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ABSTRACT

In this paper, three efficient Scaled Nonlinear Conjugate Gradient (CG) methods
for solving unconstrained optimization problems are proposed. These algorithms are
implemented with inexact line searches (ILS). Powell restarting criterion is applied to
all these algorithms and gives dramatic saving in the computational efficiency. The
global convergence results of these algorithms are established under the Strong Wolfe
line search condition. Numerical results show that our proposed CG-algorithms are
efficient and stationary by comparing with standard Fletcher-Reeves (FR); Polak-
Ribiere (PR) CG-algorithms, using 35-nonlinear test functions.
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1. Introduction
We consider the following unconstrained optimization problem:
min f(x), xeR" ..()
where f :R" — R is continuously differentiable and the gradient of f at x is denoted by

g(x) =Vf(x) is available. There are several kinds of numerical methods for solving

equation (1), which include the Steepest Descent (SD) method; Newton method; CG
and Quasi-Newton (QN) methods. Due to its simplicity and its very low memory
requirement, CG-method plays a very important role, especially when the scale is large;
the CG-method is very efficient. Let x, e R" be the initial guess of the solution of

problem (1). A nonlinear CG-method is usually designed by the iterative form:[1]
X =X + o d, ..(2)

where X, is the current iterate point, &, >0 is a step length which is determined by
some line search, and d, is the search direction defined by:
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-0, if k=0,
d, = _ ...(3)
-0, +4.4d,., if k>0,

where g,,, denotes g(X,,,) and S, is a parameter (0< S, <1). There are some well-

known formulas for S, which are given as follows[2]:

T
FR — gk+lgk+l

(Fletcher-Reeves (FR), 1964)

‘ ¢ 9y
Gy Vi
o ='(TL (Hestenes -Stiefel (HS), 1952)
de Y
Gy Vi
R (Polak- Ribiere (PR), 1969)
Oy 9k
T
= —gk”Tgk” (Fletcher (CD), 1987)
- dk 9,
9¢.a9
B = S (Dai-Yuan (DY), 1999)
dk yk
Y Y
= ﬁ (Al-Bayati & Al-Assady (BA1), 1986)
yTsk/ k
o= ﬁ (Al-Bayati & Al-Assady (BA2), 1986)
ykT yk
A = dkT yk (Al-Bayati & Al-Assady (BA3), 1986)
k Yk
where Yy, =9,,, —0,and || || stands for the Euclidean norm of vectors. Al-Bayati and

Al-Assady [3] investigated three classical CG-methods such that in numerator vy, y,
and three different well-known choices for denominator as follows:
(-d; 9., 9, 9, d, y,) respectively. In this paper, we have proposed three scaled CG-

methods which are based on Al-Bayati and Al-Assady 's CG-methods. Generally, in the
convergence analysis of CG-methods, one hopes the ILS, such as the Strong Wolfe
Conditions (SWC), which is showed as follows[16]:

e The Strong Wolfe line search is to findsuch that: &,
f(x, +,d,)< f(x)+0x9,d,
i 9(x, +a,d)|<-odig, .4

Ogégé, and 0<o<l1

This paper organized as follows: In the next section, New formulas for S, with

outline of our three new scaled CG-algorithms are presented. In Section 3, we have
analyzed the global convergence properties for uniformly convex and general functions
for the proposed new CG-methods. In Section 4, we have reported some numerical
comparisons against FRCG and PRCG-methods by using 35-test problems in the CUTE
[7] and general conclusions are given in Section 5.
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2. New formulas for g,

In this section, we have constructed three New Scaled CG-Methods with the
search direction d, , asin (3) but g, is derived by ideology treatment of Classical Al-

Bayati and Al-Assady (BA(1,2,3)) ‘s CG-methods respectively as showed in
introduction and we have explained the derivation only for Newl and others are
completed in same way as follows, we start from g, formula at which

BAL __ Yi Y
oAl - Zkk
- dk O«
We notice weaken this method in numerator then action some algebraic operation
and positing y, =9, — 9, ,we get
BAL __ y: (gk+1 B gk)
Gl = Tk Akl Sk
-d, g,
BA1 y: Oy — YI Oy
Al — 2k Tl Tk Tk
- d; Ok
Again we set y, =0,,, — 9, , getting
ot _ ka9 + 9 Ok — 2949,
A =
- d; g
Now, we suggest distribution parameters (u,v,w) on terms existing in numerator
and denominator. That is to obtaining on balance in terms after that in form g, .

newl u(||gk+l||2 +||gk||2) _2ng+1gk
K - T
_de Ok
In same manner we can constricted New?2 and News3 for the parameter g, thus:
u(lgs]” +loul) - 2979,

wlg, |
(9]’ +]9e]*) - 2var..9,
deT Yy

;O<u,v,w<1 ...(5)

ﬂnevﬁ _
K =

;0<u,v,w<1 ...(6)

ﬂ new3 __
" =

;0<u,v,w<1 ..(7)

2.1. Outline of the Three New Scaled CG-Algorithms
Stepl: (Initializing). Given an initial point x, € R" and positive parameters,
O<u,v,w<l , =02, 0<6<05andd<o<1. Set the initial search
direction d, =—g, and Letk =0.
Step2: (Termination Criterion). If |g,[ <&, then stop.
Step3: (Line search). Determine step length «, >0 satisfying the Strong Wolfe
Condition (4) with Acceleration scheme[5]: compute
z=X +ad, ,y,=0,-9,,.9, =Vf(2)
And Compute a, =, 9,d,, b, =—c, Yy, d, ,if b, %0, then compute:
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a . .
o = —b—k and update the variables as x,., = X, +@,«,d, ; otherwise update
k

the variables as x,,, =X, + o, d, .

Step4: (Finding the direction). Compute the new search direction
dyy =—0,. + S d, , where the scalar parameters g, are known in

(5), (6) and (7).
Step5: (Restart procedure ). If ‘nggk‘ > t//||gk+l||2, then go to Step (1) else

continue.(this is Powell restart).[14]
Step6: (Loop). Let k =k + 1 and go to Step (2).

3. Convergence Analysis.

Now, we have to prove the global convergence property of these three new CG-
algorithms under the condition that the following assumption is hold.
Assumption (H)
(1) Thelevel set S ={x:xeR", f(x) < f(x,)}is bounded, where X, is the starting
point.
(i) In aneighborhood Q of S, f is continuously differentiable and its gradient g is
Lipschitz continuously, namely, there exists a constant L > Osuch that

19(9) -9x ) <L x-x [l ¥X x, € ..-(8)
Obviously, from the Assumption (H, i) there exists a positive constant D such that:
D = max{|x — x|, VX, X, € S} ...(9)

where D is the diameter of Q. From Assumption (H, ii), we also know that there exists a
constantI” > 0, such that:

la(x)|<»,vxeSs ...(10)
On some studies of the CG-methods, the sufficient descent or descent condition plays an
important role, but unfortunately some times, this condition is hard to hold.[16]

3.1. Theorem Suppose that Assumption (H) holds and satisfies the SWC (4). consider
any CG-method (2)-(3) with scalar parameter S, is defined in (5)-(7) respectively are
satisfies the Sufficient Descent condition with:

2Voy +Uoc + U

c, ={a- =% )3
c(Uo+Uuy +2vo

c, ={- LTI T 2VTV)y,
Uo — Uy +2Vyo

c, ={@- VT2V

O<u,v,o,w<w<l1
Proof

Case (1) we have to prove that the CG-method d,,, from (3) with (5) and

newl

multiplying by ¢,,,, also put value of £, , we get:
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(9] + o)) - 2vay..0,
- deT gk

dk+ngk+1 :_||gk+l||2 + dl;rgk+l

We obtain from (4)

OdkT O =< dkTgk+l < _OdkTgk

Since the Powell restarting criterion is defined as follows:
2

‘ggﬂgk‘ 2 W||gk+1||

Then we get:

glug S _l//”g |<+1||2
Using (12) and (14) in the inequality (11) become:

2 T
Ok ujg 2vg,,
dk+lgk+l_ ||gk+1|| _V\ydkk lg”k dk k+1_W(|Lk$”gk dk K+l +ﬁd;gku
_ . UdkTgk+1 2 UdkTgk T 2v dk O
||gk+1|| wd," g, ” k+1|| wd, g, ke 9 —de 0. Oi O
uod,'g 1% > 2voyd,'g 2
<_ k Yk uy k Yk
9kal T, [9ca ]+ 191ca] TadTe 9kl
<(-1+ oy +u_(7'_u_l//)”gk+1”2
w W '
Dividing by ||9k+1||2 we get:
d

—k+l IJk+1 gk+l <_{( 2VG!//+UO'+U(//)}:

Jowal

Hence the sufficient descent condition hold, i.e.

dk+1Tgk+1 < _C1||gk+1||21 G >0
O<u,v,o,y <w<1 .

(1)

.(12)

...(13)

..(14)

...(15)

Case (2) take d,,, from (3) with (6) proceed by induction. For k =1 we have:

d,=-9,
and
d/g, =-9,"9, =g, <0
suppose that:
de gy < _C||9k||2

Multiplying the new search direction by 9., and put value of 5,

(g’ +9e]*) - 2vor,.0, 4
2 k gk+l
wg, |

ol 4 v, L ulod 4, 280

k gk+l k gk+1
Wi Wl wlg kll

Udk P ” k1” Udk g T 2 d 9k+1

wlgi [ wWig,

new2

dk+lT gk+1 = _||g|<+l||2 +

k gk+l

_ 2
- _||gk+l||

_ 2
- _||gk+1||

Wl
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Using strong Wolfe condition (4) and the Powell restarting condition (14) in the above
inequality we obtain:

Cu TN AU A LN A
wg. wlo. wlg.

Uo+uy + 2vm,//) ||9k+1||

w Jo.|”
dk+l gk+l < ( C(UO-+UI//+2VO-I//))

w
Jowal

Hence the sufficient descent condition hold, i.e.

dk+1 gk+1 ” k+1||

< _||§.3]k+1||2 —(

dk Ok

dk+1Tgk+l < _CZ||gk+1||2’ C, = 0 .__(17)
O<u,v,o,y <w<1.

Case (3) Also, take d,,, from (3) with (7) and multiplying by g,,, with the value
of B to get:

korngk+1 _ _”gk+1”2 +[u(”gk+l”2 +||ng||2) - 2vglgk ]dkTgk+1 .(18)
wd,
But:
dkT Yk :dkTgk+1_dkTgk deTgk+1
=dy, >d, g
t 1 .(19)

= <
wd, 'y, wd, gy,
Putting (19) in (18) yields:

u(|9y.
dk+lgk+l— ||gk+l|| |: H -

i +||gk||2)_2VgI+1gk T
T dk gk+1
de gk+1

2 Ulgea]” - e” v 2vg."g
<— d d — 1 Ik g
||gk+l|| " dkT k+1 ‘ gk+l " kT gk+l ‘ gk+l deT gk+1
ud,' g ud,'g 2vd, ' g
< —"g k+l||2 + —diT l:jl ” k+l||2 + dkkT kkﬂ k+lT kK — dek :11 ggugk

Using (4) and (14) :

ud, ' 2vd
A1 0 < ||9k+1|| +— ||gk+1|| %(_‘//”gmnz) ﬁ( ‘//||gk+1||)

dk k+1 d k k+1

< _”g k+1

2
S0l gl + S ol

Dividing this inequality by |G| yields:

dk+1 gk+1 < ( uo — UI//+2Vl//O-)_
||gk+l|| wo

...(20)
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Hence the sufficient descent hold i.e.

i’ Gy <—Coguas €520 (1)
O<{u,v,w, o y}<1

3.2. Property Consider a general CG-method and suppose that[12]:

O<g<|g <7 vk=0 (22

we say that a CG-method has the Property (3.2), if there exists two constants b> 1
and A >0 such that for all k,

<D ...(23)

1
S% forall 2>0 ...(24)

3.3. Lemma Suppose that Assumption (H) hold. If there exists a constant ¢ >0 such

If [s,|< 2 then |8

that [g,|=¢, for all positive k, then the following holds . If d, is satisfies the
sufficient descent condition (g, d, < —c||gk||2,Vk >0) and ¢, is obtained by (4). The
parameters ( A", "%, B°*°) in our CG-methods satisfy Property (3.2).

Proof
First we can prove this property for the first algorithm with the parameter(5):

U(||gk+1||2 + ||gk||2) - 2ng+1gk

ﬂ;ewlz —deTgk O<u,v,w<1
o (P +||9k||2)T + 2 gwalle ...(25)
W‘_dk gk‘
From (15) we have:
1
T = s 2
de gk —cfgy]
N 1 < 1
~0e g
1 1
= < ...(26)
~diod  claf

After putting (26) in (25) we get:
U(gual” +lgl) +2vgialloi
welg, |
- u(y® +y%) +2vy®
- wey®
S 2u+v) o 2upt2vy?
owe b= wey?
Now, let us define:

newl
k
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:M d < >0
A we and [sl<a Az @7

And from this relation, we have:
1
d; 0y =— S: Oy
[ ...(28)
By using (25) and (28) with the value of A , we get:

L U(geal” + o)+ 2vIguillo:

newlL
et <
W
lsdlloid
20 +V)ay® _2u+viay 1
7 A
Hence
preal< L when [s]<4,

2b,
Second  similarity, as in the first proof, we will deal with the new second
algorithm as defined in (6):
new2 __ u(||gk+l||2 +||gk||2)_2ng+1Tgk
B = 2
g,
ool < W00l 40D+ 29l
k - 2
Wa|

- uy® +uy? +2vy® _2u+v) _
- wy’® W
Now, again let us define:
_8(u+Vv)’acy?

Ay == and  |[s,]|<4,,(4, >0) ...(29)

Now from the descent property (20) we have:
dig, <—cjg,|’
=d; g,/ <cla.l
1 1 1
= < <
ol |dioi|  ldllo

U(lgeal” +oul) + 2vlgwalloi

O<u,v,w<l1

b,

new2

s, lloul
ac
_ 2at(u +V)y? _20c(u+v)y _ 1
WA,y wAa, 2b,
Hence:
B Szibz ; when |s]|<4,
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Third let us again try as in the last proof with the third algorithm (7) as:
2 2
ewa _ (9] +]9e]) —2vai g
s U0l 0,2l 0
wd, "y,
by utilize from (4) to get:
OdkTgk < dkTgk+1 < _OdkTg
= dkTgk+l _dkTgk 2 OdkTgk _dkTgk

:>dkTyk 2_(1_G)dkTgk ...(31)
By adding to —d, g, > c||gk||2 then (30) becomes:
=d,y, 2cl-o)|g. .(32)

Taking the absolute values of (30) and since d, vy, = is[ y, then:
(24

”(||Q'k+1||2 +||9k||2) +2V[g,q |94
= w
7‘SkT Yk‘
(04

ﬁﬂEV\B
k

Using inequality (32) the above inequality yields:

_u(lgtal +g + 2v)g,. ol
we(@-o)|g, |

ﬂnew3‘
k

_ 2 +V)y?  2u+v)
T w(l-o)y? w(l-o)
Now, also let us define:

_8a(u+v)’y
A= Wi—o) and|s,[ < 4, (4 >0) ...(33)

o] < 400l +g )+ 2vl0icallo]
o <
" a-o)s,llod

< 2a(U+Vv)y?  2a(u+Vv)y _ 1
S w(l-o)4y wl-o0)4, 2b,
Hence

'BHEV\B
k

3

szibs ; when s | <4,

3.4. Lemma Assume that d,, is a descent direction and g, satisfies the Lipschitz
condition ||g(x)—g(x,)]| < L|x—x| for all x on the line segment connecting X and x,,
where L is constant If the line search direction satisfy (4), then[6]:

(1-o)ld o
o z——

Ll

Proof Using curvature inequality in (4)
od,'g, <d' g, <-od,"g,

..(34)
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= OdkTgk < dkTgk+1

...(35)
Subtracting dkTgk from both sides of (35) and using Lipschitz condition yields:
(A-0)d g <d. (g - 9) < Lafd, [ .++(36)

Since d, is descent direction and o <1, then (34) holds:
(1-o)d, g
KkZ 7
L]
The conclusion of the following Lemma, often called the Zoutendijk condition is
used to prove the global convergence of any nonlinear CG-method. It was originally

given by Zoutendijk [18] under the Strong Wolfe line search (4). In following Lemma,
we will prove this condition.

3.5. Lemma Suppose Assumption (H) holds. Consider the iteration process of the form

(2)-(3), where d, ., satisfies the descent condition ( dkT g, <0)forall k>1and
o, satisfies (4). Then

Z(gk d)° _ .(37)
& dJ
Proof From the first inequality in (4) we can get:

foa = fic < 5akngdk

Combining this with the results in Lemma (3.4), yields
_0(l-0) (9,'d})’

fk+l_ k =
Lo e ...(38)
Using the bound-ness of function f in Assumption (H), hence
(9 d)
2l
=i N ..(39)

3.6. Global Convergence Property For Uniformly Convex Functions
Under Assumption (H) on f , there exists a constant yZO, such that

HVf (X)H <y, forall xe$S, then for any CG-method with Strong Wolfe line search, the
following general result holds.[8]

3.6.1. Theorem Let Assumption (H) holds and consider any CG-method (2)-(3), where
d,., is adescent direction and e, is obtained by (4) line search , if

1
= Y 40
ko1 dk”2 (40
Then
1iminf||gk||=0 ...(41)

For uniformly convex function which satisfied the above assumptions we can
prove that the norm of d, , given by (3) with (5), (6) and (7) is bounded above. Assume
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that the function f is uniformly convex function, i.e. there exists a constant # >0 such
that for all X, x, €S

(90— g (XN (x=%) = sefx=x, | ..(42)
and the step-length «, is obtained by the Strong Wolfe line search (4), Now try to
prove the following result:

3.6.2. Theorem Suppose that Assumption (H) hold. Consider the algorithm (2.1), where
O<u,v,w<1, for y>0, let |9 [<7, |9.|<» and e« is obtained by (SWC) line

search. If |s| tends to zero and there exists non-negative constants 7, and 7, such
that[6]:

oo 2nlsil”  loeal” <7l @)
and if f isa uniformly convex function, then:

Limg, =0 ..(44)
Proof

Case(1) we have from (5) and if we taking the absolute value:
P U(lge]” +]9ul") + 2vguifll]
k+1

B w
;kllskllllgkll

_unls,runfs. [ +2vy

W
gl
k

But [s,[ =[x—x| and since D =max{|x—x,[, vx,x, €S} is diameter of the level set S
(9), then

ﬂnem < u(r, +771D)D+2V72
k1T W

ay

Taking the norm and square both sides of the new search direction, we get:
2 2
||dk+l|| = H_ Oy T ﬂknerdkH

<|9eal” + 282 lucallldi ]+ (B
u(m, +7,D)D+2vy® 1 u(n, +m,D)D+2vy* , 1
<8+ 20— )a—k7||3k||+( : Q ZOC—kzllskll2
Qy ay
u(n, +7,D)D+2vy? 1 u(n, +n,D)D+2vy? , 1
3772”3k”+2( (17, 77\1N) /4 )_7”Sk”+( (1, 77\1N) 4 2_2||Sk”2
=D ay =D ay
ay ay
u(z, +7,D)D + 2vy? u(n, +n,D)D + 2vy?
£772||Sk||+2( (17, 77\1N§)D Y )7/||Sk||+( (17, 77\1N§)D Y )2||Sk||2
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u(n, +n,D)D +2vy® o+ (u(772 +1,D)D + 2vy?
wé wé

Thus |d,.|" <,
1 1

>
Jdeal” v’

Summation this inequality forall k>1
1 1
Z 7 2 z_z =®
k>1 ”d k+1|| k>1 Yy
Using Theorem (3.2.1), hence I!im inf|g,[=0

<n,D+2(

)2 :‘//12

=

But f is uniformly convex (3.37) therefore satisfies II(im g, =0.

Case (2) similarly we begin taking the absolute to the second scalar parameter

ﬂnevsfz

k

. ulgeal” +ulgd]” +2vgealloi
wig, |’

g un, s, ||+ U771||Sk||2 +2vyy

wir s,
_ U@, +m,D)D +2vy*
B wr,D?

ﬂ new2
k

where D is a diameter of the level set S and the new direction can be evaluated from (3)
with (6). Now since:

dk+l =0k +:3knewzdk
||dk+l||2 = H_ gk+l + ﬂkneWdeHZ
< ||gk+l||2 +2 ﬂl(newz‘||gk+l|"|dk” + (,Bl?mz)zndknz

uGra +msfsclse +2v77 ) sl | were + mlslsd +2v° [ I
2 2 2
wi s, % wip[s, | %
u(n, +7,D0)D + 2V7/2 )y + (U(772 +7,D)D + 2\/72 )2 _ sz
we,n,D wea,n,D
Thus |d k+1H2 <y’
1 1
2 2 T2
[deal” v
Summation this inequality forall k>1

e ED IR

i dal v,
Using Theorem (3.7.1), hence lim inf|g,| =0

<18 ]|+ 2(

<n,D+2(

=
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But f is uniformly convex (3.37) therefore iI(im g, =0.
Case (3) from equation (7) we have also:
_Ugal” +ulg ] +2v]gealle
B w
sy
But the gradient g is Lipschitz and f is uniformly convex then we get
Alse <[yl < Lsi]

new3

Therefore
5] < Ulgal” +ulgl” +2vlg.calllo.

W 2
s

UG, + s Plsl| +2vrr _ au(m, +m,D)D + 2var,y?
B ﬂﬂDZ wuD?
a

Then
ﬂnew3‘ < au(n, +n,D)D +2va, y
“ wuD?

2

Again we know that
deq =—Oka +:3knemdk

||dk+l||2 = H_ gk+l + ﬂkneW3dkH2

<lgal + 28 lowlle] + (5
S%”Sk””(aku(nz+7azg)[2>+2vaky2)alk”8k”+(aku(nz+7a%12+2vaky2 Zaikzﬂsk”z
<n.D+ 2(u(772 +77\1le1)§ +2V72);/+ (u(n2 +77\1NIIDU)|E + 2v;/2)2 e
Thus ldeal” <ws’

= 1 5 Ziz
||dk+1|| Vs

Summation this inequality forall k>1
1 1
DN e Y
k>1 dk+1|| k>1 /5

Using theorem (3.2.1) , hence 1iminf||gk||:0

But f is uniformly convex (3.37), therefore LI(im g, =0

3.7. Global Convergence Property For General Nonlinear Functions

For general nonlinear functions, the convergence analysis of our algorithms
exploits insights developed by Gilbert and Nocedal [9]; Dai and Liao [8] and Hager
and Zhang [10]. The global convergence proof of (Newl, New2, New3) CG-algorithms
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is based on the Zoutendijk condition as showed in Lemma (3.5). combined with the
analysis showing that the descent property holds and || d || is bounded. Suppose that the
level set S is bounded and the function f is bounded from below.

3.7.1 Theorem Let Assumption (H) hold,d, , is descent direction and «, is obtained
by line search satisfies strong wolf line search, ¢ >0, 0<u,v,w<1 also constants
y >0 such that |g,[ <y asin (10) . Then the algorithm (2.1) satisfies, either g, =0

for some k or(44) s. t. liminf lg =0

Proof We will prove this theorem by using contradiction , then assume that the result
IS not true , So there exists a constant s. t.

lod|=¢ vk=1 ...(45)

Case (1) we begin with direction of CG-method contains the parameter ﬁ”er

(9l +o]) —2va.. 9 d,
_de gk

||dk+l|| =~ gk+l

Ugeal” +uloi]” +2V||9k+1||||9k||”d ”
wld [l k
uy? +uy® +2vy’® B
Wy =1

<lgial+

<y+

Thus:

[ <&, ..(46)
Since the level set S is bounded and the function f is bounded below using {Lemma
(3.3) and Lemma (3.4)}, we get:

(9 d)
z k
= |’
Combining with sufficient descent condition (15) yields:
o _ 15 (0d)’

>-= <2 158 L)

Sl Bl o & |
Using the above inequality with (3.46) which contradiction to (40). Hence (41) holds
s.t. Iiminf||gk||=0

new2

Case (2) with direction of CG-method contains the parameter S,

(gl + 10" - 290" 0 1

wg, |/ a "

||gk+l|| ” ” ”gk” ” ” 2V||9k+1||||9k”” ”
2 2

awWo ] awlg a o[

||dk+1|| e P (

<|gual +
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uy? 2v
e I NI
2(u + v)
s
u+v
Thus:
[dial <& ...(47)

Since the level set S is bounded and the function f is bounded below using lemmas
(3.2) and (3.3), we get:

(9 d)” _
0<>
= |’
Combining with sufficient descent condition (17), s. t.

—d," g, 2C2||gk||2 >0
Z Z||gk||4 Z(gk d )

w4w|| ol e o]

Using the above inequality with (47) which contradiction to (40). Hence (3.34) holds
s.t. I!iminf||gk||:0

Case( 3) with direction of CG-method contains the parameter ﬁkn o

(gl +9]) —2vi.. 9

W 71
— S Yk
k

)L

ay

||dk+1|| == Gkt (

ulgic.]” ullg. [ s ||+ 2v||gw.afllgll ™
Wiisi[llvi| wis v wislivl
But: Y|l =9k — 9kl < |94.] + |94] < 27 and from equation (45), we obtain

< [gicall + Isell+ s T

=2&<||y <2y
U9’ ug.]” 2v|9calllgnl
<|g,. s
R e A LY
<||gk1” u||gk+1|| u”gk” +2V||gk+1||||gk||
’ 2WE 2W¢E 2WE
Therefore
2
2
[bual<y+ = =6
Thus
Ay <& ..(48)
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Since the level set S is bounded and the function f is bounded below using lemmas
(3.2) and (3.3), we get:
(9.d)* _
0<) ===
= |’

Combining with sufficient descent condition (21), s. t.

y < legkll Z(gk d,)’

Sl Sl W& o)
Using the above inequality with (48) which contradiction to (40). Hence (41) holds s.t.
liminf lg,|=0

4. Numerical Results

The main work of this section is to report the performance of the new methods on
a set of test problems. the codes were written in Fortran and in double precision
arithmetic. All the tests were performed on a PC. Our experiments were performed on a
set of 35-nonlinear unconstrained problems that have second derivatives available.
These test problems are contributed in CUTE [7] and their details are given in the
Appendix. for each test function we have considered 10 numerical experiments with
number of variable n= 100,200,...... ,1000. In order to assess the reliability of our new
proposed methods, we have tested them against FR and PR classical CG-methods using
the same test problems. All these methods terminate when the following stopping
criterion is met.

|91 <1107 ...(49)

We also force these routines stopped if the iterations exceed 1000 or the number of
function evaluations reach 2000 without achieving the minimum. We use

5=10", 0=0.1 in the Wolfe line search routine. Tables (4.1); (4.2) and (4.3)

compare some numerical result for (Newl, New2 and New3) CG-methods against FR
and PR CG-methods respectively, these tables indicate for (n) as a dimension of the
problem;(NOI) number of iterations; (NOFG) number of function and gradient
evaluation;(Time) the total time required to complete the evaluation process for each
test problem. In Tables (4.4, 4.5, 4.6) we have compared the percentage performance of
the new and FR&PR methods taking over all the tools as 100% . In order to summarize
our numerical results , we have concerned only on the total of different dimensions n=
100, 200,...... ,10000, for all tools used in these comparisons.

Table 4.1 Comparison between newl and classical FR and PR CG-methods for the total
of n different dimensions n= 100, 200, . . ...,1000 for each test problems with
parameter (u=0.3, v=0.3, w=0.8; &=1*¥107).

Table 4.2 Comparison between new2 and classical FR and PR CG-methods for the
total of n different dimensions n= 100, 200, ... ... ,1000 for each test problems
with parameter (u=0.3, v=0.7, w=0.8 ; e=1%*107).

Table 4.3 Comparison between new3 and classical FR and PR CG-methods for the total
of n different dimensions n= 100, 200, . ..... ,1000 for each test problems
with parameter (u =0.4, v=0.4, w=0.1; e=1*107).
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Table ( 4.1) Comparison between Newl, FR and PR CG-methods for the total of n different
dimensions n= 100, 200, . .. .,1000, for each test problem (u =0.4, v=0.6, w=0.8, £=1*10"°).

Nugr]\cber Classic FR Classic PR New 1
NOI/NOFG/TIME NOI/NOFG/TIME NOI/NOFG/TIME
Problem
1 366 697 0.24 369 710 0.24 422 706 0.34
2 269 674 0.03 270 676 0.02 188 381 0.04
3 111 337 0.05 111 337 0.03 70 99 0.01
4 687 1318 0.32 703 1342 0.35 481 629 0.26
5 308 612 0.05 311 602 0.04 278 363 0.04
6 255 494 0.18 254 500 0.21 168 192 0.13
7 309 841 0.05 383 996 0.04 333 361 0.03
8 79 291 0.09 79 291 0.09 135 169 0.17
9 215 527 0.00 218 534 0.01 194 329 0.02
10 187 452 0.10 187 452 0.10 172 247 0.09
11 344 694 0.09 346 701 0.08 233 353 0.06
12 185 476 0.03 185 476 0.01 167 287 0.03
13 57 300 0.01 57 300 0.03 27 60 0.00
14 786 1493 0.08 784 1480 0.11 547 642 0.09
15 519 1159 0.08 530 1201 0.10 458 529 0.06
16 138 370 0.05 138 370 0.04 125 145 0.07
17 145 358 0.04 145 358 0.05 87 109 0.03
18 140 369 0.03 140 369 0.02 100 130 0.02
19 322 675 0.03 326 680 0.05 347 432 0.04
20 111 337 0.05 111 337 0.03 69 90 0.03
21 321 699 0.03 320 687 0.03 330 444 0.05
22 328 585 0.10 312 562 0.09 215 255 0.07
23 643 1286 0.21 648 1289 0.22 284 360 0.10
24 148 410 0.04 148 410 0.03 112 174 0.04
25 236 562 0.04 240 568 0.05 230 291 0.02
26 664 1292 0.19 681 1303 0.20 297 393 0.11
27 124 348 0.01 124 348 0.02 118 191 0.02
28 117 359 0.08 117 359 0.02 118 191 0.02
29 102 314 0.08 102 314 0.08 75 95 0.03
30 116 435 0.07 116 435 0.10 41 73 0.03
31 187 452 0.08 187 452 0.08 172 247 0.07
32 573 1123 0.08 562 1097 0.06 420 514 0.05
33 10 30 0.00 10 30 0.02 14 49 0.00
34 80 100 0.02 80 100 0.02 80 100 0.03
35 184 431 0.03 184 431 0.01 218 466 0.03
Total 9266 20900 4.54 9478 20097 4.48 7325 10096 4.03
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Table (4.2) Comparison between New2 , FR and PR CG-methods for the total of n different

dimensions n=100, 200, ...... ,1000, for each test problem (u =0.3, v=0.4, w=0.5, £=1*10°).
Nu(r)l}ber Classic FR Classic PR New 2
NOI/NOFG/TIME NOI/NOFG/TIME NOI/NOFG/TIME
Problem

1 366 697 0.24 369 710 0.24 409 710 0.36
2 269 674 0.03 270 676 0.02 188 381 0.03
3 111 337 0.05 111 337 0.03 69 90 0.03
4 687 1318 0.32 703 1342 0.35 505 633 0.26
5 308 612 0.05 311 602 0.04 244 331 0.05
6 255 494  0.18 254 500 0.21 279 305 0.22
7 309 841 0.05 383 996 0.04 416 444 0.05
8 79 291 0.09 79 291 0.09 135 169 0.15
9 215 527 0.00 218 534 0.01 196 329 0.01
10 187 452 0.10 187 452 0.10 163 226 0.08
11 344 694 0.09 346 701 0.08 258 379 0.08
12 185 476 0.03 185 476 0.01 165 258 0.03
13 57 300 0.01 57 300 0.03 26 58 0.00
14 786 1493 0.08 784 1480 0.11 563 661 0.08
15 519 1159 0.08 530 1201 0.10 376 447  0.05
16 138 370 0.05 138 370 0.04 101 122 0.03
17 145 358 0.04 145 358 0.05 86 108 0.01
18 140 369 0.03 140 369 0.02 100 130 0.02
19 322 675 0.03 326 680 0.05 309 423 0.07
20 111 337 0.05 111 337 0.03 69 90 0.03
21 321 699 0.03 320 687 0.03 305 419 0.03
22 328 585 0.10 312 562 0.09 241 282 0.08
23 643 1286 0.21 648 1289 0.22 298 442 0.12
24 148 410 0.04 148 410 0.03 103 165 0.00
25 236 562 0.04 240 568 0.05 219 311 0.04
26 664 1292 0.19 681 1303 0.20 399 445 0.11
27 124 348 0.01 124 348 0.02 111 183 0.01
28 117 359 0.08 117 359 0.02 70 151 0.05
29 102 314 0.08 102 314 0.08 75 95 0.04
30 116 435 0.07 116 435 0.10 41 73 0.04
31 187 452 0.08 187 452 0.08 162 224 0.06
32 573 1123 0.08 562 1097 0.06 407 521 0.05
33 10 30 0.00 10 30 0.02 24 77 0.01
34 80 100 0.02 80 100 0.02 70 100 0.03
35 184 431 0.03 184 431 0.01 169 270 0.02
Total 9266 20900 4.54 9478 20097 4.48 7351 10052 4.13
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Table (4.3) Comparison between New3 , FR and PR CG-methods for the total of n different

dimensions n= 100, 200, . ..... ,1000, for each test problem (u =0.4, v=0.6, w=0.8, £=1%10").
Nugr]\cber Classic FR Classic PR New 3
NOI/NOFG/TIME NOI/NOFG/TIME NOI/NOFG/TIME
Problem
1 366 697 0.24 369 710 0.24 417 690 0.38
2 269 674 0.03 270 676 0.02 191 384 0.01
3 111 337 0.05 111 337 0.03 69 90 0.03
4 687 1318 0.32 703 1342 0.35 461 613 0.26
5 308 612 0.05 311 602 0.04 284 374 0.05
6 255 494  0.18 254 500 0.21 141 164 0.09
7 309 841 0.05 383 996 0.04 382 411 0.05
8 79 291 0.09 79 291 0.09 128 162 0.14
9 215 527 0.00 218 534 0.01 190 309 0.04
10 187 452 0.10 187 452 0.10 174 246 0.08
11 344 694 0.09 346 701 0.08 217 329 0.06
12 185 476 0.03 185 476 0.01 158 292 0.00
13 57 300 0.01 57 300 0.03 26 58 0.00
14 786 1493 0.08 784 1480 0.11 554 644 0.08
15 519 1159 0.08 530 1201 0.10 465 536 0.08
16 138 370 0.05 138 370 0.04 125 145 0.03
17 145 358 0.04 145 358 0.05 87 109 0.01
18 140 369 0.03 140 369 0.02 100 130 0.03
19 322 675 0.03 326 680 0.05 331 435 0.06
20 111 337 0.05 111 337 0.03 69 90 0.03
21 321 699 0.03 320 687 0.03 315 395 0.05
22 328 585 0.10 312 562 0.09 219 246 0.08
23 643 1286 0.21 648 1289 0.22 277 356 0.12
24 148 410 0.04 148 410 0.03 112 174 0.00
25 236 562 0.04 240 568 0.05 254 372 0.04
26 664 1292 0.19 681 1303 0.20 303 365 0.11
27 124 348 0.01 124 348 0.02 130 189 0.01
28 117 359 0.08 117 359 0.02 70 151 0.03
29 102 314 0.08 102 314 0.08 75 95 0.05
30 116 435 0.07 116 435 0.10 41 73 0.05
31 187 452 0.08 187 452 0.08 174 246 0.08
32 573 1123 0.08 562 1097 0.06 423 521 0.06
33 10 30 0.00 10 30 0.02 22 70 0.00
34 80 100 0.02 80 100 0.02 70 100 0.03
35 184 431 0.03 184 431 0.01 180 270 0.02
Total 9266 20900 4.54 9478 20097 4.48 7234 9834 4.02

Percentage Performance of each New algorithm against 100% of Fletcher-Reeves
(FR), Polak- Ribiere (PR), algorithms respectively, as follows in Tables (4.4), (4.5), (4.6).
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Table (4.4) Performance of the New1 algorithm against 100% of Fletcher-Reeves (FR) and
Polak- Ribiere (PR) algorithm, as followed in Table (4.1).

Tools FR Newl1 PR Newl1
NOI 100% 79.052% 100% 77.284%

NOFG 100% 53.549% 100% 50.236%
Time 100% 57.202% 100% 89.955%

Table (4.5) Performance of the New2 algorithm against 100% of Fletcher-Reeves (FR) and
Polak- Ribiere (PR) algorithm, as followed in Table (4.2).

Tools FR New?2 PR New?2
NOI 100% 79.333% 100% 77.558%

NOFG 100% 48.059% 100% 50.017%
Time 100% 90.969% 100% 92.187%

Table (4.6) Performance of the New3 algorithm against 100% of Fletcher-Reeves (FR) and
Polak-Ribiere (PR) algorithm, as followed in Table (4.3).

Tools FR New3 PR New3
NOI 100% 78.070% 100% 76.324%

NOFG 100% 47.052% 100% 48.632%
Time 100% 88.546% 100% 89.732%

From the above tables we have concluded that the first new algorithm beats FR and PR
CG-algorithms in all NOI; NOFG and Time in about (10-50)% percentages. However, the
second new algorithm is also beats FR and PR CG-algorithms in all NOI; NOFG and Time in
about (8-52)% percentages. Also the third new algorithm is also beats FR and PR CG-
algorithms in all NOI; NOFG and Time in about (11-53)% percentages.

5. Conclusions

In this paper, by using scaling parameter idea, we have proposed three new scaled
CG-methods with (2.1), (2.2) and (2.3) for S, under some assumptions. Our CG-

methods have been shown to be globally convergent for uniformly convex and general
functions respectively. Some numerical results have been reported against BAl; BAZ2;
BA3; FR and PRCG-algorithms which showed the effectiveness of our new proposed
CG-algorithms with the scalars u ,v and w.

6. Appendix

The details of the 35-test functions used are: 1-Extended Trigonometric Function.
2-Extended Penalty Function. 3-Raydan2 Function. 4-Hager Function. 5-Generalized
Tridiagonal-1 Function. 6-Extended Three Exponential Function. 7-Diagonal 4
Function. 8-Diagonal5 Function. 9-Extended Himmelblau Function. 10-Generalized
PSC1 Function. 11- Extended Block Diagonal BD1 Function. 12-Extended Quadratic
Penalty QP1 Function. 13-Extended Quadratic QF2 Function. 14- Extended EP1
Function.15-Extended Tri-diagonal 2 Function. 16- DIXMAANA Function. 17-
DIXMAANB Function. 18- DIXMAANC Function. 19-EDENSCH Function. 20-
DIAGONAL 6 Function. 21-ENGVALI Function. 22-DENSCHNA Function. 23-
DENSCHNC Function. 24-DENSCHNB Function. 25-DENSCHNF Function. 26-
Extended Block—Diagonal BD2 Function. 27-Generalized quadratic GQ1 Function. 28-
DIAGONAL 7 Function. 29- DIAGONAL 8 Function. 30- Full Hessian Function.
31-SINCOS Function. 32- Generalized quadratic GQ2 Function. 33-ARGLINB
Function. 34-HIMMELBG Function. 35-HIMMELBH Function.
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