
 Raf. J. of Comp. & Math’s. , Vol. 6, No. 1, 2009

 81

Improving Gene Expression Programming Method
Najla Akram AL-Saati Nidhal Al-Assady

dr.najla_alsaati@uomosul.edu.iq
College of Computer Sciences and Mathematics

University of Mosul, Iraq
Received on: 25/09/2008 Accepted on: 04/12/2008

Abstract

In this work the algorithm of Gene Expression Programming (GEP) is investigated

thoroughly and the major deficiencies are pointed out. Multiple suggestions for

enhancements are introduced in this research aiming at solving the major deficiencies

that were investigated. These improvements produced higher success rates and avoid the

malfunctioning situations found in GEP. These deficiencies or weak points include:

choosing the best parameter settings, using only one linking function, gene flattening

problem, illegal operations in genes and lack of function biasing. Improvements

suggested the following enhancement features: the Multi-Population feature, the

Emergency Mutation feature, and the feature of Component Biasing. Tests are carried

out using two different symbolic regression problems.
Keywords: Gene Expression Programming, Symbolic Regression.

 البرمجة باستخدام التعبير الجيني الوراثيطريقة تحسين
 نضال حسين الاسدي نجلاء اكرم الساعاتي

 كلية علوم الحاسبات والرياضيات

 جامعة الموصل

 04/12/2008 خ قبول البحث:تاري 25/09/2008تاريخ استلام البحث:

 ملخصال
 Gene Expressionيتناول هذا البحث اجراء دراسة حول خوارزمية)البرمجة باستخدام التعبير الجيني الوراثي()

Programming بشكل شامل وموسع حيث تم ابراز اهم المشاكل التي تعاني منها هذه الطريقة. وقد تم في هذا)
مقترحات لتحسين وحل تلك المشاكل حيث تقوم هذه التحسينات بانتاج نسب نجاح عالية وتتلافى عدةديم البحث تق

. تتضمن هذه المشاكل او نقاط الضعف: اختيار افضل (GEPالحالات غير الصحيحة المكتشفة في طريقة)
ات غير القانونية في الجينات. ربط واحدة فقط، مشكلة تسطح الجين، والعملي ةاعدادات للمعاملات، استخدام دال

خاصية الوحدات السكنية المتعددة ، خاصية طفرة الطوارئ ، وخاصية اقترح في التطوير تقديم التحسينات التالية:
 symbolicتم اجراء الاختبارات باستخدام مسألتين مختلفتين من الانحدار المرمز)الانحياز للمكونات.

regression .)
 .الانحدار الرمزي التعبير الوراثي الجيني ، :يةالكلمات المفتاح

1. Introduction

 Gene Expression Programming (GEP) was introduced by Ferreira in 2001 [5].

The great insight of GEP consisted in the invention of chromosomes capable of

representing any expression tree. For that a new language (Karva) was created so that

the information of GEP chromosomes could be read and expressed. The structural and

 Najla A. AL-Saati and Nidhal Al-Assady

 82

functional organization of genes always guarantees the production of valid programs, no

matter how much or how profoundly the chromosomes are modified.

 Gene expression programming (GEP) is, like genetic algorithms (GAs) and

genetic programming (GP), a genetic algorithm as it uses populations of individuals,

selects them according to fitness, and introduces genetic variation using one or more

genetic operators. GAs, with their simple genome and limited structural and functional

diversity, resemble a primitive RNA World, whereas GP, with its structural and

functional diversity, resembles a hypothetical Protein World. Only when molecules

capable of replication joined molecules with catalytic activity, forming an indivisible

whole, was it possible to create more complex systems and, ultimately, the first cell.

Since then, the genome and phenome mutually presume one another and neither can

function without the other. Similarly, the chromosomes and expression trees of GEP

mutually presume one another and neither exists without the other.[5]

 The advantages of a system like GEP are clear from nature, but the most

important should be emphasized: First, the chromosomes are simple entities: linear,

compact, relatively small, easy to genetically manipulate (replicate, mutate, recombine,

transpose, etc.). Second, expression trees are exclusively the expression of the

respective chromosomes; they are the entities upon which selection acts and, according

to fitness, they are selected to reproduce with modification. During reproduction it is

their chromosomes, not the ETs, which are reproduced with modification and

transmitted to the next generation.

 GEP is a vastly growing field and it has recently been applied in many research

areas such as Hydraulic Data Mining [4] and Classifier Conditions [16].

2. GEP Method

2.1 The Structure of the Chromosome

 The phenotype of GEP individuals consists of the same kind of diagram

representations used by GP. However, these complex entities are encoded in simpler,

linear structures of fixed length (chromosomes). Thus, the main parts in GEP are two

entities: the chromosomes and the expression trees (ETs), being the latter the expression

of the genetic information encoded in the former. The process of translating the

chromosomes to ETs implies a kind of code and a set of rules. The genetic code is very

simple: a one-to-one relationship between symbols and functions or the terminals they

represent. The rules are also simple: they determine the spatial organization of the

functions and terminals in the ETs and the type of interaction between sub-ETs in

multigenic systems [6]. Given a GEP individual (genotype) in Karva language, the

phenotype can easily be represented by an ET as in Figure (1).

 An Expression The Corresponding The Expression Tree

 GEP chromosome

 ((a-b)*(c+d))2 01234567

 S*-+abcd →

 Note :‘S’ is the square function

Figure (1) Representation of the GEP Chromosome

*

+ -

S

b a d c

 Improving Gene Expression Programming Method

83

 Genes are composed of a head and a tail. The head contains both function (non-

terminal) and terminals symbols. The tail contains only terminal symbols. For each

problem the head length (h) is chosen by the user. Given the maximum arity n, or the

number of arguments for the function with the most arguments, the tail length (t) is

evaluated by:

 t = (n – 1) h + 1 …(1)

 In this way if n=2 and h= 4, then t=5 and the total length of the gene is 9. So

despite their fixed length, GEP genes have the potential to code for ETs of different

sizes and shapes, being the simplest composed of only one node (the first element is a

terminal) and the biggest composed of as many nodes as the gene length (all head

elements are functions of maximum arity).

Figure (2) Multigenic Chromosomal Structure in GEP Method

 GEP chromosomes are usually composed of more than one gene of equal length;

as in Figure (2) [12]. For each problem or run, the number of genes, as well as head

length, is a priori chosen. Each gene codes for a sub-ET that interact with one another

through a linking function forming a more complex multi-subunit ET.

 Multigenic chromosome was introduced because it can happen that the first

symbol in a gene to be a terminal, and thus a single gene chromosome cannot represent

a complex expression. As an indirect consequence, if the first symbol of a gene is a

terminal then the rest of the gene is unused.

 Breadth-first parsing is used in the translation of tree programs into genes, where

usually the gene is not entirely used for phenotypic transcription. If the first symbol in

the gene is a terminal, the expression tree consists of a single node. If all symbols in the

head are non-terminals the expression tree uses all the symbols of the gene.

 Genes may be linked by a function symbol in order to obtain a fully functional

chromosome. The linking functions for algebraic expressions are addition and

multiplication. A single type of function is used for linking multiple genes. If the

functions {+ , - ,* ,/ } are used as linking operators then the complexity of the problem

grows substantially (since the problem of determining how to mix these operators with

the genes is as hard as the initial problem).[13]

 Najla A. AL-Saati and Nidhal Al-Assady

 84

2.2 GEP Algorithm

 The flowchart of the Gene Expression Algorithm is shown in Figure (3). The

process begins with the random generation of the chromosomes of each individual in

the initial population. Then chromosomes are expressed and the fitness of each

individual is evaluated.

 Individuals are then selected according to fitness to reproduce with modification,

leaving progeny with new traits. The individuals of this new generation are, in their

turn, subjected to the same developmental process. The process is repeated for a certain

number of generations or until a solution has been found. Reproduction here includes

not only replication but also the action of genetic operators capable of creating genetic

diversity. During replication, the genome is rigorously copied and transmitted to the

next generation. The operators randomly select the chromosomes to be modified. Thus,

in GEP, a chromosome might be modified by one or several operators at a time or not

be modified at all.[5]

2.3 Reproduction in GEP

 According to fitness and the luck of the roulette, individuals are selected to

reproduce with modification, creating the necessary genetic diversity that allows

adaptation in the long run. Except for replication, where the genomes of all the selected

individuals are rigorously copied, all the remaining operators randomly pick

chromosomes to be subjected to a certain modification. However, except for mutation,

each operator is not allowed to modify a chromosome more than once. Furthermore, in

GEP, a chromosome might be chosen by one or several genetic operators. Thus, the

modifications of several genetic operators accumulate during reproduction, producing

offspring very different from the parents.

Figure (3) Flowchart of Gene Expression Programming

 Improving Gene Expression Programming Method

85

2.3.1 Replication

 Although vital, replication is the most uninteresting operator: alone it contributes

nothing to genetic diversification. According to fitness and the luck of the roulette,

chromosomes are faithfully copied into the next generation. The fitter the individual the

higher the probability of leaving more offspring. Thus, during replication the genomes

of the selected individuals are copied as many times as the outcome of the roulette. The

roulette is spun as many times as there are individuals in the population, maintaining

always the same population size.

2.3.2 Mutation

 Mutations can occur anywhere in the chromosome. However, the structural

organization of chromosomes must remain intact. In the heads any symbol can change

into another (function or terminal); in the tails terminals can only change into terminals.

This way, the structural organization of chromosomes is maintained, and all the new

individuals produced by mutation are structurally correct programs. Typically, a

mutation rate (pm) equivalent to 2 point mutations per chromosome is used. Consider

the If a mutation would occur in the following 3-genic chromosome, it might change the

element in position 0 in gene 1 to ‘Q’; the element in position 3 in gene 2 to ‘Q’; and the

element in position 1 in gene 3 to ‘b’.

 Before After
012345678012345678012345678 → 012345678012345678012345678

-+-+abaaa/bb/ababb*Q*+aaaba Q+-+abaaa/bbQababb*b*+aaaba

2.3.3 Transposition and Insertion Sequence Elements

 The transposable elements of GEP are fragments of the genome that can be

activated and jump to another place in the chromosome. In GEP there are three kinds of

transposable elements:

 1) Short fragments with a function or terminal in the first position that transpose to

the head of genes except to the root (insertion sequence elements or IS elements);

2) Short fragments with a function in the first position that transpose to the root of

genes (root IS elements or RIS elements);

3) Entire genes that transpose to the beginning of chromosomes.

2.3.3.1. Transposition of IS elements

 Any random sequence in the genome might become an IS element. A copy of

the transposon is made and inserted at any position in the head of a gene, except at the

start position. Typically, a transposition rate (pis) of 0.1 and a set of three IS elements of

different length are used. The chromosome, IS element, target site, and length of the

transposon are all randomly chosen. Suppose that the sequence ‘bba’ in gene 2

(positions 12- 14) was chosen to be an IS element in the chromosome bellow:

012345678901234567890012345678901234567890

*-+*a-+a*bbabbaabababQ**+abQbb*aabbaaaabba

If the target site was bond 6 in gene 1 (between positions 5 and 6). Then, a cut is made

in bond 6 and the block ‘bba’ is copied into the site of insertion, obtaining:

012345678901234567890012345678901234567890

*-+*a-bba+babbaabababQ**+abQbb*aabbaaaabba

 Najla A. AL-Saati and Nidhal Al-Assady

 86

2.3.3.2. Root transposition

 All RIS elements start with a function, and thus are chosen from the heads. For

that, a point is randomly chosen in the head and the gene is scanned downstream until a

function is found. This function becomes the start position of the RIS element. If no

functions are found, it does nothing. Typically a root transposition rate (pris) of 0.1 and

a set of three RIS elements of different sizes are used. This operator randomly chooses

the chromosomes, the gene to be modified, the RIS element, and its length. If the

sequence ‘+bb’ in gene 2 was chosen as an RIS element in the next chromosome:

012345678901234567890012345678901234567890

-ba*+-+-Q/abababbbaaaQ*b/+bbabbaaaaaaaabbb

Then, a copy of the transposon is made into the root of the gene, obtaining:

012345678901234567890012345678901234567890

-ba*+-+-Q/abababbbaaa+bbQ*b/+bbaaaaaaaabbb

2.3.3.3 Gene Transposition

 Here an entire gene functions as a transposon and transposes itself to the

beginning of the chromosome. In contrast to the other forms of transposition, in gene

transposition the transposon (the gene) is deleted in the place of origin. This way, the

chromosome’s length is maintained. The chromosome to undergo gene transposition is

randomly chosen, and one of its genes (except the first) is randomly chosen to

transpose. Considering the following chromosome, if gene 2 was chosen to undergo

gene transposition, then the following chromosome is obtained:

Before After
012345678012345678012345678 → 012345678012345678012345678

*a-*abbab-QQ/aaabbQ+abababb -QQ/aaabb*a-*abbabQ+abababb

2.3.4. Recombination

 In GEP there are three kinds of recombination: 1-point, 2-point, and gene

recombination. In all cases, two parent chromosomes are randomly chosen and paired to

exchange some material between them.

2.3.4.1. One-point recombination

In 1-point recombination, the chromosomes cross over a randomly chosen point to form

two children chromosomes. Having the following parent chromosomes, if bond 3 in

gene 1 (between positions 2 and 3) was randomly chosen as the crossover point, then

the paired chromosomes are cut at this bond, and exchange between them the material

downstream the crossover point, forming the offspring:

Parents Offspring

012345678012345678 012345678012345678

-b+Qbbabb/aQbbbaab → -b+/ababb-ba-abaaa

/-a/ababb-ba-abaaa /-aQbbabb/aQbbbaab

 The 1-point recombination rate (p1r) used depends on the rates of other

operators. Typically a global crossover rate of 0.7 (the sum of the rates of the three

kinds of recombination) is used.

2.3.4.2. Two-point recombination

 Improving Gene Expression Programming Method

87

 The chromosomes are paired and the two points of recombination are randomly

chosen. The material between the recombination points is afterwards exchanged

between the two chromosomes, forming two new children chromosomes. Consider the

following parent chromosomes, if bond 7 in gene 1 (between positions 6 and 7) and

bond 3 in gene 2 (between positions 2 and 3) were chosen as the crossover points. Then,

the paired chromosomes are cut at these bonds, and exchange the material between the

crossover points, forming the offspring:

Parents Offspring

0123456789001234567890 0123456789001234567890

+*a*bbcccac*baQ*acabab → +*a*bbccbcc++*Q*acabab

*cbb+cccbcc++**bacbaab *cbb+ccccac*ba*bacbaab

2.3.4.3. Gene recombination

 In gene recombination an entire gene is exchanged during crossover. The

exchanged genes are randomly chosen and occupy the same position in the parent

chromosomes. Consider the following parent chromosomes, if gene 2 was chosen to be

exchanged. In this case the following offspring is formed:

Parents Offspring

012345678012345678012345678 012345678012345678012345678

/aa-abaaa/a*bbaaab/Q*+aaaab → /aa-abaaaQ+aQbabaa/Q*+aaaab

/-*/abbabQ+aQbabaa-Q/Qbaaba /-*/abbab/a*bbaaab-Q/Qbaaba

3. GEP Malfunctioning Conditions

 GEP method was thoroughly investigated in this work, due to the fact that it is

considered to be the most appropriate approach among the various methods introduced

so far in this field. Carrying out such an investigation has led to the discovery of five

main issues that reduce the performance of GEP[1]. These are described in the

following sections.

3.1 The Choice of the Best Environmental Parameter Settings

 This is a problem shared among all EAs; it is the decision of the right parameter

setting for an algorithm, which produces the best results possible. When defining an EA

there is a great need to choose its components, such as genetic operators, selection

mechanisms for selecting parents, and initial populations. Each of these may have

parameters, like: mutation probability, or population size. Values of these parameters

greatly determine whether the algorithm will find a near-optimum solution and whether

it will find one efficiently. Choosing the right parameters, however, is time-consuming

and considerable effort has gone into developing good heuristics for it.[3]

 Early attempts put considerable efforts into finding parameter values, which

were good for a number of numeric test problems (experimentally determined). Later,

meta-algorithms were used to optimize values of these parameters. Eiben, et. al [3],

globally distinguished two major forms of setting parameter values: parameter tuning

(the common approach that amounts to find good values for parameters before the run

and then run the algorithm using them) and parameter control (remains fixed during the

run). They also give arguments that any static set of parameters, having the values fixed

during a run, seems to be inappropriate. Whereas Parameter control forms an

alternative, it amounts to starting a run with initial parameter values that are changed

during the run.

 Najla A. AL-Saati and Nidhal Al-Assady

 88

3.2 The Use of Different Linking Functions

 Given a set of functions to be used in evolution, one function should be used to

link existing genes. This choice varies depending on the function set, the types of

functions included in the sets, and the rules to be evolved.

 Using one of the linking functions through the entire evolution process is not

appropriate nor of any advantage to the system. Attempting to use varied linking

functions in one population will only cause the complexity of the problem to grow

substantially, while the problem of determining how to mix these operators with the

genes is as hard as the initial problem as mentioned earlier in section (2.1).

3.3 The Problem of Gene Flattening

 Another fact noticed about GEP, is gene flattening in chromosomes. Flat genes

are genes with heads containing only terminal symbols; they may appear as a product of

applying the (IS insertion) of the transposition operator coupled with mutations

changing functions to terminals. This problem appears when there is no guarantee for

forbidding operators from destructing the functionality of the gene by eliminating

functions from the head.

 Restricting the operator from inserting the chosen sequence at the beginning of

the head is not enough. In the worst case, the first symbol in the existing head might just

be a terminal leading to the destruction of any hope in saving the gene though other

operators. Repeated occurrence of this event can increase the rate of flat genes in the

chromosome. Even when the first symbol in the head is not a terminal, such a process

can reduce the efficiency of the gene by increasing terminals in heads, thus producing

poorly functioning genes that weaken chromosomes in the population.

3.4 The Problem of Illegal Operations in Genes

 Through the process of evaluating a gene, it is very likely to encounter terminals

or operands to functions that, when evaluated, gives illegal results like division by zero

or square root of negative values. This usually leads to the termination of the evaluation

process, and thus excluding the contribution presented by the gene, and the whole

chromosome is assigned the worst fitness measure agreed upon. This will certainly

cause the loss of significant chances for introducing fit individuals in the population.

Chromosomes are assigned poor fitness values due to the existence of illegal operands

to functions in only one of its genes; other genes may have valuable fitness measures to

offer.

3.5 Improving GEP using Biased Components

 Some EC algorithms try to increase efficiency and performance of the

evolutionary process by giving a higher rate of occurrence to some elements from the

function or terminal set that makes up the contents of genes in the chromosome. This

feature was employed in Multi Expression Programming.

In such a procedure, certain components, like addition or multiplication operators, are

usually assigned a higher chance of being introduced in the genes of the chromosome

than other operators. The idea is about focusing on the terms that are more vital in the

construction of a rule, and thus allowing evolution to adapt more rapidly towards

forming desired rules or programs.

4. Suggested Solutions

 In an attempt to improve the performance of GEP, new characteristics are

introduced, the Multi-population feature, which is used to ensure better exploitation of

the properties possessed by the method. This feature is completely inspired by nature, as

 Improving Gene Expression Programming Method

89

many natural environments are found to adopt multi populations as ecosystems that

evolve simultaneously and concurrently under some certain resources or environmental

circumstances. Some of these situations are shared and are common between such

evolving ecosystems, while others are locally exclusive or restricted as they vary from

one population to another. This decisiveness usually depends on environmental needs

demanded by each individual population, another important issue to rely on when

choosing to localize or globalize an aspect relevant to a population, is the overall

performance of the resulting system.

 Introducing this new feature involves decomposing existing large population

into a number of smaller distinct entities each having its own set of parameters, thus

forming several diverse environments that evolve independently and simultaneously. In

GEP there are some certain settings that must be globally maintained to all populations,

while others need to be locally differentiated to overcome certain malfunctioning

phenomena. Useful issues that can be viewed using this feature are:

1- Introducing various environments to enhance evolution: this is done by

dividing the impact of large populations with the same evolutionary features.

Thus using small multiple ones with various environmental features.

2- Finding parameter sets: helps to find the appropriate set of parameters applied to

a system, instead of trying to find them by hand tuning.

3- Evaluating Genetic Dynamics: varying operator’s probabilities in a multi-

population collection while fixing others and making them global to the whole

environment. This is very useful in the study of dynamics.

4- Evaluating Environmental Settings: population size, number of generations,

chromosomal length and number of genes can each be evaluated using multi-

population collections. This enables the study of the impact that these settings

have on the behavior of the system.

 This feature is used in the following section to improve first and second

problems. As for the third and fourth, a monitoring process is added to detect the

occurrence of flat genes or illegal operations in the population and are avoided using

emergency mutations. Considering the idea of component biased assigning, GEP can be

improved by giving more weight to one or more solution components. The choice of

biasing a certain component among the set is done depending on the type of rule or

program to be evolved.

5. Symbolic Regression

5.1 Problem Description

 The symbolic regression problem can be stated as finding a function in a

symbolic form that fits a given finite sample of data [9]. The advantage of symbolic

regression over standard regression methods is that in symbolic regression, the search

process works simultaneously on both the model specification problem and the problem

of fitting coefficients. Symbolic regression would thus appear to be a particularly

valuable tool for the analysis of experimental data where the specification of the

strategic function used is often difficult, and may even vary over time.[2]

 The system is given a set of input and output pairs, and must determine the

function that maps one onto the other. Symbolic regression tries to reconstruct a

mathematical function just using a set of data samples. This data can be pairs of

independent and dependent variables that are samples of a possibly unknown function.

As an aspect of Data Mining, symbolic regression is inherently computationally

extensive because of the lack of a model solution in general.[14] The problem, in its

 Najla A. AL-Saati and Nidhal Al-Assady

 90

essence, is an optimization problem; a search is conducted for the most fitting individual

to the data, in the space of all possible expressions. In his work, Freitas [8] showed how

the requirements of data mining and knowledge discovery influence the design of EAs.

In particular, how individual representation, operators and fitness functions have to be

adapted for extracting high-level knowledge from data. Data mining is more or less the

same as symbolic regression but the emphasis is not on complete description of the data

but on extracting salient nuggets of information from potentially large data sources (e.g.

databases).[11] GP possesses certain advantages that make it suitable for application in

data mining, such as convenient structure for rule generation. Furthermore, it is

convenient for process parallelism to improve computational efficiency.[10]

 The object of the search is a symbolic description of a model, not just a set of

coefficients in a pre-specified model. This sharply contrast with other methods of

regression, including feed-forward ANN, where a specific model is assumed and often

only the complexity of this model can be varied.[15]

 Genetic programming and its variants are in principle capable of expressing

functional forms, given a sufficiently expressive function set; they are capable of

expressing a linear relationship or a non-linear relationship. With Genetic programming

and variants, the object of search is a composition of the input variables, coefficients

and primitive functions such that the error of the function with respect to the desired

output is minimized.

5.2 Fitness Measure

 One important application of GEP is symbolic regression, where the goal is to

find an expression that performs well for all fitness cases within a certain error of the

correct value. Mathematically, this can be expressed by the equation:

 f = M - E, …(2)

 where M is the range of selection, and E is the absolute error between the

number generated by the ET and the target value, as follows:

 E= |C(i,j) - Tj|, …(3)

 where C(i,j) is the value returned by the individual chromosome i for fitness case

j and Tj is the target value for fitness case j (for all j of the fitness cases). The precision

for the absolute error is usually very small, for instance 0.01. For example, for a set of

10 fitness cases and an M = 100, f max = 1000 if all the values are within 0.01 of the

correct value, as follows:

 fi = fmax =Ct * M, …(4)

 where Ct is the number of total fitness cases. If, for all j, |C(i,j) - Tj|, (the

precision) less or equal to 0.01, then the precision is equal to zero. So, the fitness

measure fi of an individual program i is given by:

()
=

−−=
iC

j

jjii TCMf

1

),(…(5)

 The advantage of this kind of fitness function is that the system can find the

optimal solution for itself. [7]

6. Tests and Results

 Experiments carried out in this section are implemented using the Symbolic

Regression problem. Due to its simplicity and common use in most of the applications,

it has almost become a benchmark problem in assessing such systems that employ

learning and training in evolution. As a standard benchmark problem it is very useful in

 Improving Gene Expression Programming Method

91

making comparisons more practicable. Each test applies 100 run of randomly generated

populations to evaluate success rates of the approach. In the following tests two

equations are used to determine the efficiency of the improvements carried out, they are

as indicated in the tables of comparisons:

 Y = a4 + a3 + a2 + a …(6)

 Y=3a2+2a+1 …(7)

 Fitness cases (Training set) are chosen as those used by all methods proposed so

far, this is done to facilitate comparisons. Training cases are given in Tables (1) and (2),

parameter settings are given in Table (3).

Table (1) Fitness Cases for First Problem

Table (2) Fitness Cases for Second Problem

In Out

-4.2605 46.9346
-2.0437 9.4427
-9.8317 271.3236
2.7429 29.0563
0.7328 4.0766
-8.6491 208.1226
-3.6101 32.8783
-1.8999 8.0291
-4.8852 62.8251
7.3998 180.0707

Table (3) Parameter Settings for Tests

Setting GEP

Number of Runs 100
Generation 50

Population 30

Chromosome Length 39

Genes 3 (h=6)

Function Set {+,-,*,/}

Terminal Set {a}

In Out

2.81 95.2425
6 1554

7.043 2866.5485
8 4680
10 11110

11.38 18386.0340
12 22620
14 41370
15 54240
20 168420

 Najla A. AL-Saati and Nidhal Al-Assady

 92

6.1 Improvements Related to Parameter Setting

 Applying Multi-population feature enables the system to use different settings

for each population and can therefore reduce the parameter-setting problem discussed in

the first subsection. Having P Populations each of size S with G as the number of

Generations, the test is done using 3 populations, with settings in Table (4). Results are

shown in Table (5).

Table (4) Multi-Population system with Different Parameter Setting

 Transposition Recombination

P S G Mutation IS RIS GIS One Two Gene

Improved

1 7 50 0.05 0.1 0.1 0.1 0.2 0.5 0.1

2 10 - 0.03 0.15 0.15 0.1 0.1 0.7 0.15

3 13 - 0.1 0.15 0.1 0.15 0.3 0.5 0.1

GEP 1 30 50 0.05 0.1 0.1 0.1 0.2 0.5 0.1

Table (5) Results of applying Multi-population

Evolved Function GEP results Improved Results

Y = a4 + a3 + a2 + a 0.81 0.91

Y = 3a2+ 2a+ 1 0.83 0.92

6.2 Improvements Related to Linking Function

 This is another case that can make use of the multi-population feature in

investigating the affect that linking functions have on fitness calculations.

 First, different populations were introduced each having its own local linking

function, results showed that the ‘*’, ‘-’, and ‘/’ function were not able to enhance the

rate of successful runs, the rate went down for all functions except the ‘+’ function.

 Second, different linking functions were applied to link genes. Having 3 genes,

the proposal suggests linking first and second genes with one linking function, while

linking the result with the third gene by another one. Results showed that this was also

not helpful in increasing success rates.

 Gained results point out a very normal consequence, as the type of rules evolved

in the tests relies heavily on addition; any other linking function will not be appropriate

in this case. The function to be evolved is a summation process of multiple terms. It is

very clear that the use of the Multi-population feature enabled the study of applying

various linking functions to the system, and was able to distinguish the best population

that gave best results.

6.3 Improvement Related to Flat Genes

 Flat genes are avoided by imposing some monitoring process on the application

of the IS operator, so that, when the number of functions in the head is zero, an

emergency mutation is forced after that IS operation to ensure the existence of a

function in the head of that modified gene. Results are shown in Table (6).

 Improving Gene Expression Programming Method

93

Table (6) Results of Adjusting IS Operator for Eliminating Flat Genes

Evolved Function GEP results Improved Results

Y = a4 + a3 + a2 + a 0.81 0.90

Y = 3a2+ 2a+ 1 0.83 0.92

6.4 Improvement Related to Illegal operations in genes

 The problem of illegal operations in genes is treated by adding a very simple

mechanism in fitness calculation called emergency mutation, when an invalid operation

is about to cause the termination of fitness calculation, it is simply mutated in its place

to any of the other remaining functions in the function set. Using this mechanism, the

gene is saved from complete loss and can be presented again in the population with an

appropriate fitness value. The result of applying this idea to GEP is shown in Table (7).

Table (7) Results of Eliminating Illegal Operations

Evolved Function GEP results Improved Results

Y = a4 + a3 + a2 + a 0.81 0.88

Y = 3a2+ 2a+ 1 0.83 0.89

6.5 Improvement Related to Biased Components

 Biased GEP was tested through biasing different components and monitoring the

effect of that biasing on the process of evolution and the rate of success; results are

shown in Table (8).

Table (8) Results of Biased GEP Operations

Evolved Function Biased Function GEP Results Improved Results

Y = a4 + a3 + a2 + a

‘+’

0.81

0.57

‘-‘ 0.76

‘*’ 0.90

‘/’ 0.68

Y = 3a2+ 2a+ 1

‘+’

0.83

0.91

‘-‘ 0.74

‘*’ 0.73

‘/’ 0.83

 For the first case in Table (8), biasing the multiplication operator influenced the

rate of success considerably. This is mainly because the rule depends heavily on this

function. While in the second case the biasing of the addition operator was more

successful than the others, as the evolved rule depends more on addition than

multiplication, subtraction or division.

7. Conclusions

 Many linear variants of Genetic programming are presented in the literature, of

these; GEP was investigated thoroughly as it possesses the least limitations among other

methods. Like any other method, GEP has some points of weakness that reduces its

efficiency. These points were investigated and reinforced with five solutions that

 Najla A. AL-Saati and Nidhal Al-Assady

 94

managed weak points in an efficient manner; weak points included the choice of the

best parameter settings for evolution, the use of different linking functions, the problem

of gene flattening, and the illegal operations that occur in the genes of the chromosome.

 The five enhancement procedures suggested were able to eliminate these

problems and increase the efficiency of the method. Enhancement procedures included

introducing the Multi-population feature, the Emergency Mutation feature, and the

Component Biasing feature. Tests and results showed that success rates improved

clearly towards higher values in all cases.

REFERENCES

[1] AL-Saati, N.A., (2005), A Novel Proposed Model for Automatic Programming

 in Problem Solving, PhD Thesis, University of Mosul, College of Computers

 and Mathematical Sciences, Mosul, Iraq, 147p.

[2] Duffy, J., and Engle-Warnick, J., (2002), Using Symbolic Regression to Infer

 Strategies from Experimental Data. In S-H Chen, Ed., Evolutionary computation

 in economics and finance New-York Physica-Verlag.

[3] Eiben, A.E., Hinterding, R., and Michalewicz, Z., (1999), Parameter Control in

 Evolutionary Algorithms, IEEE Transactions on Evolutionary Computation,

 Vol.3, No.2, pp: 124-141.

[4] Eldrandaly, K., and Negm, A., (2008). Performance Evaluation of Gene

 Expression Programming for Hydraulic Data Mining. International Arab

 Journal of Information Technology, vol.5, no.2, pp.126-131.

[5] Ferreira, C., (2001), Gene Expression Programming: A new Adaptive Algorithm

 for Solving Problems, in Complex Systems, 13(2),pp:87-129.

[6] Ferreira, C., (2002), Discovery of the Boolean Functions to the best Density-

 Classification Rules using Gene Expression programming, in Lutton, E., Foster,

 J. A., Miller, J., Ryan, C., and Tettamanzi, A. G. B., Eds., in Proceedings of the

 4th European Conference on Genetic Programming, EuroGP 2002, Vol. 2278 of

 Lecture Notes in Computer Science, Springer-Verlag, Berlin, Germany, pp:51-

 60.

[7] Ferreira, C., (2002), Gene Expression Programming in Problem Solving, in Roy,

 R., Koppen, M., Ovaska, S., Furuhashi, T., and Huffmann, F., Eds., Soft

 Computing and Industry - Resent Applications, Springer-Verlag, pp: 635-654.

[8] Freitas, A.A., (2002), A survey of evolutionary algorithms for data mining and

 knowledge discovery, to appear in: Ghosh, A. and Tsutsui, S., Eds.: Advances in

 Evolutionary Computation, Springer-Verlag.

[9] Hoai, N.X., (2001), Solving the Symbolic Regression with Tree-Adjunct

 Grammar Guided Genetic Programming: The Preliminary Results, In The

 Proceedings of The 5th Australasia-Japan Joint Workshop on Evolutionary

 Computation and Intelligent Systems (AJWIES), Dunedin, New Zealand, 19-

 21st Nov. 2001,pp:1-6.

[10] Keijzer M., (2002), Scientific Discovery using Genetic Programming, Ph.D.

 Thesis at the Technical University of Denmark.

http://www.iajit.org/
http://www.iajit.org/

 Improving Gene Expression Programming Method

95

[11] Langdon, W.B., (1996), Genetic Programming and Databases, Internal Note

 IN/96/4, 11 February 1996, Short Survey, 3p.

[12] Lopes, H.S. and Weinert, W.R., (2004), A Gene Expression Programming

 System for Time Series Modeling, In: Proceedings of XXV Iberian Latin

 American Congress on Computational Methods in Engineering (CILAMCE),

 Recife (Brazil), 10-12/November, 2004, 13p.

[13] Oltean M., Dumitrescu D., (2002), Multi Expression Programming, Technical

 Report: UBB-01-2002, Babes-Bolyai University, Cluj-Napoca, Romania, in

 Journal of Genetic Programming and Evolvable Machines, Kluwer, Second tour

 of review, 33p.

[14] Salhi, A., Glaser, H., and De Roure, D., (1998), Parallel Implementation of a

 Tool for Symbolic Regression, in Information Processing Letters, Vol. 66, No.6,

 pp: 299-307.

[15] Takač, A., (2003), Genetic Programming in Data Mining: Cellular Approach,

 M.Sc. Thesis, Institute of Informatics Faculty of Mathematics, Physics and

 Informatics, Comenius University, Bratislava, Slovakia.

[16] Wilson, S., (2008), Classifier Conditions Using Gene Expression Programming.

 Report No. 2008001, University of Illinois at Urbana-Champaign, USA.

