\prime \prime 2}$.

Proof of Theorem 1. let ($\left.A,{ }^{*}, \#, \delta\right)$ be a unital finite-dimensional algebra with commuting involutions over ($k,-$) and let $\Sigma, \Sigma, \Sigma^{\prime}$ in k such that $\Sigma \bar{\Sigma}=\Sigma^{\prime} \overline{\Sigma^{\prime}}=\Sigma^{\prime \prime} \overline{\Sigma^{\prime \prime}}=1$. By Theorem 2 there exists ($\left.w_{o},<., .>,[.,],.(.,).\right)$, where w_{o} is a finite-dimensional vector space over k which is a balanced left A-module and <.,.>, [..,] and (...) are nondegenerate Σ-hermitian, Σ^{\prime} hermitian and $\Sigma^{\prime \prime}$-hermitian forms in w_{o}, respectively, in such a way the associated representation of A in w_{o} becomes an isomorphism from ($A, *, \#$, δ) into $\left(\operatorname{End}_{\mathrm{k}}\left(w_{o}\right), \diamond, \square, O\right)$, where \diamond, \square and O are adjoint involutions in $\operatorname{End}_{k}\left(w_{o}\right)$ determined by <.,.>, [...] and (.,.), respectively. Let m denote the dimension of $B=\operatorname{End}_{A}\left(w_{o}\right)$. Put (w, <.,.>, [.,.], (.,.)) : $\left.=\left(w_{o},<.,.\right\rangle,[.,],.(.,).\right)$ $\left.\oplus \ldots++2 . \oplus\left(w_{o},<.,\right\rangle,[.],,(.,).\right)$, and consider $\operatorname{End}_{k}\left(w_{o}\right)$ embedded diagonally in $\operatorname{End}_{\mathrm{k}}(w)$. By the final step of the proof of theorem 1 in [1] applied to <.,.>, [..,] and (...) there exists F in $\operatorname{End}_{\mathrm{k}}(w)$ such that $\mathrm{A}=\operatorname{End}_{\mathrm{C}}(w)$ $=\operatorname{End}_{\mathrm{D}}(w)=\operatorname{End}_{\mathrm{H}}(w)$, where C and D (resp. H) denotes the \diamond-subalgebra and \square - subalgebra (resp. O - subalgebra) of $\operatorname{End}_{\mathrm{K}}(w)$ generated by F. Let us denote by E the $\Delta_{-} \square-O$ subalgebra of $\operatorname{End}_{k}(w)$ generated by F. Since $C, D, H \subseteq E$, it follows that $\operatorname{End}_{\mathrm{E}}(w) \subseteq \operatorname{End}_{\mathrm{C}}(w)=\operatorname{End}_{\mathrm{D}}(w)=\operatorname{End}_{\mathrm{H}}(w)$ $=A$. On the other hand, A is a $\Delta-\square-O-$ subalgebra of $\operatorname{End}_{k}(w)$ whose elements commute with F, therefore $\operatorname{End}_{\mathrm{A}}(w)$ is a $\checkmark-\square-O$ - subalgebra of $\operatorname{End}_{\mathrm{k}}(w)$ containing F, and so $E \subseteq \operatorname{End}_{\mathrm{A}}(w)$. From this, $A \subseteq \operatorname{End}_{\mathrm{E}}(w)$.

Remark 2. The process of representing the algebras of commuting involutions can be explained through the following diagram :

No. of involution	Underliny vector space of represented algebra	Construction of Nondegenerate form with respect to involution	Generator of represented algebra with involution	The condition on the element of the field k, where $\Sigma, \bar{\Sigma}, \ldots \in k$
$N=1$	$w_{o}=U_{1} \oplus U_{2}$	$<.,$.	$\begin{gathered} \mathrm{T} \in \operatorname{End}_{\mathrm{k}}\left(\mathrm{w}_{\mathrm{o}}\right) \\ \text { and } \mathrm{T} \in \mathrm{M}_{2 \times 2}(\not) \end{gathered}$	$\Sigma \bar{\Sigma}=1$
$N=2$	$w_{o}=U_{1} \oplus U_{2} \oplus U_{3} \oplus U_{4}$	$\langle.,$.$\rangle , [., .]$	$\begin{gathered} \mathrm{T} \in \operatorname{End}_{\mathrm{k}}\left(\mathrm{w}_{\mathrm{o}}\right) \\ \text { and } \mathrm{T} \in \mathrm{M}_{4 \times 4}(\phi) \end{gathered}$	$\Sigma \bar{\Sigma}=\Sigma^{\prime} \bar{\Sigma}^{\prime}=1$
$N=3$	$w_{o}=U_{l} \oplus \ldots \ldots \ldots \oplus U_{6}$	<., .> , [., .], (., .)	$\begin{aligned} & \mathrm{T} \in \operatorname{End}_{\mathrm{k}}\left(\mathrm{w}_{\mathrm{o}}\right) \\ & \text { and } \left.\mathrm{T} \in \mathrm{M}_{6 \times 6}(\not)\right) \end{aligned}$	$\begin{gathered} \Sigma \bar{\Sigma}=\Sigma^{\prime} \bar{\Sigma}^{\prime}= \\ \Sigma^{\prime \prime}{\overline{\Sigma^{\prime \prime}}}^{\prime \prime}=1 \end{gathered}$
$N=4$	$w_{o}=U_{l} \oplus \ldots \ldots \ldots \oplus U_{8}$	<.,.> , [...], (.,.) , \{..., $\}$	$\begin{aligned} & \mathrm{T} \in \operatorname{End}_{\mathrm{k}}\left(\mathrm{w}_{\mathrm{o}}\right) \\ & \text { and } \left.\mathrm{T} \in \mathrm{M}_{8 \times 8}(\not)\right) \end{aligned}$	$\left\|\begin{array}{c} \Sigma \overline{\bar{\Sigma}}=\Sigma^{\overline{\Sigma^{\prime}}}= \\ \Sigma^{\prime \prime} \overline{\Sigma^{\prime \prime}}=\Sigma^{\prime \prime} \overline{\Sigma^{\prime \prime \prime}}=1 \end{array}\right\|$
$N=5$	$w_{o}=U_{l} \oplus \ldots \ldots \ldots \oplus U_{10}$	$\underset{((., .,))}{[., .],(., .),\{., .\},}$	$\begin{gathered} \mathrm{T} \in \operatorname{End}_{\mathrm{k}}\left(\mathrm{w}_{\mathrm{o}}\right) \\ \text { and } \mathrm{T} \in \mathrm{M}_{10 \times 10}(\underline{\text { c }}) \end{gathered}$	$\begin{gathered} \Sigma \bar{\Sigma}=\Sigma \overline{\Sigma^{\prime}}= \\ \Sigma^{\prime \prime} \overline{\Sigma^{\prime \prime}}=\Sigma^{\prime \prime} \overline{\Sigma^{\prime \prime \prime}}= \\ \Sigma^{\prime \prime \prime} \overline{\Sigma^{\prime \prime \prime \prime}}=1 \end{gathered}$
\cdot	$\stackrel{\cdot}{\cdot} \cdot$	\cdot	$\stackrel{\cdot}{\cdot}$	$\stackrel{\cdot}{\cdot}$

REFERENCES

[1] M. Cabrera and Amir A. Mohammed, "A representation theorem for algebras with commuting involutions", (2000), Linear algebra and its Applications 306 (25-31).
[2] M. Cabrera, A. Moreno, A. Rodriguez, E. I. zel'manov, "Jordan Polynomials can be analytically recognized," (1996), Studia Math, 137-147.
[3] N. Jacobson, "Lectures in abstract algebra II, Linear algebra", (1953), Grad, Texts in Mathematics, Vol., 31, Springer, New York.
[4] S. Lang, "Algebra, third edition", (1971), Addison-Wesley, New York.
[5] A. Moreno, "Extending the norm from special Jordan triple systems to their associative envelopes", Banach Algebras '97, Proc. 13th Internat. Conf. on Banach Algebras, July 20-August 3, 1997, Walter de gruyter, Berlin, 1998, pp. 363-375.
[6] H. G. Quebbemann, "A representation theorem for algebras with involution", linear algebra Appl., (1987), 193-195.

