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ABSTRACT

In this paper, numerical techniques based on the wavelets methods are proposed
for the numerical solution of non-linear two-dimensional BBM-BBM system and we
compared between them. Two methods used in numerical solutions, are the Haar
wavelets and Legendre wavelets methods.In addition, we derived formulas of integrals
for Legendre wavelets analytically. Its efficiency is tested by solving an example for
which the exact solution is known. The accuracy of the numerical solutions is quite high
even if the number of calculation points is small, by increasing the number of
collocation points, the error of the solution rapidly decreases. We have found that the
Legendre wavelets method is better and closer to the exact solution than the Haar
wavelets method.
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1.Introduction

Boussinesq developed the original formulation of the governing equations for a
free surface flow, which included the effects of surface waves, but in which the vertical
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dimension was eliminated. The formulation was in terms of the bottom velocity and was
restricted to simulating waves moving over bathymetry with a flat bottom. The
governing equations consist of one continuity equation and two momentum equations (
in x and y directions ). The governing equations were then called as Boussinesq
equations [13].

Hmidi and Keraani [10] are proved the global well-posedness of the two-dimensional
Boussinesq system with zero diffusivity for rough initial data. Ataie.andNajafi [3] are
studied a higher-order two-dimensional Boussinesq wave model and they used the finite
difference method in higher-order scheme for time and space in derived equations. Chen
and Goubet [6] obtained the long time asymptotes of the solutions for a long class of the
two-dimensional dissipative Boussinesq system which is model surface waves in three
space dimensions. Also Chen [7] studied a highly efficient and accurate numerical
scheme for initial and boundary value problems of a two-dimensional
Boussinesqgsystem. Mitsotakis [14] is derived and solved numerically by the standard
Galerkin-finite element method the Boussinesq system in two space dimensions. Mera
[13] focuses on the development of a set of two-dimensional boundary conditions for
specific governing equations which is existing Boussinesq type equations. Sadaka [15]
is using the FreeFem++ code to solve a three-parameter family of Boussinesq type
systems in two space dimensions which approximate the three-dimensional Euler
equations over an horizontal bottom.

Many authors have studied the solution for partial differential equations by using
the Haar wavelets method.

AL-Rawi and Qasem [2] found the numerical solution for non-linear Murray
equation by the operational matrices of Haar wavelet method and compared the results
of this method with the exact solution, they transformed the non-linear Murray equation
into a linear algebraic equations that can be solved by Gauss-Jordan method.
Hariharanand Kannan [9] develop an accurate and efficient Haar
transformorHaarwaveletmethodforsomeofthewell-knownnon-linear parabolic
partialdifferentialequations. The equationsincludetheNowell-whiteheadequation, Cahn-
Allenequation,FitzHugh-Nagumoequation, and other equations.

Lepik, U., [11] applied the two-dimensional Haar wavelets for solution of the
partial differential equations. To demonstrate the efficiency of the method, two test
problems are discussed. Celik, I. [5] studied an efficient numerical method for solution
of non-linear generalized Burgers-Huxley equation based on the Haar wavelets
approach, approximate solutions are compared with exact solutions.

Liu, N. and Lin, E-B. [12] introduced an orthogonal basis on the square [-1,-1]x[-
1,1] generated by Legendre polynomials on [-1,1], and defined an associated expression
for the expansion of a Riemann integrable function. They described some properties and
derived a uniform convergence theorem. Abbas, Z. et al. [1] used the continuous
Legendre multi-wavelets on the interval [0,1] to solve Fredholm integral equations of
the second kind. To do so, they reduced the solution of Fredholm integral equation to
the algebraic equations.

In this paper, we study a comparision between Haar wavelets and Legendre
wavelets for non-linear two-dimensional BBM-BBM system.

We organized our paper as follows. In section 2, the Haarwavelet is introduced
and an operational matrix and function approximation is presented. Section 3 Legendre
wavelet approximation is presented. Section 4 we explain the 2D BBM-BBM system
and we use Haar wavelets to solve this system. Section 5 numerical solution by

48



A Comparative Study of Wavelets Methods for ...

Legendre wavelets is presented. Section 6 numerical results are presented. Concluding
remarks are given in section 7.

2. Haarwavelets

As a powerful mathematical tool, Wavelet analysis has been widely used in image
digital processing, quantum field theory, numerical analysis and many other fields in
recent years.

The Haar functions are an orthogonal family of switched rectangular waveforms
where amplitudes can differ from one function to another. They are defined in the
interval [0,1) by [9]:

k k+1/2
1 —<X<
m m
. k+1/2 _ _k+1 ...(1)
h(x)= m m
0 otherwise in [0,

The integer m= 2, ]=012,...,J indicates the level of the wavelet;
k=0,1,2,...,m-1 is the translation parameter. Maximal level of resolution is J. The indix i
is calculated according to the formula i=m+k+1; in the case of minimal values. m=1,k=0
we have i=2, the maximal value of i is i=2M =27 |t is assumed that the value i=1

corresponds to the scaling function for which h,(x) =1 in[0,1]. Let us define the
collocation points X, =(1-0.5)/2M, (1=12,..,2M)and discredits the

Haarfunction h;(X); in this way, we get the coefficient matrix H(i,1) = (h.(x,)),

which has the dimension 2M*2M.
The operational matrix of integration P, which is a 2M square matrix, is defined by
the equation: [11]

P00 = [, () dx e
P =[P (dx ,  v=12.. .(3)
0
Lipek, U. found the general form of v-times of integrals [11]:
0 for x < &,(i)
%[X—eﬂ(i)lv for x [£, (), &, (]
e %{[x—fl(i)]“ ~2x-& 0] for x €[, (1), & (0] .(4)
%{[x—csl(i)]” k- &M +x-&O)} for x> &)
suchthat £,() = <, &,() =22 g, = <22

Integrate equation (3) from (0) to (1), we get the following notation:

I:zi,v = j. I:)i,v (X) dX = Pi,v+1(1) (5)
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%(1—05)2 for x e[, B)
! —l( —-1)° for x e[, 7)
Ru() =P, =1am’ 2" 7 ...(6)
1
an? for x e[y.,))
0 elsewhere

Any square integrable function u(x) in the interval [0,1) can be expanded by a
Haar series of infinite terms [9]:

u(x)=>ch(x) iefojuN (7
i=0
Where, the Haar coefficients c, are determined as follows:

Cy :ju(x)ho(x)dx , C, :leu(x)hi (x)dx

...(8)
i=2+k, j>0, 0<k<2', xe[01)

Usually, the series expansion of (7) contains infinite terms for a general smooth
function u(x). However, If u(x) is approximated as piecewise constant during each
subinterval, then u(x) will be terminated at finite m terms, that is:

m-1
u(x) = Zci h; (x) = C(Tm) hmy (X)
i=0
Where, the coefficients c(Tm) and the Haar function vector h,, (x) are defined as:

cbzh,q,m,%JAmmMﬂ4Mﬁmm,,MJMT ......
Where, T is referring to the transpose.

5.No. Haar functions | Integrals of Haar functions
1. ; :
W) o
o t . — t
X y 1 o= . 1
2 ' ot - T
-1 ol B S |
1
. h2it) : _ i
3. . —I = - . .
1
h3g [ 1
4 1] t fufle] e
. ; ] ) . —
1
1
i haE) . ",
3. y :I.I!i e ) ¢
1
1
h&it
6 v —t .
) . :|.|_E e t
1
haty
v “ 1 ;
?- -1 l_l a1 1 - t
1
- 1
LU 1
8 4 L] a1z o~

Fig.1. First eight Haar functions
Similarly, a two dimensional function u(x, y) which is square integrable in the interval
0<x<1 and 0<y<1can beexpanded into Haar series by [16]:
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m-1m-1

ux,y)=>.2°C;

i=0 j=

i () h;(y)

...(9)

Where the coefficient matrix C, ; and the Haar function h; (x) and h; (y) are defined as:

CO,O CO,l ......

Cl,O Cl,l ......

C= . L
_Cm—l,O Cogg =0 o

CO,m—l

h0,0

_hm—l,O

hO,l

hm—l,l

Equation (9) can be written into the discrete form by:

ux,y)=HT(x)-C-H(y) ...(10)

Now, integrate with respect to variable (x) of u(x,y) by using equations (2) and (3), we
get [16]:

ju(x, y) dx:Jx'HT(x)C-H(y) dx

=PT(x) -C-H(y) ..(11)
also
y y
Julx yydy=[HT(x)-C-H(y)dy
0 0
(12
=HT(X) -C-P,(y) (12)
performing the double integration, we obtain:
Yy X
[Jutxy) dxdy =RL(x)-C - P,(y)
00 ...(13)
3. Legendre Wavelets
Legendre ~ wavelets . (t)=w(k,Ai,mt) have four arguments ;

A=2n-1,n=1234,.,2" | k can assume any positive integer, m is the order for

legendre polynomials and t is the normalized time. They are defined on the interval
[0,1) by:[1,12]

[ 1.} . A—1 A+1
0 otherwise
where m=0,1,...,M-1. in equation (1), the coefficient 1 is for

m +

orthonormality. [1]

Here Lm(t) are the well-known legendre polynomials of the order m, which are
orthogonal to the weight function w(t)=1 and satisfy the following recursive formula:
L) =1
L (t)=t
: ...(15)
2m+1

m
s =2 e, 0-( ) L

such that the set of legendre wavelets are an orthonormal set.

m=123,...
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Any function f (t) e L*[0,1) may be expanded as:
FO) =22 ConWan® ...(16)

n=1 m=0
where C, = = (f (t)’l//n,m(t))’ in which (.,.) denotes the inner product.
If the infinite series in (16) are truncated, then (16) can be written as:

2t m-1
f®=22 Con¥an®=CTy(®) ..(17)
n=1l m=0
where C and w(t) are 2 M %1 matrices given by:
C =[CposCrremns Copar Coi01 Cogrmnmvnnn Copet g emnnnn Copen lJT

similarly, any function u(x, y) € L?[0,1) x[0,1) may be expanded as:

2T M-12¥t M1

U(X! y) = z Z Z Z Cn,m,n’,m’ l//n,m (X) l//n’,m' (y) .- (18)

n=1 m=0 n'=1 m'=0

where
11

Cn,m,n’,m’ = J.J-U(X, y) l//n,m,n',m' (X! y) dX dy
00

n=123..,2"" ,n"=1234,..,2"'m=01.2,...,M -1 ,m =012,..,M'-1
k and k' are positive integers.

For convenience equation (18) can be re-written as follows: [1]
Zk—lM 2k'71Mr

U Y) = D0 e Wy 0¥y, (V) ...(19)

= 1=
Now, we derive the operational matrix of integration P, which is a (2** M x1)
square matrix is defined by the equation:

P.() = [w ) dt’ ...(20)

Pi,v+1(t) :j-Pi,v(tl) dt’ (21)

These integrals can be evaluated by using equation (14), we get:

t 1 X AN 2n -2 2n
P, (t)= an'z‘/m+§22 L, (2t~ n)dt Sost<p .(22)
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0<t 2n;2
2
i 5 2n -2 2n
P,(t)= =22 dt’ <t<=-
0 W,/ > ) st
k t 1 K
I\/ 52 A)(dt')’ +
2n2n 2n
—<t<1
2n 2
2n 1 E Kagr A '
- il t'—nA)dt
(t i lnj_z,/m+22 L, (2"t'—n)d 23)
2k

We also introduce the following notation:
1

D, (t) =[P, () dt’ ..24)
0

4. Mathematical Model

We consider the non-linear two-dimensional coupled Benjamin-Bona-Mahony
(BBM-BBM) system which has the form [8,15]:
n.+VV+V.pV-bAn, =0

...(25)
V, +V n+%v V[*—d AV, =0
for X, =[x.,y.]€ Q,t. >0, ,where Q is a bounded open set in IR?, and b, d > 0 and the
initial data:

n(X.,0)=n,(X.) , V(X,,0)=V,(X.) t.20 , X.eoQ ...(26)
and zero Dirichlet homogenous boundary conditions [8,15]:
n(X.t)=0 , V(X,t)=0 .20 , X.eoQ ...(27)

This system is of type of Boussinesq systems derived as approximations to the
three-dimensional Euler equations describing irrotational free surface flow of an ideal
fluid over a horizontal bottom. The independent variables X. =[X.,Y.] and t represent

the position and elapsed time, respectively, 7(X.,t.) is proportional to the deviation of
the free surface from its rest, while V (X.,t.) = (u(X.,t.),v(X.,t.)) is proportional to

the horizontal velocity of the fluid at some height. Specifically, we have
bod =12 -1 ok <92<1 the so-called BBM-BBM system corresponds to

2_2 g1
=3 b=d _6 [15].
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Since, the Haar and Legendre wavelets are defined for X [0,1], we must first
normalize of the system (25) with regard toX. =[X.,y.]Jand the domain

Q= [ax b, ]x [ay b, J we change the variables:

x=Li(x*—aX), t=t.-0, L=Db, —a,

X

1
y=L—(y* -a,), t=t.-0 L=b,—a,
y
Then, the system (25) becomes:

77+1u+ v+177u+177u+177v+177v bn bn =0
t T YUx T Vy T x T 1x T y T Uy VT T xxt T T2 Hyyt T
L "L ] L, L, L, L2 L
1 1 1 d d (28)
ul+_nx+_uux+_vvx__zuxxt__zuyytzo
Lx Lx Lx Lx y
vV, +—n, +—Uu, + ! vV d d =0
t y T y 77 VVy T Vxxt T T2 Vyyt
y y y Li Lf’

With the initial and boundary conditions:
n(X,0)=7,(X) , V(X,00=V,(X) t =0 , XeoQ ..(Q9)
n(X,t)=0 , V(X,t)=0 t >0 , XeaQ ...(30)

The solution by the Haar wavelets method is started by dividing the interval (0,T]
into N equal parts of length At=T /N and denoting to t, = (S—1)At s=1,2,...,N.

We assume that  77,,,, (X, ¥st) U, (XY, t)and Vv, . (X, y,t)can be

expanded in terms of Haar wavelets as follows:
2M, 2M,

77x><yyt (X’ y1t) = Z Z Eml,m2 hml (X) hm2 (y)

m,=1m, =1
2M, 2M,

uxxyyt (X1 y,t) = Z Zcml,m2 hm1 (X) hm2 (y)

m,=1m, =1
2M, 2M,

Vxxyyt (Xf y!t) = Z Z Dml,m2 hm1 (X) hm2 (y)

m,=1m; =1
where the elements E,, . ,C_ . and D,, ., are constants in the subinterval
te (ts 'ts+1] .

Assume that m;, =m, =m , above equations can be written into the matrices
form by:

nxxyyt(xi y’t): H;(X) Em Hm(y) te(tslts+1] (313)
Uyt 6 YD) =HL () C H () te(tt,,] ...(31b)
Vxxyyt (X, y,t) = Hr-; (X) Dm Hm (y) te (ts ’ts+l] ---(31(:)

wewell focus on the function u(x, y,t ) and the functions 7(x, y,t ) and v(x, y,t ) are
computed by the same way.
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Integrating (31b) with respect to (t) from (t;) to (t) and double integrating with

respectto (x) from (0) to (x), and double integrating with respect to (y) from (0)
to (y) ,we obtain:

uxxyy(x’ y’t) = (t _ts) Hr-r: (X) C:m Hm(y) +uxxyy(X’ y,ts) (32)
Uyyy (X, Y, 0) = (t=t) HE (X) C Po(Y) + Uy, (X, Y1)

+ [uxxy (x,0,t) —U,,, (x,o,ts)] ...(33)
Uy, (X,y,t) =(t-t,) H;(x) C. P (y)+U,, (X Y.t,)
+Y [uxxy (X,O,t) _Uxxy (X,O,ts)]+ [uxx (X,O,t) —u,, (X,O,ts)](34)

U, (%, y,8) = (t=1,) P10 Cyy B, (Y) +U, (X, Y,t,)
+y [uxy (x,0,t) —u,, (x,O,tS)]— y [uXy (0,0,t) —u,, (0,0,ts)]
+ [uX (x,0,t) —u, (x,O,ts)]+ [uX ©O,y,t)—u, (O, y,ts)]
—[u, ©0,ty-u, (0,0.t,)]

u(x,y,t) = (t—t,) PL(x) C,, P, (y) +u(x,y,t,)
+y [uy (x,0,t)-u, (x,O,tS)]— y [uy (0,0,t) —u, (0,0,ts)]
— x[uX (0,0,t) —u, (0,0,ts)]+x [uX ©O,y,t)—u, (O, y,ts)]
—X y[uXy (0.0,t)—u,, (0,0,ts)]+ [u(x,0,t) —u(x,0,t,)] ---36)
+([u(0,y,t)—u(0,y,t.)]-[u(0,0,t) —u(0,0,t,)]

We can reduce the order of boundary conditions used in equations (34)-(36) by

using the boundary condition at x=1 and notation (6) instead of the derivatives
u, (0,y,t),u,(0,v,t,),u,(0,0,t)and u,(0,0,t,).

The values of unknown term u,(0,vy,t),u,(0,y,t,),u,(0,0,t)and u,(0,0,t,)can

be calculated by integrating equation (36) from 0 to 1 which is given by:
lu, @ y,)-u, 0,y.t)|-[u, (0,0,) —u, (0,0,t,)]=
—(t-t) PLM C, P, (N +[u@y.) —u@ y.t,)]
—ylu, @0,y —u, @0,t)]+ v [u, (0.0.t)—u, (0.0,t,)]
+ylu,, (0.0,t)-u,, (0,0.t,)]-[u@o.-u@ot,)] 67
—[u(0,y,t) —u(0, y,t,)]+[u(0,0,t) —u(0,0,t,)]
Such that P ,(1) is defined in equation (6).By substituting equation (37) in
equation (36), we get:
u(x, Y.) = (t—t,) PL(x) Cp P, () +U(x, y.t,) + y [u, (x0,t) —u, (x0,t,)]
—y[u, (0,0,t)—u, (0,0,t,)]+ [u(x.0,t) —u(x,0.,)]
+[u(,y,t) ~u(0,y,t,)]-[u(0,0,t) ~u(0,0,t,)] ...(39)
+x { —(t-t)RL(N)C, P, () +[u@y,) —u@ y.t,)]
—yu, @0, t) —u, @0,t)]+ y[u, 0.0,t) —u, (0,0,t,)]

~[u@0,t) —u@o,t,)]-[u(0, y,t) ~u(0, y,t,)]+[u(0,0,t) ~u(0,0,t,)] }
Similarly, and by using the boundary condition at y=1 and notation (6), we get:

..(35)
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lu, (x,0,t) —u, (x,0,t,) |- |u, (0,0,t) —u, (0,0,t,)]
—x[u, @0,t)—u, @0o,t,)]+ x[u, (0,0,)—u, (0,0,t,)]=
—(t—t,) PL(0) C, R, () +[u(xLt) —u(x1t,)]
—[u(x,0,t) —u(x,0,t)]-[u(OLt) —u(O.L.t,)]+[u(0,0,t) ~u(0.0,t,)] .. (40)
+X (t—t) RL() Cp Rz (Y) = x[u@Lt) —u(LLt,)]
+x[u(1,0,t) —u(L,0,t,)]+ x[u(01,t) —u(01,t,)]— x [u(0,0,t) —u(0,0,t,)]
By substituting equation (40) in equation (39), we get:
u(x, y,t) = (t=t;) BL(x) C,, P (y) +U(x, y,t,) + [u(x,0,t) ~u(x,0,t,)]
+[u(0,y,t)-u(0,y,t,)]-[u(0,0,t) —u(0,0,t,)]
—Xx(t—t,) R, () C,, P, (¥) +x[u@ y,t) —u(t, y,t,)]
—x[u@0,t) —u@,0,t,)]- x[u(0, y,t) —u(0, y,t,) ]+ x [u(0,0,t) —u(0,0,t,)]
—Y(t=t) P30 Cp Ry (V) +y[u(xLt) —u(xLt,)] (4
— y[u(x,0,t) —u(x,0,t,)]- y[u(0,1,t) —u(01,t,)]+ y [u(0,0,t) —u(0,0,t,)]
+Xy (t—t,) R (X) Cp R (¥) —xy [u@Lt) —u@it,)]
+xy [u@0,t) —u@0,t,)]+xy [u(0Lt) —u(01t,)]
—xy [u(0,0,t) —u(0,0,t,)]
Now, the derivatives of equation (41) with respect (t),(x) and (y), we get:
u (%, y,8) = RL(¥) C,, P, (¥) +u, (0, y,t) +u,(x,0,) =u, (0,0,1)
—X R1(X) Cpy P o (¥) + XU, (L Y1)
—-xu,(@,0,t) - xu, (0, y,t) + xu, (0,0,t)
—y PL() Cpy Ri(¥) + yu (x1,1)
-yu,(01t) - yu,(x,0,t) + yu,(0,0,t)
+ XYy RiT,l(X) CnRi.(Y)—xyu (111)
+Xxyu,(10,t)+xyu,(0,1,t) —xyu,(0,0,t)
U, (%, ¥, 1) = (t—t,) PL(X) Cp, P, (y) +U, (X, Y, 1) +[u, (x,0,t) —u, (x,0,t,)]
—(t—t,) RL(0) C, P, () +[u@ y,) —u@ y.t,)]
~[u@o,t) —u(1,0,t,)]-[u(0, y,t) —u(0, y,t, )]+ [u(0,0,t) —u(0,0,t,)]
—y(t—t) PL(¥) C, R, () + y[u, (x1t) —u, (x.Lt,)] ..(43)
— y[u, (x,0,t) —u,(x,0,t,)]
+y (t—t) R, (X) C, R, () -y [u@Lt) —u(Lt,)]
+y [u@o,t) —u@o,t)]+y [u(Lt)—u@©Lt,)]
—y [u(0,0,t) —u(0,0,t,)]
U (%, Y5 1) = (E =) Hp (%) C P (V) + Uy (X Y0t)
U, (0. —u, (x0.t)]- y (t—t,) HI (0 C, R, (¥)
+y [uXX (xL,t)—u,, (x,l,ts)]— y [uXX (x,0,t) —u,, (x,0,t, )]

...(42)

...(44)
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U (%, Y, 1) = Hp (%) €, P (y) =y Hi (%) C Ry ()
U (00.0]+ y U (XL — U, (x,0,0)] ...(45)
Similarly, we find u,,u, ,and u ,. By substituting equations (42)-(45) in system
(28), we get:
PL(X) Ey Po(y) =X RL(X) E, P, (Y) =y PL(X) E, Ris(Y)

+XYRLOOE, Ri,l(y>—(%JH;<x> E, .z(y)+(nyH ) En R _ (460)

yyt*

(LbJP.z(x)E H <y)+(fJxRL(x)E Ha () =G,

PL()Cr Po() =X RL(X)Cp P (Y)— Y RL(X) Cpy Ry (Y)

XY RL(O) Cy Ry () - (dJH xC, .z(y){i]yH (9C0 Ru()_ 451

L2
Pi,Tz(X) D, P.(y) - XRlTl(X) D, P (y) - ypuTz(X)D Ri.(Y)

Xy RL0O Dy Riu(y) - [d]H ) D, .z(y)+(nyH (D0 RuY) 460

(d]m(x)c H (y){ ]xRL(xmmHm(y):Gz

X

(SJP.E(X)D H (y>+( JxRL<x)DmHm(y)=G3

y

such that:

G, :_[L%]“X(X' y.t;) —[L%va(x, an _(L%j”(x' Y ) U (X, v, )

- (LLJUX (X, y,ts) U(X, y,ts) - [LLJU(X! y’ts) Vy (X, yits) - (Li]ny (X’ y’ts) V(X’ y’ts)

+(x=D7,0,y,t) +(y -1 7,(x0,t) + Q- x -y +xy) ,(0,0,1)) — x7, (L, y, 1)
+ (X_ X y) P (1!Ovt) - y77t(X111t) + (y —X y) R (0’1! t) +Xyn, (let)

+ EJ( y)nm(xot)+[fjynm(xlt)

X

: L'ZJ(l x)nyyt(Oyt){Lb

y y

JXnyyt(l y.t)

G,=- 1j;yx(x, y,ts)—(l_lju(X, y,to)u (X y’ts)_(l_l

L

X

jV(x, Y t) v, (X Y,t)

+(X-Du, Oy, t)+(y-Du,(x,0,t)+ (- x—y+xy)u,(0,0,t)) — xu, (1, v,t)
+(X=xy) u, L0, t) - yu, (x,Lt) + (y —xy) u, (0.1,t) + x yu, (11,t)

d d

+(Lij(1_ y)uxxt (X,O,t) + (LiJ y uxxt (Xllyt)
d d

+ (Lij(l_ X)uyyt ©O,y,t) + [LZyJ XUy @y, t)
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1 1 1
G3 = _[L_y]ny(xv y!ts) _(L_y]u(x! y’ts) uy (X! y’ts) _[L_yJV(X! y’ts) Vy (X! y’ts)

+(X-D)v,O,y, ) +(y-Dv,(x,0,t) + @— x—y+xy)v,(0,0,t)) — xv, (L y,t)
+(X=xy) v,@0,t) —yv,(x,t) + (y—xy) v, (0., t) + x yv, (L1 t)

(LZ j(l Y )Vt (%,0,) + (f jyvm (x,1,t)

+ (%J(l_ X)Vyyt (0! yvt) + {%] vayt (1, Y, t)

We can write system (46) by the form:

{Pi,z(x) X RL(x)—(Lbz] H;(x)}- €, {Pi,z(y)— y Ri@(y)—[fz} Hm<y)}

( b2 ]H OE. H(3) -G, ...(47a)
L2 L2
{P&(x) ~X RL(x)—(fz] H;<x>} .c, {Pi,z(y)—y Ri,l(y>—[f'2J Hm<y)]
X y
[ L JH e e .(47b)
L2 L2
{P& ()~ X RL(x)—[fzJ H;(x)] D, -{Pi,z(y)— y Ri,l(y)—[Ldzj H, (y)}
X y . (470)

d2
—[Lz LZJH:n(X) D, Hn(¥) =G4
x 7y

By multiplying |:pJ2 (x) = X RY, (x) _(Lsz H;(X)} to the right hand side and [Hm (y)]fl to

the left hand side of each term in equation (47a), we obtain:

_{Pi’Tz(x)—xRifl(x)—(fsz;(x)} .[LbL JH x)-E,

+E, -{Pﬁ,z(y)—yRu(y) [Lsz H (y)} LNOIE ...(48a)

{PJZ (x) —x Ril(x)—[fzj H;(x)} -G, -[H,(n)]* =0

X

Also, we get:

_|:Pi,T2(X)_XRI1(X)_(EJH;(X):| [LS LZJH (x)-C,

+C,, |:P|2(Y) YR, (¥)- [L ]H (y)} H, W] ...(48b)

{PLTZ (X) —x R, (x)— [Ldz

X

jH;(x)} G, [H, (] =0
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_|:|DiT2(X)_X RL(@—(E]H;(X)} '(del_ JH (x)- Dy,

+D, {P.z(y) YR, (y)- [LZ}H <y)} H, W]

...(48¢)

{P.E(x) X R, (%) - [ ]H (x)} G, [H,(N]" =

The system (48) is the Lyapunov matrix equations which can be solved by one of
the packages [4] or by using MATLAB Language:
X=Lyap(A,B,C)

To solve the equation AX+XB+C=0 ,such that the matrices A,B and C must have
compatible dimensions but need not be square.Finally, The solution of the problem is
found according to (41).

Now, we use the Legendre wavelets to solve the system, that is, we can replace the
Legendre wavelets instead of Haar wavelets in equations (41)-(45) and by substituting
in the system (28), we obtain:

{PJZ () —x RiTl(x)—[Lbz lemm} - (Lzb E Jw:,m () -E,

+E, -{Pi,z(y)— y Rm(y)—{fzJ wn,m<y>} 2N ...(492)

—l:Pi,Tz () —x Rfl(x)—[l_sz l//lm(x)} Gy [y ]* =

Also
T _ T h . d? T .
_|:Pi,2 (X) X R (X) [Lz J Yiam (X):l ( Li Lzy Jl//n,m (X) Cm
+C, -{Pi,z(y)— y Ri,l(y)—(fzj wn,m(y)} 2N .-(49b)

_|:PiT2 (X) —X R (X) (L Jl/ln m(x):| . Gz : [l//n,m (y)]71 =

_|:PiT2(X)_XR - (L Jl//nm( )} ~[L3L2jwlm(x)-Dm

+D, {Piyz (y)-y Riyl(y)—[fzj Vom (y)} 2N ...(49¢)

_l:PiTz(X)_XR (x) - ( jl//nm(x)} G, ] =0

X

such that , . (y), P, (x) and R/, (x) are matrices defined in equations (14), (23) and
(24), respectively.

5. Numerical Experiments

In this section, we present the results of two-dimensional BBM-BBM system (28)
which solved numerically by using the wavelets technique.
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In the first example, we took zero Dirichlet homogenous boundary conditions for
n,uand v on the whole boundary in the square [0,1]X [0,1] with exacts solutions: [15]

n(x y,t) =e'.sin(zx).(y -1).y
u(x, y,t) =e'. x.cos(3ax/2).sin(zy)
v(x,y,t) =e'.sin(zx).cos(3zy/2).y
Then, we compute in table (1) and figure (2), the corresponding right hand side in

order to obtain the L® norm of the error between the exact solution and the numerical
solution by using the Haar wavelets and Legendre wavelets, respectively.

Table (1) Compared between the Haar wavelets method and Legendre wavelets method
whenb=1/6,d =1/6,L =1, At =0.0001

The method k’ M Mex =T 12 Ug —U 12 Vey —V 12

Haar 2M=8 1.4264e-007 1.4810e-006 1.4828e-006
Legendre k=2, M=4 5.0914e-009 1.0131e-007 1.0032e-007
Haar 2M=16 2.6805e-008 3.8652e-007 3.8842e-007

1.2779e-008 8.4647e-009 6.6351e-009

Legendre k 8
k =4 1.2180e-008 1.0966e-008 1.2176e-008

Legendre 3, M
Haar 2M=32 3.6457e-009 9.1942¢-008 9.3859e-008
Legendre k=3, M=8 1.2779e-008 8.4559¢e-009 6.6241e-009

Legendre wavelets

error
error

Figure (2)The error o, at t = 0.001by using 2D wavelets methods.

In the second example, we consider the numerical solution of 2D BBM-BBM
system (28) with initial and homogeneous Dirichlet boundary conditions [15]:

Mo(6 ) =026 v y) =0

n(X,)=0 , V(X,)=0 , XeaQ t>0

on the square [-40,40]X[-40,40] . Figure (3) shows the generation and propagation of
Tsunami wave n—wave by the Haar wavelets method when the step of space

2M =2’* =16 and time step At =0.1.
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0.02 0.01

< 0.01 < 0.005
0 0

40 40

y -40 -40 7

Figure (3a) the generation of tsunami wave 7 —wave by 2D Haar wavelets method when
2M=16, b=1/6,d =1/6,L, =L, =80, At=0.1.

t=25 t=30

Figure (3b) the generation of tsunami wave n —wave by 2D Haar wavelets method when
2M=16, b=1/6,d =1/6,L, =L, =80, At=0.1.
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6. Conclusions

In this paper, we develop an accurate and efficient the wavelets methods for
solving non-linear two-dimensional BBM-BBM system by convert the partial
differential equation into a simple Lyapunov matrix equation.

The benefits of the wavelets approach are sparse matrices of representation, fast
transformation and possibility of implementation of fast algorithms. It’s worth
mentioning that the wavelets solution provides excellent results even for small values of
(2M) as noted in table (1). Also, when 2M=64 , 2M=128 , ..., we can obtain the results
closer to the exact values. We have also been reducing the boundary conditions used in
the solution by using the notation (6) when x=L respect to space and the results were a
high resolution. Matlab language is used in finding the results and figure draw, its
characteristic at high accuracy and large speed.

Also, we compared between the wavelet methods in the numerical solution for
non-linear BBM-BBM system and we have found that the Legendre wavelets method is
better and closer to the exact solution of the Haar wavelets method as shown in table

(D).
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