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ABSTRACT 

 A full description of a new novel method proposed for Automatic Programming 

is brought forward in this work. Controlled Gene-Accumulation programming is a 

method that is purely inspired by concepts of nature. Research will show that this 

method provide a better overall performance especially due to the isolation of terminals 

from functions. Chromosome flip folding is a new crossover operator introduced in this 

work; it will prove to be efficient in introducing new genetic material.  
 A new stage is added to the evolutionary process along with mutation, 
transposition and recombination, the stage is inspired from natural inoculation with two 
new operators: vaccines and serums, these two operators proved to have a huge effect 
on evolving systems by ensuring the death of weak individuals and survival of the fittest 
with the addition of enforced immunity of the system. 
 Investigations of this approach proved its superiority over other methods in 
various aspects, it is in a way controlled to adapt to rule complexity and the production 
of minimal chromosomal encodings as the chromosomes all have varying lengths genes. 
It has a much faster execution time compared to the well-known Gene Expression 
Programming method. 

Keywords: Automatic Programing, Controlled Gene-Accumulation Programming, Gene 

expression Programing. 
 

 البرمجة بتراكم الجينات المقاد تحت السيطرة

 نضال حسين الاسدي      نجلاء اكرم الساعاتي 
 جامعة الموصل /   كلية علوم الحاسوب والرياضيات

 04/12/2008  تاريخ قبول البحث:            25/09/2008: تاريخ استلام البحث
ملخصال  

المسيطر دم هذا البحث وصف كامل لنموذج مبتكر جديد مقترح للبرمجة الالية. البرمجة بتراكم الجينات يق 
هي طريقة مستوحاة من حقائق الطبيعة بشكل كامل وسيبين البحث ان هذه الطريقة توفر اداء كلي افضل   عليه

 Chromosomeجديد يدعى ) ( عن الدوال. تم ايضا تقديم معامل terminalsوخاصة بسبب عزل الطرفيات ) 

flip-folding.والذي اثبت كفاءة بتقديم مادة جينية جديدة ) 
تم ايضا تقديم مرحلة جديدة للعملية التطورية بالاضافة الى الطفرات الوراثية ، العمليات التنظيمية  

اح والمصل، حيث اثبت ملين: اللقاوعمليات المزج. استوحيت فكرة هذه المرحلة من فكرة اللقاح الطبيعي وتتضمن مع
المعاملان اثرهما الكبير على النظم الخاضعة للتطور وذلك من خلال ضمان موت الافراد الضعيفة وبقاء الافضل 

 هذا بالاضافة الى توفير المناعة المعززة للنظام.
ادت الاستقصاءات التي تمت على هذا النموذج الى اثبات تفوقه على كل الطرق الاخرى من عدة   

ي، وهو مقاد بشكل يتلائم مع تعقيد القوانين ويؤدي الى انتاج كروموسومات ذات اقل قدر ممكن من الترميز نواح
وذلك بسبب اختلاف اطوال الجينات في كل كروموسوم. للنموذج سرع تنفيذ عالية مقارنة بالطريقة المعروفة  

(Gene Expression Programming .) 
 الجيني.  بالتمثيلية ، البرمجة بتراكم الجينات المقاد تحت السيطرة ، البرمجة البرمجة الذاتالكلمات المفتاحية: 
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1. Introduction 

 Controlled Gene-Accumulation Programming (CGAP)[1], is a new genotype/ 

phenotype system that uses the idea of evolution to generate computer programs to 

solve real-world problems. This method is inspired by natural chromosomes and is the 

closest to represent them among most of the proposed Linear GP variants [2, 4, 7, 8]. 

This method employs a multi-varying gene system where rules are represented by 

expression trees encoded as double-stranded linear entities in a close similitude to 

natural DNA strands. These multi-varying gene chromosomes have the ability to 

represent any expression tree whatever its complexity. 

 CGAP is a genetic system, that employs populations of individuals, it applies 

selection schemes to choose individuals according to their fitness measures, introduces 

genetic variations by one or more of the available genetic operators to achieve genetic 

diversity in evolving populations, and it utilizes a fitness measure to evaluate these 

individuals. 

 The elementary difference among GAs, GP and CGAP algorithms exist in the 

encoding of individuals: GAs encode the individuals in linear strings of fixed length 

called chromosomes; in GP they are non-linear entities of different sizes and shapes 

called parse trees; and in CGAP they are represented as fixed-length linear strings called 

genomes or chromosomes and are then expressed as non-linear entities of different sizes 

and shapes. 

2. CGAP Algorithm 

 Evolution in CGAP is achieved through a number of successive generations, it 

begins with the creation of individuals in the first population by filling up the two-

stranded genes of each chromosome in the population with randomly generated 

functions and terminals respectively taken from the predefined sets of functions and 

terminals. Then each chromosome is expressed into its corresponding phenotype 

structure. Afterwards, the selection process is carried out based on Roulette wheel 

selection scheme coupled with elitism, where individuals are selected to go through 

mutation, transposition and recombination according to their fitness to form a new 

generation which, in turns, undergoes the same process. The succession is repeated until 

the termination criterion is met. Figure (1) gives the CGAP flowchart. 

 The newly added stage of inoculation is applied only twice according to 

predefined probabilities. The vaccine inoculation is applied in the early stages of 

evolution (usually the second generation), while the serum inoculation is applied at the 

last stages, unlike other operators, which are probabilistically applied in all generations. 

After reproduction no editing, by any means, of the resulting individual is necessary 

before fitness evaluation, as all the resulting members of the population are correctly 

synthesized programs in all cases, this is ensured by the nature functionality of the 

genetic operators used. 

 

 

 

 

 

 
 

 

 



  Controlled Gene-Accumulation Programming 
 

 

65 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 

 

Figure (1) Flowchart of Controlled Gene-Accumulation Algorithm 

 

3. Model Description 

3.1. Inspiration of Nature 

 Returning back to nature, a chromosome is, minimally, a very long, continuous 

piece of DNA that contains many genes, other intervening nucleotide sequences 

chromosomes are genes carriers. When two genes are found on the same chromosome 

they are said to be linked. At the formation of gametes, when the chromosomes first line 

up at the mid-point of the spindle fibers, genes linked along the length of each 

chromosome are prone to becoming dispatched.[10] In this model, the chromosomal 

structure is a true simulation of nature. chromosomes are made up of several genes of 

different random lengths, the structure corresponds to that of the DNA in being 

composed of two strands that bind together and become one whole individual. Bonds 

used in the binding process of the strands are one-to-many relational bonds that depend 

entirely on the type of function to be linked. 

3.2. Chromosomal Structure 

 In this method, the chromosome consists of a linear symbolic string of fixed 

total length, which is composed of one or more variable length genes that code for trees 

of different sizes and shapes. Each gene is composed of two strands that must bind 
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together in order for the gene to be meaningful. The first strand contains symbols 

encoding the functions that perform the desired operations; it is called the F-Strand. The 

other strand contains symbols that encode the terminals required as operands to 

functions, and is called the T-Strand. Figure (2-a) gives the chromosomal structure and 

strands binding process, Figure (2-b) illustrates the tree expressing of genes, while 

Figure (2-c) depict the linking process of expression trees (ETs). 
 

  

a) F-Strand F1 F2 F3  F1 F2 F3 F4  F1 F2 F3 ……   

        

 T-Strand T1 T2 T3 T4  T1 T2 T3 T4 T5  T1 T2 T3 T4 ……    

 Gene 0  Gene 1  Gene 2  Gene N 

   b) 

 

 

 

 

 

 

         Tree 0    Tree 1        Tree 2               Tree N 

c) 

 

 

 

 

 

 

 

 

 

 

 
 

Figure (2) a) Chromosomes Structural Representation 

b) Corresponding Tree Structures       c) Tree Structures after linking 

 

 The Isolation of functions from terminals is very necessary to increase the 

efficiency and reliability in implementation and performance as: 

1. It facilitates the binding process between functions and terminals. 

2. It gives more efficiency in applying genetic operators with fewer constraints 

forced in their implementation. 

3. No terminal can appear in the F-strand and stop the expansion of the open end of 

the corresponding expression tree. 

4. Excluding terminals from the F-Strands completely eliminates the possibility of 

obtaining flat genes. 

 In F-Strands, the number of genes and their lengths is randomly chosen, forming 

a random length of F-Strand (LFS). The number of genes in the T-Strand is fixed 

accordingly to the F-strand, but the lengths of genes are not, they are instead calculated 
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to adapt to as many as needed by the related function gene, resulting in a suitable total 

length of the T-Strand (LTS) that can bind correctly to the F-Strand and adapt to 

changes caused by operators, resulting always in correctly synthesized programs. 

Lengths are calculated using the following rules: 

 LTSi = LFSi . (MaxArg -1) +1    …(1) 

 LTS =i  LTSi ,     for 0 < i < N,     ...(2) 

Where N is the number of genes in each chromosome and MaxArg is the maximum 

number of arguments taken by a function in the function set. Thus, functions can appear 

in the F-Strand and takes as much terminals as needed. At the extreme case, a gene can 

have an F-strand of functions all requiring MaxArg arguments, and the whole length of 

the T-Strand is used. All chromosomes have the same number of genes all of the same 

length. Choosing the number of genes in each chromosome and their lengths is done 

randomly and is studied thoroughly in section (5.1) 

3.3. Controlling the Gene-Accumulation Process 

 The main aspect of this method involves the issue of unrestricted, end-shifting 

utilization of chromosome length, as this is largely related to the rule complexity. This 

approach allows problem complexity to control the required length at evaluation time 

(fitness calculation), making use of just as much as needed from the chromosome. In 

addition, the accumulation impact assures that the components of the acquired length of 

the individual are actually used in the calculation. 

 At evaluation, as in nature, genes become dispatched. Every gene is taken in part 

and evaluated as an individual tree, starting with the first element in the F-Strand. Each 

time a branch is added, an evaluation procedure is invoked to compute the output value 

of the rule encoded in that tree and compare it with the desired output depending on the 

fitness cases chosen for training (Figure (3)). In this case there are two possibilities: 

1. If no match is found, another branch is added to that tree and the process is 

repeated until a match is found or the end of the first gene is encountered, 

forming the first phenotype sub tree that is ready to be linked to the next one in 

the chromosome. So each gene in the chromosome is added in parts to the 

accumulated output value, which is controlled by continuous comparison with 

the desired output. 

2. If a match is found, then a virtual end mark is placed to indicate the stopping end 

point of the chromosome. When a virtual end is found for the first fitness case, 

the process of tree construction ends, and the learning process begins. The newly 

formed rule encoded in the constructed tree is re-evaluated using the remaining 

fitness case in an attempt to find the fitness measure of that rule. 

  The total output values specified by the fitness cases must match the result 

stopping at the same point in the chromosome in order to state that the rule is trained 

and capable of solving any other new case offered. 
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For all chromosomes in the population do 

       For all fitness cases in the training set do 

            { 

              Flag=true 

              For all genes in the chromosome do 

                      { 

                      Repeat 

                          Add next branch to sub-tree 

                          Link with previously constructed tree (nil in the first gene) 

                          Evaluate tree 

                          If a match is found with the fitness case then 

                                 Save stopping point 

                                 If no match with previous stopping point then Flag=false 

                                 Exit repeat 

                     Until end of gene  

                     If Flag=true assign fitness according to obtained value 

                     Else Set Fitness=0 and Stop evaluation 

                     } 

              Update total chromosome fitness with this fitness case 

            } 

Figure (3) Algorithm of Evaluation Process for CGAP 

3.4. Genetic Operators 

 According to the fitness measure and the luck of the roulette wheel, individuals 

are selected to reproduce with modification. In CGAP, except for mutation, each 

operator is not allowed to modify a chromosome more than once. In addition, as in 

GEP, a chromosome could be chosen by one or several operators to be modified. Thus, 

the modifications of several genetic operators accumulate during reproduction, 

producing offspring very different from the parents. In CGAP, four stages of operators 

are introduced: 
 

1- Mutations 

Mutations can freely occur anywhere in the two-stranded chromosome, changing F-

Strand’s elements to any other one defined in the function set, and T-Strand’s 

element into any of the terminals in the terminal set. Changes will not affect the 

correctness of the resulting programs. 
 

2- Reordering 

All these operators, except for Transposition, are permutation-specific, as they are 

guaranteed to keep all the elements but in a different reordering. 

a) Transposition: is similar to IS and RIS transportation of GEP [5]. But here, a 

random sequence is chosen and is transposed to any randomly specified location 

in the selected chromosome. 

b) Inversion: a random sequence is chosen from the chromosome’s length and is 

inverted in its place, thus reordering the genes of that sequence. 

c) Wrap-around Rotation: a random sequence is chosen from the chromosome’s 

length and is rotated in its place. 

d) Flip-Folding: the selected chromosome is divided at a predefined point into two 

different length parts, which are then flipped to be reunited again forming a totally 

new chromosome. 
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e) Increment/Decrement Effect: the contents of the chromosome are incremented 

or decremented by a constant creating a new chromosome. 
 

3- Recombination 

a) One point Recombination: the most effective operator. A point is randomly 

chosen in the chromosome sequence at which the contents of the two parents are 

swapped forming two new different children. 

b) Alternating Multi-point Recombination: instead of using two-point crossover, a 

multi-point operator is invoked. It is implemented by alternately crossing over 

randomly chosen regions of the two selected parents. The number of points in the 

multi-point operator is randomly chosen and the chromosome is divided 

accordingly. 
 

4- Inoculation: 

This new stage involves introducing inoculation among individuals using both 

serums and vaccines in order to provide immunity in evolving individuals. 

c)  Vaccines: any preparation of a virus introduced into an individual to immunize it 

against an infection. This involves spreading a virus into the population at a very 

early stage of evolution, not in the first random population but in the second (first 

evolved population), and the system tries to settle the effect throughout the 

remaining generations. If individuals heal, the population grows to be immune, 

and if they die, the population becomes free of weak individuals. 

d) Serums: a sequence taken from an immunized individual and used for the 

inoculation. At late evolution stages and after the population have reached a full-

growth point and is in need of revival, the serum inoculation is used to revive such 

populations with vital serums. 

3.5. Fitness Calculation 

 The most important aspect in any GP or linear GP variant method is the choice 

of the fitness measure for evaluating how good a given program is at solving the 

problem at hand. The objective must be correctly stated for the system to evolve 

towards discovering good solutions. 

 In this work, fitness functions are set accordingly to those used in GEP [4]. To 

evaluate the performance, GEP uses the average number of fitness-functions evaluations 

(Fz) needed to find a correct program with a certain probability (z). Given the success 

rate or the probability of success (Ps) and the number of fitness cases used in the 

training process (C), the number of independent runs (Rz) required to find a correct 

solution by generation G with a probability of z=0.99 is calculated by: [4]  

 Rz= log (1-z) / log (1-Ps),    and  Ps1   ...(3) 

 Fz = Generations* population_size* C* Rz    ...(4) 

4. Application to real-world problems 

 This approach is evaluated through its application to some of the widely 

referenced problems in GP and its variants. Results are compared to GEP being the 

most successful method of the proposed GP variants. 

 Tests include: Symbolic Regression, Sequence Induction, and the 11-multiplexer 

problems. Some of the tests use the same parameter setting of those used by GEP in 

order to draw some realistic conclusions. All tests carried out here use notations of 

success rate or probability of success (Ps) evaluated over 100 identical run. Table (1) 

shows the probabilities of operators for the three tests carried out in this work.  
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Table (1) Probabilities of Operators for Test1, 2 and 3 

Operator Test1 Test2 Test3 

 Mutation 0.06 0.1 0.1 

Transposition 0.1 0.1 0.1 

Inverse 0.1 0.15 0.1 

Wrap-Around Rotate 0.3 0.35 0.1 

One point recombination 0.1 0.1 0.1 

Alternate Multi-point recombination 0.35 0.35 0.7 

Serum 0.35 0.3  

Vaccine 0.1 0.15  

4.1. Symbolic regression 

 The symbolic regression problem can be stated as finding a function in a 

symbolic form that fits a given finite sample of data [6]. It is a valuable tool for the 

analysis of experimental data where the specification of the strategic function used is 

often difficult, and may even vary over time.[3] 

 As for fitness calculation, the objective here is to find an expression that 

performs well for all fitness cases within a certain error of the correct value. For some 

mathematical applications it is useful to use small relative or absolute errors in order to 

discover a very good solution. Mathematically, this is expressed by the following 

equation: 

 ( )
=

−−=
iC

j

jjii TCMf

1

),(       ...(5)  

 Where M is the range of selection, C(i,j) the value returned by chromosome i for 

fitness case j (out of Ct fitness cases) and Tj is the target value for fitness case j. If, for 

all j, |C(i,j) - Tj| (the precision) less or equal to 0.01, then the precision is equal to zero, 

and fi = fmax = Ct. M. For this problem, an M = 100 will be used, thus fmax = 1000. 

The benefit of this kind of fitness function is that the system can find optimal solutions 

for itself 

Test1: 

 The first test includes applying CGAP to a symbolic regression problem; the aim 

is to evolve the function given in following Eq.: 

 Y = a4 + a3 + a2 + a       ...(6) 

Table (2) Fitness Cases for Test1 

In 2.81 6 7.043 8 10 11.38 12 14 15 20 

Out 95.2425 1554 2866.5485 4680 11110 18386.0340 22620 41370 54240 168420 
 

 Probabilities of operators are given in Table (1). Fitness cases in Table (2) and 

parameter settings in Table (3). Being an uncomplicated function only one-gene 

chromosome was enough to fit the given fitness cases. 

Table (3) Parameter Settings for Test1 with 100 run 

Setting CGAP GEP 

Generations 46 50 

Population 30 30 

Chromosome Length 19 39 

Genes 1 (F-Strand=9) 3 (h=6) 

Function Set {+,-,*,/} {+,-,*,/} 

Terminal Set {a} {a} 
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CGAP Solution: *+*+*+  /** found in Generation 4 

         aaaaaaa  aaa 

Evaluation of the solution: 

a*a= a2 

+a = a2+a 

*a = a3+a2 

+a = a3+a2+a  

*a = a4+a3 +a2 

+a = a4+a3 +a2+a 

PS = 1.00, Rz= 1, Fz= 13800.0000 

 

GEP  solution is **-*a+aaaaaaa ++**a*aaaaaaa *+-a/aaaaaaaa 

 

 

 

 

 

   

     a4 + a3+a2+a +   0 = a4+a3+a2+a 
 

 It is clear that the 3rd gene is of a zero value to the chromosome. These results 

indicate that CGAP surpasses GEP in many aspects. Maximum chromosomal length is 

significantly shorter; in addition, resulting rules are shorter and more compact. 

Probability of success is improved considerably with less required execution time; 

Table (8) gives time comparison details. 

4.2. Sequence Induction 

 The problem of sequence induction is a special case of symbolic regression 

where the domain of the independent variable consists of the non-negative integers. Yet, 

the sequence chosen is more complicated than that used in symbolic regression, as 

different coefficients are used.[5] 

 The problem involves finding a mathematical expression to calculate the value 

of the sequence at a given step [9]. In the sequence 1, 15, 129, 547, 1593, 3711, 7465, 

13539, 22737, 35983, 54321, …., the nth term is: 

 12345 234 ++++= nnnn aaaaN ,    …(7) 

 Where an consists of the non-negative integers 0, 1, 2, 3, ..., n . This sequence 

was chosen because it can be exactly solved and therefore can provide an accurate 

measure of performance in terms of success rate. 

 Fitness Measure for sequence induction is similar to that of Symbolic regression 

given in Eq. (5) for assigning fitness measure to individuals. 

Test2: 

 The second test is the application of the CGAP method in sequence induction, 

the function to be evolved is: 

 Y = 5a4 + 4a3 +3 a2 + 2a+1     ...(8) 

 The probabilities of operators are given in Table (1), fitness cases in table (4), 

and parameter settings in Table (5). Gene lengths are assigned using the concave shape 

as will be discussed in section 5 along with other shapes in an analysis to indicate the 

efficiency of utilizing this shape. 
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Table (4) Fitness Cases for Test2 

In 1 2 3 4 5 6 7 8 9 10 

Out 15 129 547 1593 3711 7465 13539 22737 35983 54321 

Table (5) Parameter Settings for Test2 with 100 run 

Setting CGAP GEP 

Generation 100 100 

Population 60 60 

Chromosomal Length 81 91 

Genes 7 (F-Strand={5,6,7,6,6,4,3}) 7 (h=6) 

Function Set {+,-,*,/} {+,-,*,/} 

Terminal Set {a} {a} 

 

CGAP Solution found in generation 12 with length 50, 4 genes used of  

        maximum 85 length and 7 genes chromosomes with Linking 

        function = ‘+’ 

         Ps=0.79, Rz= 2.9508,  Fz= 177048.3906  
 

++***  +*+*+*  ++*++*+  *+*//    /  *+*/*+  +/+-  **- 

aaaaaa  aaaaaaa  aaaaaaaa  aaaaaa  a       

  (3a4)  (2a4+a3+a2)  (3a3+2a2+a)   (a+1)       

=5a4+4a3+3a2+2a+1 
 

Another CGAP solution of length 70 using 6 genes and Linking by ‘+’ 

++***  +*+**+  --+//+*  **-++/  /*++**   *+      /*  +++ 

aaaaaa  aaaaaaa  aaaaaaaa  aaaaaaa  aaaaaaa   aaa     aa  … 

(3a4)  (2a4+a3+a)  (a2)  (a2+1)  (3a3)  (a2+a)   

=5a4+4a3+3a2+2a+1 
 

GEP solution found in generation 32 with length=73 and 7 genes used of the 

    maximum length=91 and 7 genes chromosomes, Linking  

    function = ‘+’ 

    Ps= 0.41, Rz= 8.7280 Fz= 523679.0625 
  

**++—aaaaaaa *+/+a*aaaaaaa *+*+*+aaaaaaa *-***+aaaaaaa *a/+a-aaaaaaa -+-/**aaaaaaa **+a*+aaaaaaa 

 

 Again in this test, results of CGAP exceed GEP in utilization of chromosomal 

length, resulting rule size, probability of success, and in execution time. Table (8) gives 

comparisons in terms of execution time. 

4.3. The 11-Multiplexer Problem 

 The goal is to evolve a rule capable of translating an input of 11 ordered binary 

bits into the appropriated output where the first 3 bits refer to an address of 0 to 8 and 

the remaining 8 bits give the input to the Multiplexer. The value of the Boolean 

multiplexer function is 0 or 1 of the particular data bit that is singled out by the address 

bits of the multiplexer. For example, if the three-address bits a2a1a0 are 110, the 

multiplexer singles out data bit number 6 (d6) to be the output of the multiplexer 

(Figure(4)). 
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Figure (4) The 11-Multiplexer Interface 

 The set of fitness cases must be representative of the problem as a whole. There 

are 211 = 2,048 possible combinations of the 11 arguments a0a1a2d0d1d2d3d4d5d6d7 along 

with the associated correct value of the 11-multiplexer function. For this particular 

problem, sampling is used as the fitness cases for evaluating fitness. The fitness cases 

were assembled by address, for each address a sub-set of 20 random combinations was 

used each generation. Thus, a total of 160 random fitness cases were used each 

generation. In this case, the fitness of a rule is the number of fitness cases for which the 

Boolean value returned is correct, plus a bonus of 180 fitness points for each sub-set of 

combinations solved correctly as a whole. Hence, a total of 200 fitness points was 

attributed for each correctly decoded address, with 1600 as the maximum fitness. The 

idea is to decode one address at a time, as the individuals learn to decode first one 

address, then another, until the last one. 
 

Test3: 

 This problem is permutation-specific, thus all the elements in the terminal set 

have to be present in the resulting rule in order for it to function correctly, so the 

operators used in this test have to be permutation-specific. In addition, a one-point 

recombination operator is used in a monitored manner as recombining two parents can 

result in two invalid offspring’s that repeat or miss a certain element in the rule. 

 Fitness cases are randomly generated from the 2048 total possible combinations 

of the 11 components in a similar manner to that used by GEP. Probabilities of 

operators are given in Table (1) and the parameter settings in Table (6). In this test, a 

three-gene chromosome is used; having one element in the function set does not require 

an F-Strand, so a virtual one is linked with the T-Strand to form the chromosome. As a 

result, many different length solutions were found, listed here are two: one of length 23 

with a tree of 34 nodes, and a shorter one of length 21 with a tree of 31 nodes only. 
 

Table (6) Parameter Settings for Test3 with 100 run 

Parameter CGAP GEP 

Generation 300 400 

Population 250 250 

Length 21 and 23 27 

Genes 3 27 

Function Set {IF} {} 

Terminal Set {a,b,c,0,1,….,7} {a,b,c,0,1,….,7} 
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Solution1: 721bc  ab767bcc5ab73  b2a40             Solution2: 721bc 677a55cab73 b2a40 
With 3 gene F-Strand length =10 {2,6,2}            With 3 gene F-Strand length = 9 {2,5,2} 

Ps= 0.43, Rz= 8.1925, Fz= 98310232.0                   Ps= 0.41, Rz= 8.7280, Fz=104735816.0 

 

    

    

     

 

 

 

 

 

 

 

 

 

 

 

 

 
 

GEP’s Solution: No function was used to generate chromosomes; the sub-ETs were 

linked by IF. The characters are linked 3 by 3, forming an ET with depth 4, 

composed of 40 nodes, the first 13 nodes are IFs, and the remaining are the 

chromosome characters. 
 

365 2bb 5bb ba4 c87 c43 bcc a62 a51 

Ps= 0.32, Rz= 11.9409, Fz= 191054944.0 

 

 

 

 

 

 

 

 
 

 The examination performed in the course of this test showed that results 

obtained by using CGAP technique outperform GEP in chromosome length, output rule 

size, probability of success, and in execution time, as indicated in Table (8). 

5. Comparisons between CGAP and GEP: 

5.1. Chromosome Size and Gene length: 

 In GEP, the chromosome length is increased gradually until the suitable length is 

found, if no acceptable success rate is gained, then the length for the head is fixed and 

the number of genes is increased. With the help of the linking function, more compound 

tree structures are constructed. Because GEP uses fixed length genes, and a fixed total 

chromosome length, i.e., all genes are used in finding the fitness of an individual, the 

choice of gene length and number of genes in the chromosome is very sensitive and can 

dangerously influence the evolutionary process. 

 

3 6 5 

IF 

2 b b 

IF 

5 b b 

IF 

b a 4 

IF 

c 8 7 

IF 

c 4 3 

IF 

b c c 

IF 

a 6 2 

IF 

a 5 1 

IF 

IF IF IF 

IF 

Where a,b,c are the control input  

 and 0,…,7 are the data register input 

IF 

IF b c 

IF 

c 5 IF 

a b 

IF 

7 3 IF 

a b 7 

6 7 IF 

7 2 1 

IF 

b c IF 

b 2 a 

IF 

4 0 IF 

IF a 5 

IF 

5 c IF 

a b 

IF 

7 3 IF 

7 7 6 
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7 2 1 

IF 

b c IF 

b 2 a 

IF 

4 0 IF 
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Figure (5) Effect of increasing Chromosome Length with Success rates in GEP 

 

Figure (6) Effect of Increasing Chromosome Length with Success Rates in CGAP 
 

 The relationship between success rate and chromosomal length is therefore very 

complicated. Success rates continue to increase with the length to a certain point, after 

that any further increase will only decrease success rates as stated in Figure (5) [4, 7]. In 

CGAP the situation is considerably different; having genes of different lengths adds 

more flexibility. In addition, the open varying end of the chromosome reduces the 

impact of total length on success rates. In this section, chromosome length is 

investigated and compared to GEP. The investigation was done using the environment 

of single-gene chromosome population stated in Test1 (which is the same test used in 

Figure (5)); length was varied from 0 to 100 with a population of 46 individual. Results 

are given in Figure (6). Even with very long chromosomes (length of 100) success rates 

are still very close to that obtained with short reasonable length, and are very high 

relatively to GEP. 

Chromosome Length 
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Figure (7) Relationship between Chromosomal Shapes and Success Rates 
 

 As for multi-gene chromosome populations, Sequence Induction with a 

population of 60 individuals was used to find the finest possible layout or shape for 

assigning lengths to genes in the chromosomes. The number of genes is randomly 

chosen, and the lengths of genes should be around the average value obtained by 

dividing total chromosomal length by the number of genes, environmental settings are 

identical to those stated in Test2. Empirical testing shows that the best results can be 

obtained when assigning short-length genes at both ends and increasing length as 

proceeding towards the middle, giving the chromosome a Concave form. Different 

arrangements of this shape, like: {5,6,7,7,6,4,3} or {4,6,7,5,3}, provide a gradual 

increase in expression complexity, after reaching the chromosome center, the process is 

reversed to supply less complex terms at the end of final expressions. 
 

 Figure (7) shows success rates of five different shapes for chromosome gene 

lengths, a total of 20 populations of the same size and environment as indicated in Test2 

are used; total chromosome length is equal to 81 and is composed of 7 genes. Each of 

these 20 populations employs 60 individual of different arrangement for gene lengths all 

following the same shape of the total five chromosome shapes as follows: 

1. Convex shape decreasing gene lengths towards the middle.  

2. Concave shape increasing gene lengths towards the middle. 

3. Random shape of no particular style. it can randomly produce any shape. 

4. Incremented shape continually increasing gene lengths towards the end. 

5. Decremented shape continually decreasing gene lengths towards the end. 
 

 Results indicate that Concave-shaped and Decremented-shaped chromosomes 

gave best success rates among all others. Table (7) ranks these shapes by their average 

success rates. 
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Table (7) Ranking of Chromosome Shapes by Average Success Rates 

Rank Shape Average Success Rate 

1 Concave Shape 71.15 
2 Decremented Shape 70.10 

3 Convex Shape 57.45 

4 Random Shape 57.05 

5 Incremented Shape 56.45 

5.2. Comparisons of Results by Execution Time 

 For a complete test satisfaction, the computational time for executing runs 

in all tests was measured and compared with GEP. Each test is done using a 

Pentium (300MHz) processor. Table (8) shows the results in terms of success rates 

and execution time. 

Table (8) Comparisons of Execution Time and Ps for 100 Run 

 CGAP GEP 
 Time* Ps Time* Ps 

Test1 00:00:05:82 1.0 00:00:08:36 0.81 
Test2 00:01:46:66 0.79 00:03:11:24 0.41 

Test3 02:20:50:00 0.43 08:40:00:00 0.32 

Time is expressed as {Hour:Minute:Second:Hundredth of second} 
 

 Due to the fact that successful runs end earlier than unsuccessful ones, the same 

test was carried out to measure the time used to complete one unsuccessful run. Test1 

was done using 200 generations in order to make the amount of time significant. 

Reasonably, the time shown in Table (9) is an average of a total of 20 evaluated runs.  

 Test3 was executed on a faster computer of (2.40GHz) processor and the time 

measured was {00:27:23:41} 

Table (9) Comparisons of Execution Time for One Unsuccessful Run 

 CGAP Time GEP Time 

Test1 00:00:00:21 00:00:00:43 
Test2 00:00:01:64 00:00:02:40 

Test3 00:01:10:22 00:05:27:12 
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Table (10) Comparison between CGAP and GEP 

 CGAP GEP  

1.  Controlled length of chromosome that 

adapts to rule complexity. 

Required length is found by tests relying on 

rule complexity. 

2.  Easy evaluation of fitness function, 

results is just accumulated. 

Complicated, Karva language is used. 

3.  Short efficient resulting programs. Fixed relatively large less efficient programs. 

4.  Additional non-coding regions are kept 

at end and neglected in results 

Non-coding regions spread in the rule 

5.  Genes of different lengths allow more 

flexibility. 

Use of multigenic families of equal length 

restricts the flexibility 

6.  Use of inoculation in utilizing operators 

with its immunity feature 

Use of mutation, transposition and 

recombination only. No inoculation operator. 

7. N No flat genes  Flat genes are very common 

8.  No illegal operations. At linking, it may 

only occur with divisions. 

Illegal operations in genes are very common. 

9.  Shorter execution time  Evaluating all genes requires longer execution 

time 

10.  Requires less generations  Requires more generations 

11.  Increasing chromosome length does not 

significantly affect success rates 

Increasing chromosome length affect success 

rates considerably. 
 

Adding inoculation as a new stage to genetic operators has imposed a massive influence 

on the behavior of the system. Both inoculations were inspired by nature and proved to 

be successful in applications. 

As a final conclusion on the comparisons made in this section, Table (10) reviews the 

important issues in which CGAP is found superior to GEP.  

6. Conclusions and further recommendations: 

 Based on ideas motivated by nature, a new evolutionary method was proposed to 

solve real-world problems in an automated way. Controlled Gene Accumulation 

Programming was developed aiming to overcome malfunctioning phenomena of other 

existing methods. The newly developed method presented proved to be efficient and 

reliable in problem solving in terms of chromosome size, success rates and execution 

time.  

 The new model was successfully applied to various benchmark problems: 

symbolic regression, sequence induction, and the 11-Multiplexer problem. It was 

investigated and compared to prove superiority over Gene expression Programming. 

In spite of the tremendous work that has been done in the field of Evolutionary 

Algorithms and Automatic programming, there are still many issues that might arise in 

the context of research relating to problem solving.  

 As for further recommendations, CGAP being newly introduced can be used in 

different areas of applications to show its impact on finding satisfactory rules to 

complicated problems. 
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