
 Raf. J. of Comp. & Math’s. , Vol. 6, No. 1, 2009

 63

Controlled Gene-Accumulation Programming
Najla Akram AL-Saati Nidhal Al-Assady

dr.najla_alsaati@uomosul.edu.iq

College of Computer Sciences and Mathematics / University of Mosul

Received on: 25/09/2008 Accepted on: 04/12/2008

ABSTRACT

 A full description of a new novel method proposed for Automatic Programming

is brought forward in this work. Controlled Gene-Accumulation programming is a

method that is purely inspired by concepts of nature. Research will show that this

method provide a better overall performance especially due to the isolation of terminals

from functions. Chromosome flip folding is a new crossover operator introduced in this

work; it will prove to be efficient in introducing new genetic material.
 A new stage is added to the evolutionary process along with mutation,
transposition and recombination, the stage is inspired from natural inoculation with two
new operators: vaccines and serums, these two operators proved to have a huge effect
on evolving systems by ensuring the death of weak individuals and survival of the fittest
with the addition of enforced immunity of the system.
 Investigations of this approach proved its superiority over other methods in
various aspects, it is in a way controlled to adapt to rule complexity and the production
of minimal chromosomal encodings as the chromosomes all have varying lengths genes.
It has a much faster execution time compared to the well-known Gene Expression
Programming method.

Keywords: Automatic Programing, Controlled Gene-Accumulation Programming, Gene

expression Programing.

 البرمجة بتراكم الجينات المقاد تحت السيطرة

 نضال حسين الاسدي نجلاء اكرم الساعاتي
 جامعة الموصل / كلية علوم الحاسوب والرياضيات

 04/12/2008 تاريخ قبول البحث: 25/09/2008: تاريخ استلام البحث
ملخصال

المسيطر دم هذا البحث وصف كامل لنموذج مبتكر جديد مقترح للبرمجة الالية. البرمجة بتراكم الجينات يق
هي طريقة مستوحاة من حقائق الطبيعة بشكل كامل وسيبين البحث ان هذه الطريقة توفر اداء كلي افضل عليه

 Chromosomeجديد يدعى) (عن الدوال. تم ايضا تقديم معامل terminalsوخاصة بسبب عزل الطرفيات)

flip-folding.والذي اثبت كفاءة بتقديم مادة جينية جديدة)
تم ايضا تقديم مرحلة جديدة للعملية التطورية بالاضافة الى الطفرات الوراثية ، العمليات التنظيمية

اح والمصل، حيث اثبت ملين: اللقاوعمليات المزج. استوحيت فكرة هذه المرحلة من فكرة اللقاح الطبيعي وتتضمن مع
المعاملان اثرهما الكبير على النظم الخاضعة للتطور وذلك من خلال ضمان موت الافراد الضعيفة وبقاء الافضل

 هذا بالاضافة الى توفير المناعة المعززة للنظام.
ادت الاستقصاءات التي تمت على هذا النموذج الى اثبات تفوقه على كل الطرق الاخرى من عدة

ي، وهو مقاد بشكل يتلائم مع تعقيد القوانين ويؤدي الى انتاج كروموسومات ذات اقل قدر ممكن من الترميز نواح
وذلك بسبب اختلاف اطوال الجينات في كل كروموسوم. للنموذج سرع تنفيذ عالية مقارنة بالطريقة المعروفة

(Gene Expression Programming .)
 الجيني. بالتمثيلية ، البرمجة بتراكم الجينات المقاد تحت السيطرة ، البرمجة البرمجة الذاتالكلمات المفتاحية:

 Najla A. AL-Saati and Nidhal Al-Assady

 64

1. Introduction

 Controlled Gene-Accumulation Programming (CGAP)[1], is a new genotype/

phenotype system that uses the idea of evolution to generate computer programs to

solve real-world problems. This method is inspired by natural chromosomes and is the

closest to represent them among most of the proposed Linear GP variants [2, 4, 7, 8].

This method employs a multi-varying gene system where rules are represented by

expression trees encoded as double-stranded linear entities in a close similitude to

natural DNA strands. These multi-varying gene chromosomes have the ability to

represent any expression tree whatever its complexity.

 CGAP is a genetic system, that employs populations of individuals, it applies

selection schemes to choose individuals according to their fitness measures, introduces

genetic variations by one or more of the available genetic operators to achieve genetic

diversity in evolving populations, and it utilizes a fitness measure to evaluate these

individuals.

 The elementary difference among GAs, GP and CGAP algorithms exist in the

encoding of individuals: GAs encode the individuals in linear strings of fixed length

called chromosomes; in GP they are non-linear entities of different sizes and shapes

called parse trees; and in CGAP they are represented as fixed-length linear strings called

genomes or chromosomes and are then expressed as non-linear entities of different sizes

and shapes.

2. CGAP Algorithm

 Evolution in CGAP is achieved through a number of successive generations, it

begins with the creation of individuals in the first population by filling up the two-

stranded genes of each chromosome in the population with randomly generated

functions and terminals respectively taken from the predefined sets of functions and

terminals. Then each chromosome is expressed into its corresponding phenotype

structure. Afterwards, the selection process is carried out based on Roulette wheel

selection scheme coupled with elitism, where individuals are selected to go through

mutation, transposition and recombination according to their fitness to form a new

generation which, in turns, undergoes the same process. The succession is repeated until

the termination criterion is met. Figure (1) gives the CGAP flowchart.

 The newly added stage of inoculation is applied only twice according to

predefined probabilities. The vaccine inoculation is applied in the early stages of

evolution (usually the second generation), while the serum inoculation is applied at the

last stages, unlike other operators, which are probabilistically applied in all generations.

After reproduction no editing, by any means, of the resulting individual is necessary

before fitness evaluation, as all the resulting members of the population are correctly

synthesized programs in all cases, this is ensured by the nature functionality of the

genetic operators used.

 Controlled Gene-Accumulation Programming

65

Figure (1) Flowchart of Controlled Gene-Accumulation Algorithm

3. Model Description

3.1. Inspiration of Nature

 Returning back to nature, a chromosome is, minimally, a very long, continuous

piece of DNA that contains many genes, other intervening nucleotide sequences

chromosomes are genes carriers. When two genes are found on the same chromosome

they are said to be linked. At the formation of gametes, when the chromosomes first line

up at the mid-point of the spindle fibers, genes linked along the length of each

chromosome are prone to becoming dispatched.[10] In this model, the chromosomal

structure is a true simulation of nature. chromosomes are made up of several genes of

different random lengths, the structure corresponds to that of the DNA in being

composed of two strands that bind together and become one whole individual. Bonds

used in the binding process of the strands are one-to-many relational bonds that depend

entirely on the type of function to be linked.

3.2. Chromosomal Structure

 In this method, the chromosome consists of a linear symbolic string of fixed

total length, which is composed of one or more variable length genes that code for trees

of different sizes and shapes. Each gene is composed of two strands that must bind

Randomly Generate Initial Population and set G=1

Express chromosome and execute Each Program and Evaluate Fitness

End of Gen?

Clone Best Program

Select Individual with Roulette Wheel Selection

Reordering

1-Point and Multi-Point Recombination

Serum Inoculation

Yes

No

No Rule Found

END

Start

Rule
found?

No

Output Rule

Gen = end-C

Yes

Yes

No

Gen=2

Vaccine Inoculation

Yes

No

Mutation

Where C is a constant chosen to

denote serum application

Gen=Gen+1

 Najla A. AL-Saati and Nidhal Al-Assady

 66

together in order for the gene to be meaningful. The first strand contains symbols

encoding the functions that perform the desired operations; it is called the F-Strand. The

other strand contains symbols that encode the terminals required as operands to

functions, and is called the T-Strand. Figure (2-a) gives the chromosomal structure and

strands binding process, Figure (2-b) illustrates the tree expressing of genes, while

Figure (2-c) depict the linking process of expression trees (ETs).

a) F-Strand F1 F2 F3 F1 F2 F3 F4 F1 F2 F3 ……

 T-Strand T1 T2 T3 T4 T1 T2 T3 T4 T5 T1 T2 T3 T4 ……

 Gene 0 Gene 1 Gene 2 Gene N

 b)

 Tree 0 Tree 1 Tree 2 Tree N

c)

Figure (2) a) Chromosomes Structural Representation

b) Corresponding Tree Structures c) Tree Structures after linking

 The Isolation of functions from terminals is very necessary to increase the

efficiency and reliability in implementation and performance as:

1. It facilitates the binding process between functions and terminals.

2. It gives more efficiency in applying genetic operators with fewer constraints

forced in their implementation.

3. No terminal can appear in the F-strand and stop the expansion of the open end of

the corresponding expression tree.

4. Excluding terminals from the F-Strands completely eliminates the possibility of

obtaining flat genes.

 In F-Strands, the number of genes and their lengths is randomly chosen, forming

a random length of F-Strand (LFS). The number of genes in the T-Strand is fixed

accordingly to the F-strand, but the lengths of genes are not, they are instead calculated

…….

F2

T3 F1

T2 T1

F3

T4 F2

F1

T2 T1

F3

T3

F2

T3 F1

T2 T1

F3

T4

F4

T5

F2

T3 F1

T2 T1

F3

T4

F2

F1

T2 T1

F3

T3

Link

Link

Link

F2

T3 F1

T2 T1

F3

T4

F4

T5

 Controlled Gene-Accumulation Programming

67

to adapt to as many as needed by the related function gene, resulting in a suitable total

length of the T-Strand (LTS) that can bind correctly to the F-Strand and adapt to

changes caused by operators, resulting always in correctly synthesized programs.

Lengths are calculated using the following rules:

 LTSi = LFSi . (MaxArg -1) +1 …(1)

 LTS =i LTSi , for 0 < i < N, ...(2)

Where N is the number of genes in each chromosome and MaxArg is the maximum

number of arguments taken by a function in the function set. Thus, functions can appear

in the F-Strand and takes as much terminals as needed. At the extreme case, a gene can

have an F-strand of functions all requiring MaxArg arguments, and the whole length of

the T-Strand is used. All chromosomes have the same number of genes all of the same

length. Choosing the number of genes in each chromosome and their lengths is done

randomly and is studied thoroughly in section (5.1)

3.3. Controlling the Gene-Accumulation Process

 The main aspect of this method involves the issue of unrestricted, end-shifting

utilization of chromosome length, as this is largely related to the rule complexity. This

approach allows problem complexity to control the required length at evaluation time

(fitness calculation), making use of just as much as needed from the chromosome. In

addition, the accumulation impact assures that the components of the acquired length of

the individual are actually used in the calculation.

 At evaluation, as in nature, genes become dispatched. Every gene is taken in part

and evaluated as an individual tree, starting with the first element in the F-Strand. Each

time a branch is added, an evaluation procedure is invoked to compute the output value

of the rule encoded in that tree and compare it with the desired output depending on the

fitness cases chosen for training (Figure (3)). In this case there are two possibilities:

1. If no match is found, another branch is added to that tree and the process is

repeated until a match is found or the end of the first gene is encountered,

forming the first phenotype sub tree that is ready to be linked to the next one in

the chromosome. So each gene in the chromosome is added in parts to the

accumulated output value, which is controlled by continuous comparison with

the desired output.

2. If a match is found, then a virtual end mark is placed to indicate the stopping end

point of the chromosome. When a virtual end is found for the first fitness case,

the process of tree construction ends, and the learning process begins. The newly

formed rule encoded in the constructed tree is re-evaluated using the remaining

fitness case in an attempt to find the fitness measure of that rule.

 The total output values specified by the fitness cases must match the result

stopping at the same point in the chromosome in order to state that the rule is trained

and capable of solving any other new case offered.

 Najla A. AL-Saati and Nidhal Al-Assady

 68

For all chromosomes in the population do

 For all fitness cases in the training set do

 {

 Flag=true

 For all genes in the chromosome do

 {

 Repeat

 Add next branch to sub-tree

 Link with previously constructed tree (nil in the first gene)

 Evaluate tree

 If a match is found with the fitness case then

 Save stopping point

 If no match with previous stopping point then Flag=false

 Exit repeat

 Until end of gene

 If Flag=true assign fitness according to obtained value

 Else Set Fitness=0 and Stop evaluation

 }

 Update total chromosome fitness with this fitness case

 }

Figure (3) Algorithm of Evaluation Process for CGAP

3.4. Genetic Operators

 According to the fitness measure and the luck of the roulette wheel, individuals

are selected to reproduce with modification. In CGAP, except for mutation, each

operator is not allowed to modify a chromosome more than once. In addition, as in

GEP, a chromosome could be chosen by one or several operators to be modified. Thus,

the modifications of several genetic operators accumulate during reproduction,

producing offspring very different from the parents. In CGAP, four stages of operators

are introduced:

1- Mutations

Mutations can freely occur anywhere in the two-stranded chromosome, changing F-

Strand’s elements to any other one defined in the function set, and T-Strand’s

element into any of the terminals in the terminal set. Changes will not affect the

correctness of the resulting programs.

2- Reordering

All these operators, except for Transposition, are permutation-specific, as they are

guaranteed to keep all the elements but in a different reordering.

a) Transposition: is similar to IS and RIS transportation of GEP [5]. But here, a

random sequence is chosen and is transposed to any randomly specified location

in the selected chromosome.

b) Inversion: a random sequence is chosen from the chromosome’s length and is

inverted in its place, thus reordering the genes of that sequence.

c) Wrap-around Rotation: a random sequence is chosen from the chromosome’s

length and is rotated in its place.

d) Flip-Folding: the selected chromosome is divided at a predefined point into two

different length parts, which are then flipped to be reunited again forming a totally

new chromosome.

 Controlled Gene-Accumulation Programming

69

e) Increment/Decrement Effect: the contents of the chromosome are incremented

or decremented by a constant creating a new chromosome.

3- Recombination

a) One point Recombination: the most effective operator. A point is randomly

chosen in the chromosome sequence at which the contents of the two parents are

swapped forming two new different children.

b) Alternating Multi-point Recombination: instead of using two-point crossover, a

multi-point operator is invoked. It is implemented by alternately crossing over

randomly chosen regions of the two selected parents. The number of points in the

multi-point operator is randomly chosen and the chromosome is divided

accordingly.

4- Inoculation:

This new stage involves introducing inoculation among individuals using both

serums and vaccines in order to provide immunity in evolving individuals.

c) Vaccines: any preparation of a virus introduced into an individual to immunize it

against an infection. This involves spreading a virus into the population at a very

early stage of evolution, not in the first random population but in the second (first

evolved population), and the system tries to settle the effect throughout the

remaining generations. If individuals heal, the population grows to be immune,

and if they die, the population becomes free of weak individuals.

d) Serums: a sequence taken from an immunized individual and used for the

inoculation. At late evolution stages and after the population have reached a full-

growth point and is in need of revival, the serum inoculation is used to revive such

populations with vital serums.

3.5. Fitness Calculation

 The most important aspect in any GP or linear GP variant method is the choice

of the fitness measure for evaluating how good a given program is at solving the

problem at hand. The objective must be correctly stated for the system to evolve

towards discovering good solutions.

 In this work, fitness functions are set accordingly to those used in GEP [4]. To

evaluate the performance, GEP uses the average number of fitness-functions evaluations

(Fz) needed to find a correct program with a certain probability (z). Given the success

rate or the probability of success (Ps) and the number of fitness cases used in the

training process (C), the number of independent runs (Rz) required to find a correct

solution by generation G with a probability of z=0.99 is calculated by: [4]

 Rz= log (1-z) / log (1-Ps), and Ps1 ...(3)

 Fz = Generations* population_size* C* Rz ...(4)

4. Application to real-world problems

 This approach is evaluated through its application to some of the widely

referenced problems in GP and its variants. Results are compared to GEP being the

most successful method of the proposed GP variants.

 Tests include: Symbolic Regression, Sequence Induction, and the 11-multiplexer

problems. Some of the tests use the same parameter setting of those used by GEP in

order to draw some realistic conclusions. All tests carried out here use notations of

success rate or probability of success (Ps) evaluated over 100 identical run. Table (1)

shows the probabilities of operators for the three tests carried out in this work.

 Najla A. AL-Saati and Nidhal Al-Assady

 70

Table (1) Probabilities of Operators for Test1, 2 and 3

Operator Test1 Test2 Test3

 Mutation 0.06 0.1 0.1

Transposition 0.1 0.1 0.1

Inverse 0.1 0.15 0.1

Wrap-Around Rotate 0.3 0.35 0.1

One point recombination 0.1 0.1 0.1

Alternate Multi-point recombination 0.35 0.35 0.7

Serum 0.35 0.3

Vaccine 0.1 0.15

4.1. Symbolic regression

 The symbolic regression problem can be stated as finding a function in a

symbolic form that fits a given finite sample of data [6]. It is a valuable tool for the

analysis of experimental data where the specification of the strategic function used is

often difficult, and may even vary over time.[3]

 As for fitness calculation, the objective here is to find an expression that

performs well for all fitness cases within a certain error of the correct value. For some

mathematical applications it is useful to use small relative or absolute errors in order to

discover a very good solution. Mathematically, this is expressed by the following

equation:

 ()
=

−−=
iC

j

jjii TCMf

1

),(...(5)

 Where M is the range of selection, C(i,j) the value returned by chromosome i for

fitness case j (out of Ct fitness cases) and Tj is the target value for fitness case j. If, for

all j, |C(i,j) - Tj| (the precision) less or equal to 0.01, then the precision is equal to zero,

and fi = fmax = Ct. M. For this problem, an M = 100 will be used, thus fmax = 1000.

The benefit of this kind of fitness function is that the system can find optimal solutions

for itself

Test1:

 The first test includes applying CGAP to a symbolic regression problem; the aim

is to evolve the function given in following Eq.:

 Y = a4 + a3 + a2 + a ...(6)

Table (2) Fitness Cases for Test1

In 2.81 6 7.043 8 10 11.38 12 14 15 20

Out 95.2425 1554 2866.5485 4680 11110 18386.0340 22620 41370 54240 168420

 Probabilities of operators are given in Table (1). Fitness cases in Table (2) and

parameter settings in Table (3). Being an uncomplicated function only one-gene

chromosome was enough to fit the given fitness cases.

Table (3) Parameter Settings for Test1 with 100 run

Setting CGAP GEP

Generations 46 50

Population 30 30

Chromosome Length 19 39

Genes 1 (F-Strand=9) 3 (h=6)

Function Set {+,-,*,/} {+,-,*,/}

Terminal Set {a} {a}

 Controlled Gene-Accumulation Programming

71

CGAP Solution: *+*+*+ /** found in Generation 4

 aaaaaaa aaa

Evaluation of the solution:

a*a= a2

+a = a2+a

*a = a3+a2

+a = a3+a2+a

*a = a4+a3 +a2

+a = a4+a3 +a2+a

PS = 1.00, Rz= 1, Fz= 13800.0000

GEP solution is **-*a+aaaaaaa ++**a*aaaaaaa *+-a/aaaaaaaa

 a4 + a3+a2+a + 0 = a4+a3+a2+a

 It is clear that the 3rd gene is of a zero value to the chromosome. These results

indicate that CGAP surpasses GEP in many aspects. Maximum chromosomal length is

significantly shorter; in addition, resulting rules are shorter and more compact.

Probability of success is improved considerably with less required execution time;

Table (8) gives time comparison details.

4.2. Sequence Induction

 The problem of sequence induction is a special case of symbolic regression

where the domain of the independent variable consists of the non-negative integers. Yet,

the sequence chosen is more complicated than that used in symbolic regression, as

different coefficients are used.[5]

 The problem involves finding a mathematical expression to calculate the value

of the sequence at a given step [9]. In the sequence 1, 15, 129, 547, 1593, 3711, 7465,

13539, 22737, 35983, 54321, …., the nth term is:

 12345 234 ++++= nnnn aaaaN , …(7)

 Where an consists of the non-negative integers 0, 1, 2, 3, ..., n . This sequence

was chosen because it can be exactly solved and therefore can provide an accurate

measure of performance in terms of success rate.

 Fitness Measure for sequence induction is similar to that of Symbolic regression

given in Eq. (5) for assigning fitness measure to individuals.

Test2:

 The second test is the application of the CGAP method in sequence induction,

the function to be evolved is:

 Y = 5a4 + 4a3 +3 a2 + 2a+1 ...(8)

 The probabilities of operators are given in Table (1), fitness cases in table (4),

and parameter settings in Table (5). Gene lengths are assigned using the concave shape

as will be discussed in section 5 along with other shapes in an analysis to indicate the

efficiency of utilizing this shape.

a *

a a a

a

a

*

*

+

-

a *

a a a a

a

+

+

*

*

/ a

a a

a

+

*

a

-

a a

* a

+ a

* a

+

a

+

a

*

 Najla A. AL-Saati and Nidhal Al-Assady

 72

Table (4) Fitness Cases for Test2

In 1 2 3 4 5 6 7 8 9 10

Out 15 129 547 1593 3711 7465 13539 22737 35983 54321

Table (5) Parameter Settings for Test2 with 100 run

Setting CGAP GEP

Generation 100 100

Population 60 60

Chromosomal Length 81 91

Genes 7 (F-Strand={5,6,7,6,6,4,3}) 7 (h=6)

Function Set {+,-,*,/} {+,-,*,/}

Terminal Set {a} {a}

CGAP Solution found in generation 12 with length 50, 4 genes used of

 maximum 85 length and 7 genes chromosomes with Linking

 function = ‘+’

 Ps=0.79, Rz= 2.9508, Fz= 177048.3906

++*** +*+*+* ++*++*+ *+*// / *+*/*+ +/+- **-

aaaaaa aaaaaaa aaaaaaaa aaaaaa a

 (3a4) (2a4+a3+a2) (3a3+2a2+a) (a+1)

=5a4+4a3+3a2+2a+1

Another CGAP solution of length 70 using 6 genes and Linking by ‘+’

++*** +*+**+ --+//+* **-++/ /*++** *+ /* +++

aaaaaa aaaaaaa aaaaaaaa aaaaaaa aaaaaaa aaa aa …

(3a4) (2a4+a3+a) (a2) (a2+1) (3a3) (a2+a)

=5a4+4a3+3a2+2a+1

GEP solution found in generation 32 with length=73 and 7 genes used of the

 maximum length=91 and 7 genes chromosomes, Linking

 function = ‘+’

 Ps= 0.41, Rz= 8.7280 Fz= 523679.0625

++—aaaaaaa *+/+a*aaaaaaa *+*+*+aaaaaaa *-*+aaaaaaa *a/+a-aaaaaaa -+-/**aaaaaaa **+a*+aaaaaaa

 Again in this test, results of CGAP exceed GEP in utilization of chromosomal

length, resulting rule size, probability of success, and in execution time. Table (8) gives

comparisons in terms of execution time.

4.3. The 11-Multiplexer Problem

 The goal is to evolve a rule capable of translating an input of 11 ordered binary

bits into the appropriated output where the first 3 bits refer to an address of 0 to 8 and

the remaining 8 bits give the input to the Multiplexer. The value of the Boolean

multiplexer function is 0 or 1 of the particular data bit that is singled out by the address

bits of the multiplexer. For example, if the three-address bits a2a1a0 are 110, the

multiplexer singles out data bit number 6 (d6) to be the output of the multiplexer

(Figure(4)).

 Controlled Gene-Accumulation Programming

73

Figure (4) The 11-Multiplexer Interface

 The set of fitness cases must be representative of the problem as a whole. There

are 211 = 2,048 possible combinations of the 11 arguments a0a1a2d0d1d2d3d4d5d6d7 along

with the associated correct value of the 11-multiplexer function. For this particular

problem, sampling is used as the fitness cases for evaluating fitness. The fitness cases

were assembled by address, for each address a sub-set of 20 random combinations was

used each generation. Thus, a total of 160 random fitness cases were used each

generation. In this case, the fitness of a rule is the number of fitness cases for which the

Boolean value returned is correct, plus a bonus of 180 fitness points for each sub-set of

combinations solved correctly as a whole. Hence, a total of 200 fitness points was

attributed for each correctly decoded address, with 1600 as the maximum fitness. The

idea is to decode one address at a time, as the individuals learn to decode first one

address, then another, until the last one.

Test3:

 This problem is permutation-specific, thus all the elements in the terminal set

have to be present in the resulting rule in order for it to function correctly, so the

operators used in this test have to be permutation-specific. In addition, a one-point

recombination operator is used in a monitored manner as recombining two parents can

result in two invalid offspring’s that repeat or miss a certain element in the rule.

 Fitness cases are randomly generated from the 2048 total possible combinations

of the 11 components in a similar manner to that used by GEP. Probabilities of

operators are given in Table (1) and the parameter settings in Table (6). In this test, a

three-gene chromosome is used; having one element in the function set does not require

an F-Strand, so a virtual one is linked with the T-Strand to form the chromosome. As a

result, many different length solutions were found, listed here are two: one of length 23

with a tree of 34 nodes, and a shorter one of length 21 with a tree of 31 nodes only.

Table (6) Parameter Settings for Test3 with 100 run

Parameter CGAP GEP

Generation 300 400

Population 250 250

Length 21 and 23 27

Genes 3 27

Function Set {IF} {}

Terminal Set {a,b,c,0,1,….,7} {a,b,c,0,1,….,7}

 Najla A. AL-Saati and Nidhal Al-Assady

 74

Solution1: 721bc ab767bcc5ab73 b2a40 Solution2: 721bc 677a55cab73 b2a40
With 3 gene F-Strand length =10 {2,6,2} With 3 gene F-Strand length = 9 {2,5,2}

Ps= 0.43, Rz= 8.1925, Fz= 98310232.0 Ps= 0.41, Rz= 8.7280, Fz=104735816.0

GEP’s Solution: No function was used to generate chromosomes; the sub-ETs were

linked by IF. The characters are linked 3 by 3, forming an ET with depth 4,

composed of 40 nodes, the first 13 nodes are IFs, and the remaining are the

chromosome characters.

365 2bb 5bb ba4 c87 c43 bcc a62 a51

Ps= 0.32, Rz= 11.9409, Fz= 191054944.0

 The examination performed in the course of this test showed that results

obtained by using CGAP technique outperform GEP in chromosome length, output rule

size, probability of success, and in execution time, as indicated in Table (8).

5. Comparisons between CGAP and GEP:

5.1. Chromosome Size and Gene length:

 In GEP, the chromosome length is increased gradually until the suitable length is

found, if no acceptable success rate is gained, then the length for the head is fixed and

the number of genes is increased. With the help of the linking function, more compound

tree structures are constructed. Because GEP uses fixed length genes, and a fixed total

chromosome length, i.e., all genes are used in finding the fitness of an individual, the

choice of gene length and number of genes in the chromosome is very sensitive and can

dangerously influence the evolutionary process.

3 6 5

IF

2 b b

IF

5 b b

IF

b a 4

IF

c 8 7

IF

c 4 3

IF

b c c

IF

a 6 2

IF

a 5 1

IF

IF IF IF

IF

Where a,b,c are the control input

 and 0,…,7 are the data register input

IF

IF b c

IF

c 5 IF

a b

IF

7 3 IF

a b 7

6 7 IF

7 2 1

IF

b c IF

b 2 a

IF

4 0 IF

IF a 5

IF

5 c IF

a b

IF

7 3 IF

7 7 6

IF

7 2 1

IF

b c IF

b 2 a

IF

4 0 IF

 Controlled Gene-Accumulation Programming

75

Figure (5) Effect of increasing Chromosome Length with Success rates in GEP

Figure (6) Effect of Increasing Chromosome Length with Success Rates in CGAP

 The relationship between success rate and chromosomal length is therefore very

complicated. Success rates continue to increase with the length to a certain point, after

that any further increase will only decrease success rates as stated in Figure (5) [4, 7]. In

CGAP the situation is considerably different; having genes of different lengths adds

more flexibility. In addition, the open varying end of the chromosome reduces the

impact of total length on success rates. In this section, chromosome length is

investigated and compared to GEP. The investigation was done using the environment

of single-gene chromosome population stated in Test1 (which is the same test used in

Figure (5)); length was varied from 0 to 100 with a population of 46 individual. Results

are given in Figure (6). Even with very long chromosomes (length of 100) success rates

are still very close to that obtained with short reasonable length, and are very high

relatively to GEP.

Chromosome Length

 Najla A. AL-Saati and Nidhal Al-Assady

 76

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Populations

S

u

c

c

e

s

s

R

a

t

e

%

Convex Concave Random Incremented Decremented

Figure (7) Relationship between Chromosomal Shapes and Success Rates

 As for multi-gene chromosome populations, Sequence Induction with a

population of 60 individuals was used to find the finest possible layout or shape for

assigning lengths to genes in the chromosomes. The number of genes is randomly

chosen, and the lengths of genes should be around the average value obtained by

dividing total chromosomal length by the number of genes, environmental settings are

identical to those stated in Test2. Empirical testing shows that the best results can be

obtained when assigning short-length genes at both ends and increasing length as

proceeding towards the middle, giving the chromosome a Concave form. Different

arrangements of this shape, like: {5,6,7,7,6,4,3} or {4,6,7,5,3}, provide a gradual

increase in expression complexity, after reaching the chromosome center, the process is

reversed to supply less complex terms at the end of final expressions.

 Figure (7) shows success rates of five different shapes for chromosome gene

lengths, a total of 20 populations of the same size and environment as indicated in Test2

are used; total chromosome length is equal to 81 and is composed of 7 genes. Each of

these 20 populations employs 60 individual of different arrangement for gene lengths all

following the same shape of the total five chromosome shapes as follows:

1. Convex shape decreasing gene lengths towards the middle.

2. Concave shape increasing gene lengths towards the middle.

3. Random shape of no particular style. it can randomly produce any shape.

4. Incremented shape continually increasing gene lengths towards the end.

5. Decremented shape continually decreasing gene lengths towards the end.

 Results indicate that Concave-shaped and Decremented-shaped chromosomes

gave best success rates among all others. Table (7) ranks these shapes by their average

success rates.

 Controlled Gene-Accumulation Programming

77

Table (7) Ranking of Chromosome Shapes by Average Success Rates

Rank Shape Average Success Rate

1 Concave Shape 71.15
2 Decremented Shape 70.10

3 Convex Shape 57.45

4 Random Shape 57.05

5 Incremented Shape 56.45

5.2. Comparisons of Results by Execution Time

 For a complete test satisfaction, the computational time for executing runs

in all tests was measured and compared with GEP. Each test is done using a

Pentium (300MHz) processor. Table (8) shows the results in terms of success rates

and execution time.

Table (8) Comparisons of Execution Time and Ps for 100 Run

 CGAP GEP
 Time* Ps Time* Ps

Test1 00:00:05:82 1.0 00:00:08:36 0.81
Test2 00:01:46:66 0.79 00:03:11:24 0.41

Test3 02:20:50:00 0.43 08:40:00:00 0.32

Time is expressed as {Hour:Minute:Second:Hundredth of second}

 Due to the fact that successful runs end earlier than unsuccessful ones, the same

test was carried out to measure the time used to complete one unsuccessful run. Test1

was done using 200 generations in order to make the amount of time significant.

Reasonably, the time shown in Table (9) is an average of a total of 20 evaluated runs.

 Test3 was executed on a faster computer of (2.40GHz) processor and the time

measured was {00:27:23:41}

Table (9) Comparisons of Execution Time for One Unsuccessful Run

 CGAP Time GEP Time

Test1 00:00:00:21 00:00:00:43
Test2 00:00:01:64 00:00:02:40

Test3 00:01:10:22 00:05:27:12

 Najla A. AL-Saati and Nidhal Al-Assady

 78

Table (10) Comparison between CGAP and GEP

 CGAP GEP

1. Controlled length of chromosome that

adapts to rule complexity.

Required length is found by tests relying on

rule complexity.

2. Easy evaluation of fitness function,

results is just accumulated.

Complicated, Karva language is used.

3. Short efficient resulting programs. Fixed relatively large less efficient programs.

4. Additional non-coding regions are kept

at end and neglected in results

Non-coding regions spread in the rule

5. Genes of different lengths allow more

flexibility.

Use of multigenic families of equal length

restricts the flexibility

6. Use of inoculation in utilizing operators

with its immunity feature

Use of mutation, transposition and

recombination only. No inoculation operator.

7. N No flat genes Flat genes are very common

8. No illegal operations. At linking, it may

only occur with divisions.

Illegal operations in genes are very common.

9. Shorter execution time Evaluating all genes requires longer execution

time

10. Requires less generations Requires more generations

11. Increasing chromosome length does not

significantly affect success rates

Increasing chromosome length affect success

rates considerably.

Adding inoculation as a new stage to genetic operators has imposed a massive influence

on the behavior of the system. Both inoculations were inspired by nature and proved to

be successful in applications.

As a final conclusion on the comparisons made in this section, Table (10) reviews the

important issues in which CGAP is found superior to GEP.

6. Conclusions and further recommendations:

 Based on ideas motivated by nature, a new evolutionary method was proposed to

solve real-world problems in an automated way. Controlled Gene Accumulation

Programming was developed aiming to overcome malfunctioning phenomena of other

existing methods. The newly developed method presented proved to be efficient and

reliable in problem solving in terms of chromosome size, success rates and execution

time.

 The new model was successfully applied to various benchmark problems:

symbolic regression, sequence induction, and the 11-Multiplexer problem. It was

investigated and compared to prove superiority over Gene expression Programming.

In spite of the tremendous work that has been done in the field of Evolutionary

Algorithms and Automatic programming, there are still many issues that might arise in

the context of research relating to problem solving.

 As for further recommendations, CGAP being newly introduced can be used in

different areas of applications to show its impact on finding satisfactory rules to

complicated problems.

 Controlled Gene-Accumulation Programming

79

REFERENCES

[1] AL-Saati, N.A., (2005), A Novel Proposed Model for Automatic Programming

 in Problem Solving, PhD Thesis, University of Mosul, College of Computers

 and Mathematical Sciences, Mosul, Iraq, 147p.

[2] Banzhaf, W., (2001), A Comparison of linear Genetic Programming and neural

 Networks in medical Data Mining, IEEE Transactions on Evolutionary

 Computation, Vol. 5(1), pp: 17-26.

[3] Duffy, J., and Engle-Warnick, J., (2002), Using Symbolic Regression to Infer

 Strategies from Experimental Data. In S-H Chen, Ed., Evolutionary computation

 in economics and finance New-York Physica-Verlag.

[4] Ferreira, C., (2001), Gene Expression Programming: A new Adaptive Algorithm

 for Solving Problems, in Complex Systems,13(2),pp:87-129.

[5] Ferreira, C., (2002), Gene Expression Programming in Problem Solving, In R.

 Roy, M. Köppen, S. Ovaska, T. Furuhashi, and F. Hoffmann, eds., Soft

 Computing and Industry – Recent Applications, pages 635-654, Springer-

 Verlag, 2002.

[6] Hoai, N.X., (2001), Solving the Symbolic Regression with Tree-Adjunct

 Grammar Guided Genetic Programming: The Preliminary Results, In The

 Proceedings of The 5th Australasia-Japan Joint Workshop on Evolutionary

 Computation and Intelligent Systems (AJWIES), Dunedin, New Zealand,19-21st

 Nov. 2001, pp:1-6.

[7] Oltean M., Dumitrescu D., (2002), Multi Expression Programming, Technical

 Report: UBB-01-2002, Babes-Bolyai University, Cluj-Napoca, Romania, in

 Journal of Genetic Programming and Evolvable Machines, Kluwer, second tour

 of review, 33p.

[8] Ryan, C., Collins, J.J., O'Neill, M., (1998), Grammatical Evolution: Evolving

 Programs for an Arbitrary Language, Lecture Notes in Computer Science 1391,

 Proceedings of the First European Workshop on Genetic Programming,

 Springer-Verlag pp: 83-95.

[9] Wang, J-S., (2003), Influences of Function Sets in Genetic Programming, in

 Genetic Algorithms and Genetic Programming at Stanford 2003, Ed. John R.

 Koza, Stanford Bookstore Publisher, pp:221-229.

[10] Wikipedia: A Web-based free content encyclopedia, cited at:(http://en.

 wikipedia.org/wiki/Wikipedia)

http://en/

