On Π – **Pure Ideals**

Shaimaa Hatem Ahmad shaima.hatem1977@gmail.com Mathematics Department College of Computer Science and Mathematics University of Mosul, Mosul, Iraq

Received on: 20/10/2013

Accepted on: 12/2/2014

ABSTRACT

As a generalization of right pure ideals, we introduce the notion of right Π – pure ideals. A right ideal I of R is said to be Π – pure, if for every $a \in I$ there exists $b \in I$ and a positive integer n such that $a^n \neq 0$ and $a^n b = a^n$. In this paper, we give some characterizations and properties of Π – pure ideals and it is proved that:

If every principal right ideal of a ring R is Π – pure then,

- a). L $(a^n) = L (a^{n+1})$ for every $a \in R$ and for some positive integer n .
- b). R is directly finite ring.

c). R is strongly Π – regular ring.

Keywords: Pure, strongly regular, Π – ring.

كلية علوم الحاسوب والرياضيات، جامعة الموصل

تاريخ قبول البحث: 2014/02/12

تاريخ استلام البحث: 2013/10/20

الملخص

كتعميم للمثاليات النقية اليمنى أعطينا مفهوم المثالي النقي الأيمن من النمط – Π وهو أن كل مثالي أيمن ا في R يكون نقياً من النمط – Π , إذا كان لكل عنصر a في ا يوجد عنصر d في ا ولكل عدد موجب n بحيث أن 0 \neq ⁿ فان ^{an} b = aⁿ b. في هذا البحث قدمت تمييزا لبعض الخواص للمثاليات من النمط – Π . وبرهنا ما يلي :اذا كان كل مثالي ايمن خصوصي في الحلقة R من النمط – Π فان وبرهنا ما يلي :اذا كان كل مثالي ايمن خصوصي في الحلقة R من النمط – Π فان وبرهنا ما يلي :اذا كان كل مثالي ايمن خصوصي في الحلقة R من النمط – Π فان وبرهنا ما يلي :اذا كان كل مثالي ايمن خصوصي في الحلقة R من النمط – Π فان وبرهنا ما يلي :اذا كان كل مثالي ايمن خصوصي في الحلقة R من النمط – Π فان وبرهنا ما يلي :اذا كان كل مثالي ايمن خصوصي في الحلقة R من النمط – Π فان وبرهنا ما يلي :اذا كان كل مثالي ايمن خصوصي في الحلقة R من النمط – Π فان وبرهنا ما يلي :اذا كان كل مثالي ايمن خصوصي في الحلقة R من النمط – Π فان وبرهنا ما يلي :اذا كان كل مثالي ايمن خصوصي في الحلقة R من النمط – Π فان (a من المام لي المام – R (c الكلمات المفتاحية: نقى، منتظمة بقوة، حلقات من النمط – Π.

1. Introduction

Throughout this paper , a ring R denotes as associative ring with identity and all modules are unitary . We write J (R) for Jacobson radical of R . L (x) (Y (x)) denotes the left (right) annihilator of x in R .

Recall the following definitions and facts :

1- A ring R is called Π – regular [3], if for any $a \in R$, there exists $b \in R$ and a positive integer n such that $a^n = a^n ba^n$. A ring R is called strongly Π – regular if for any $a \in R$, there exists $b \in R$ and a positive integer n such that $a^n = a^{2n} b$.

2- A ring R is called a quasi ZI – ring [8], if for any non-zero elements a , $b \in R$, ab = 0 implies that there exists a positive integer n such that $a^n \neq 0$ and $a^n R b^n = 0$.

3- A ring R is said to be reduced [9], if it contains no non-zero nilpotent element.

A ring R is called right SXM if for each $0 \neq a \in R$, r (a) = r (aⁿ) for

a positive integer n satisfying $a^n \neq 0$. For example , reduced rings are right SXM rings [7] .

Pure ideals have been extensively studied for several years. Many authors studied some properties and connections between pure ideals and regular rings [2], [4], and [5].

2. Π – Pure Ideals

In this section ,we introduce the notion of a right Π – pure ideals , with some of their basic properties . Also, we give a connection between Π – pure ideals and pure ideals .

Following [1], an ideal I of a ring R is said to be right(left) pure ideal, if for any $a \in I$, there exists $b \in I$ such that a = ab. (a = ba).

Following [6], an ideal of a ring R is said to be G P-ideal, if for every $a \in I$, there exists $b \in I$ and a positive integer n such that $a^n = a^n b$.

Definition (2.1) :

An ideal I of a ring R is said to be right Π – pure ideal if for every $a \in I$, there exists a positive integer n and $b \in I$, such that $a^n \neq 0$ and $a^n = a^n b$.

Clearly , every right pure ideal is a right Π – pure ideal but the converse is not true

Example (1) :

Let Z_{12} be the ring of integers modulo 12 and I = (3), J = (4). Then, both I and J are Π – pure ideals of Z_{12} . Obviously, Π – pure ideal implies GP- ideal.

It is clear that in the case of reduced rings , GP – ideals coincide. with Π – pure .

Example (2) :

Let Z_9 be the ring of integers modulo 9 and the (3) is not Π -pure, but GP – ideal. We now consider a necessary and sufficient condition for Π -pure to be pure ideal.

Proposition (2.2) :

Let R be right SXM ring . Then, every Π – pure ideal is pure ideal.

Proof : Let I be a right Π – pure ideal , and let $a \in I$. Then, there exists $b \in I$ and a positive integer n such that $a^n \neq 0$, and $a^n = a^n b$, this implies that $(1 - b) \in r (a^n) = r (a)$. (R is right SXM). Therefore, $(1 - b) \in r (a)$ and a = ab. So, I is pure ideal.

Proposition (2.3) :

Let R be a ring with every principal ideal is Π – pure ideal. Then,

1- Every non - zero divisor element of R is invertible .

2- J (R) is a nil ideal.

Proof: It proved the same method as [5, Proposition. 3.2.6].

3. The Connection Between II–Pure Ideals and Other Rings

In this section, we study the connection between rings whose every principal ideal is Π – pure and strongly Π – regular rings and other rings .

Proposition (3.1) :

Let R be a ring such that every principal left ideal is right Π – pure . Then, L (aⁿ) = L (aⁿ⁺¹) for every $a \in R$ and for some a positive integer n .

Proof :

Let $a\in I$. Then, there exists $b\in I$, and a positive integer n , such that $a^n\neq 0$ and $a^n=a^n\,b$ where, b=ax for some $x\in R$.

Therefore $a^n = a^{n+1} x$. Let $y \in L(a^{n+1})$, $y a^{n+1} = 0$, then $y(a^{n+1} x) = 0$ So $ya^n = 0$ and $y \in L(a^n)$. Therefore, $L(a^{n+1}) \subseteq L(a^n)$. Clearly

 $L(a^n) \subseteq L(a^{n+1})$. So, $L(a^n) = L(a^{n+1})$.

Following [3] , a ring R is called directly finite if ab = 1 implies ba = 1 for all a , $b \in R$.

As a parallel result to [3, Proposition 2.1.13], the following result was obtained.

Proposition (3.2) :

Let R be a ring with every principal right ideal is $\Pi-\text{pure}$. Then, R is directly finite .

Proof:

Let x, $y \in R$ such that xy = 1. It is clear that $x^n y^n = 1$ and $x^{n+1} y^{n+1} = 1$ multiple by y^{n+1} . So $y^{n+1} x^{n+1} y^{n+1} = y^{n+1}$, and $(1 - y^{n+1} x^{n+1}) \in L(y^{n+1}) = L(y^n)$ (Proposition 3.1). Hence, $y^n = y^{n+1} x^{n+1} y^n = (y^{n+1} x) (x^n y^n) = y^{n+1} x$ Now, $yx = (x^n y^n) yx = x^n (y^{n+1} x) = x^n y^n = 1$.

Theorem (3.3) :

Let R be a ring with every principal right ideal is right Π – pure . Then, R is strongly Π – regular .

Proof :

For any $a\in R$, aR is Π – pure . Since $a\in aR.$ There exists $b\in R$ and a positive integer n such that $a^n\neq 0$,

and $a^n = a^{n+1} x$ for some x in R

$$= a^{n+1} x a^{n+2} x^2 = \dots a^{2n} x^n = a^{2n} y$$

Therefore, R is Strongly Π – regular.

Aright R – modulo M is said to be YJ – injective [9], if for any $0 \neq a \in R$, there exists appositive integer n such that $a^n \neq 0$ and any right R – homomorphism. From a^n R into M, extends to one from R into M.

A ring R is called a right YJ – injective ring, if R is YJ – injective ring.

Proposition (3.4) : [8]

Let R be a quasi ZI ring . If every simple singular right R - modulo is YJ - injective . Then ,

1- R is reduced.

2- I + r (a) = R for any non - zero ideal I of R and every $a \in I$.

Theorem (3.5) :

Let R be a quasi ZI – ring . If every simple singular right R – modulo is YJ – injective . Then, every ideal of R is right $\,\Pi-$ pure .

Proof :

From Proposition (3.4), I + r(a) = R for every non - zero ideal I of R, and $a \in R$ So, b + d = 1, $b \in I$, $d \in r(a)$, ab + ad = a. Therefore, ab = a, and $a^n b = a^n$ for some positive integer n and $a^n \neq 0$. So, I is Π – pure.

<u>REFERENCES</u>

- [1] Al- Ezeh, H., (1989), "Pure ideals in commutative reduced Gelfand rings with Unitry", Arch. Math., Vol. 53, 266-269.
- [2] Al- Ezeh, H., (1998), "The pure spectrum PF rings" comm. Math Univ. s. p. vol. 37, No. 2, 18-29.
- [3] Al- Kouri , M . R ., (2000) , "On strongly Π– regular Rings", ph . D . thesis Mosul of University .
- [4] Field house D, J., (1969), "Pure theories", Math. Ann. 184, 1-18.
- [5] Mahmood, R. D., (2000), "On pure Ideals and pure Submodules", ph. D. thesis Mosul of University.
- [6] Shuker, N. H. and Mahmood, R. D. (2000), "On generalization of pure ideals" J. Edu and Sci. Vol. 48, 86-90.
- [7] Wei, J. c. (2007), "On Simple Singular YJ injective modules" Southeast Asian Bu. of Math. Vol. 31, 1009-1018.
- [8] Yin , X . B ., Wang , R . and Long , X ., (2011) , "The non Singularity and regularity of GP - V - rings" , J . of Math . B . and E . Vol . 31 , No . 6 , 1004-1008 .
- [9] Yue chi Ming, R. (1997) "Anote of YJ injectivity", Dem. Math. xxx (3) 31-37