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ABSTRACT
In this paper, the stability and dynamics of a thin liquid films flowing down on an
inclined plane are investigated by using integral approximation. The strong non-linear
evolution equations are derived by the integral approximation with a specified velocity
profile. The evolution equations are used to study the linear stability for liquid films. As
a result, output of this research, we showed that the effect of inclination of films is an
unstable factor.
Key words: Stability, Non-linear equations, Integral approximation.
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1. Introduction
Investigations involving the linear stability of thin liquid films down on an
inclined plane are considered. The stability and dynamics of thin liquid films, in
general, are of an immense scientific and technological importance. A liquid layer on a
solid substrate becomes unstable when the layer is very thin. Hwang and Chen in [7]
investigated the stability of thin liquid films on a horizontal plane by using long wave
theory, integral approximation and numerical solution, then they compared among
them, and they concluded that the evolution equations derived from integral theory
could properly model a thin liquid film. Chen and Hwang [1] studied the inertia effect
on rupture process of a thin liquid film. Hwang et al. in [9] derived strong non-linear
partial differential equations of the thickness of a film on plate by using integral theory
and concluded that van der Waals potential and the inertia of x-momentum equations
are the unstable factors, while the surface tension and high-order viscous dissipation are
the stable factors for the instability of the film. Erneux and Davis in [6] derived the non-
linear partial differential equation on free thin liquid film by using long-wave theory
and found that the non-linear terms contribute to the acceleration of the rupture
phenomenon, but Hwang et al. in [10] used an integral method to derive the strong non-
linear evolution equation of thin liquid films. Hwang et al. in [8] investigated the effects
of insoluble surfactant on the dynamic rupture of a thin free film and compared there
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results with results obtained by De Wit et al. in [4]. De Wit and Gallez in [3] studied the
role of insoluble surfactants on the stability of free-liquid films, taking into account the
influence of van der Waals attraction and surface tension, also investigated the linear
stability of free thin and thin liquid films with substrate on horizontal by using long-
wave theory and compared between them. A non-linear differential equation that
describes the long-wave evolution of the interface shape is derived by Chen and Hwang
[2] to investigate the dynamic rupture process of a thin liquid film on a cylinder.

2. Mathematical Formulation

This section introduces the physical model of a thin liquid film. Consider a thin
liquid layer flowing down a plane inclined at angle & to the horizontal (Figure 1) the
film of initial thickness h, is bounded at the thin surface by a passive gas and is

laterally unbounded. The liquid layer is assumed thin enough that VVan der Waals forces
are effective and thick enough that a continuum theory of the liquid is applicable and we
assume that the liquid is a Newtonian viscous fluid.

z

2= ilx.1)

Figure (1) Thin Liquid Films with Substrate
For two-dimensional motions of the liquid film, we have the Navier-Stokes
equations and the continuity equation given by [11, 13]:
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where, (u,w) are the velocity components in the (x, z) direction, respectively. The

quantitiesp, g, u, ® and _pare density, gravity, viscosity, Van der Waals potential

and pressure of film respectively.
At the interface of the thin liquid film, we have the following boundary conditions
[13]. The kine;matics boundary conditions are given by:

w="ttu= at z=h .4
The shear-stress conditions on the interfaces have the form

— — — —\2 — —
pohfou _ow) troh) jjou ow) at z=h ...(5)
ox\ox oz OX 0z OX

The normal-stress condition on the interfaces is obtained by

N2 — — — — —
po2uf| | u_chpou, ow) owi,, oh) =pa—g at z=h ...(6)
ox ) ox ox\ 0z oOx 0z ax R

where, p, denotes atmospheric pressure, o is the dimensional coefficient of surface
o%h

2
tension and % is the radius of curvature defined as % =—2"X2 ___  The

conditions at the substrate of thin I|qU|d film are
u=w=0 at z=0 ..(7)
3. Non-dimensional Analysis

To express the Navier-Stokes equations, the equation of continuity with the
associated boundary conditions into non-dimensional form, we define the following
dimensionless quantities [6, 8] as

h=hh,, z=1h,, x=xh,, u="2
hO
— Wy — pv’ - th? ®h?
W=, p:pth, L p=—0 ..(8)
0 0 v Vop
where, the mean thickness of the liquid is h, and v = # s the kinematics viscosity of
o
the film fluid. The non-dimensional mean surface tension, S is defined as
2
g =3PV ..(9)
h, o

Substituting the dimensionless variables and parameters given by equations (8),
and (9) into equations (1-7) and simplifying the resulting equation, we obtain the
dimensionless Navier-Stokes and the continuity equations as the form [12]
ou  ou  ou_ op 0f, (az

—4tU—+W—=—
ox?

2
a +G, sin(9) ...(10)
ot OX 0z OX OX az
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2 2
@+ua—w+wm=—@—%+ 0 \;V+a -G, cos(6) ...(11)
ot OX oz oL oz OX oz’
L ow_y .(12)
ox oz
and the boundary conditions are derived to give
W=a—h+u@ at z=h ...(13)
ot OX
2a—h(a—“—@j+ (@hj 1(8_“_%j 0 at z=h (14)
oX\ ox oz OX 0z 0OX
(ahj ne ah( +6wj o%h
x| Lox ox\ oz ox 2
u=w=0 aa z=0 ...(16)

1
where, h(x,t) is the local thickness of the layer, and N = (1+h2 2.

4. Integral Approximation

Now, the method of multiple scales can be used to study the non-linear stability by
using the notions given [1, 2] as

u=0(1), w=0(k), p=0(k"),

x=0(k*) z2=0() t=0(k*) (A7)
and the orders of the other dimensionless variables are

s =0(1) A=0(k%) G, =0(k) . ...(18)

Introducing equations (17) and (18) into equations (10-16), we get the following
equations of motion and boundary conditions
-1
&f +U 651 +(kw)a—u = _8(k_ P) 8(k_¢) 8_ 851 ia—u+(kG )sin (6)
ok™) ok x) oz ok*x) akx) o(kix)okx) oz oz

o(kw) ‘U o(kw) 8(kW) a(k’1 p) o(k’p) N 0 O(kw)

+ 200 16, ycos(6)

+ (kw
okk™) o(k™x) + (k) 0z oz ok'x)ok'x) oz oz
ou__akw) _
okk™x) oz
u=kw=0 at z=0
(w) =Ny ON at z=h

k™) akx)

4 62 ai +£[ 82 J—l}[a—u+ a(k_\iv)jzo at z=h
o(k™x) a(k™x) o(k™x) oz  0(k™x)
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(g2l [ 2_1 ou __oh (ou atw) [, ( an 2_1_
P a(k %) ok ok Wz Ak ok |

3
2 2\ 2
3S a'h 1+ on at z=h
o(k™*x)? o(k*x)

Simplified the above equations, we can formulate the Navier-stokes equations and

equation of continuity as
G SRR T T

k—+ku—+kw— =
ot OX 0z OX OX OXOX 010z

k2 W 2y W o W 1 P50 s O W kQ@—kG cos (6)
ot OX oz 0z 0z OX OX 0z oz
KU LM g
OX oz
Now, at z=0,we have u=kw=0 and at the interface z = h(x,t)
kw _ka—h ku oh
ot OX

D a“+[k (ah) ]£@+k28—""j=o
OX OX OX 0z OX
k*p-2| k? ah 1ka—u—ka—h(a—u+k2@ 1+k? ah =
8x OX oX\ 0z OX ax

3
2 2\ 2
—35k22h£1 K (ah J
X

OX

3 2
Neglecting the terms higher than O(ge) with k = 0[52] and the term (Z—hj from
X

all boundary conditions because they are very small in thin liquid film, then the reduced
equations of the motion and the pertinent boundary conditions can be derived as follows
2 2
u 8u+wa_u: » 8¢ ou 2+6—+G sin (0) ...(19)
ot X oz oX  OX ax

ow_ W WP 5‘;" ...(20)
ot OX oz oz oz
and the continuity equation
A Wy (1)
oX 0z
also, the boundary condition at z =0 becomes
w=d at  z=h(xt)

ot OX

...(23)
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u_,0oudh_ow at  z=h(xt) ..(24)
0z OX OX  OX

0° h_ 8u oh ou

Now, mtegrate equation (19) with respect to z over the film thickness, where

1 ou? ou
———=u—, we have
2 OX OX
0 0
j—d j dz +j dz——jasd —Jafd !ax dz+j%z+jG sin(9)dz, ...(26)

mtegratlng equatlons (20) with respect to z, we get

j—dz+ju—dz+jw—dz_—j

—[G, cos () dz ...(27)
and mtegratlng continuity equation Wlth respect to z over the film thickness, we have

jaxduj—dz_ ...(28)

By using the general form of the Leibniz integral rule, the first term on the left hand side
of equation (26), can be written as follows

h
Ia—udz_— udz+ua—h ...(29)
0 at 0 at
also, we perform the similar transformations on other integrals of equation(26). Now,
we reach at the integral condition

oh oq_, ..(30)
ot ox
The velocity profile can be written as [7, 9]

T

G(x,t):3qh2—%f ...(32)

and

L(x,t):_gqhs +§

fht ...(33)

then, equation (31) can be written as

u=Gz+Lz? ..-(34)
from differentiation equation (31)

M fxt) .(35)

0z

Now, by differentiation equation (34) with respect to x and substituting into equation
(21), we get

ou oG _ oL _,

—=—7+—12

OX  OX OX
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aG %224_@:0 (36)
ax OX oz

now integrating equation (36) with respect to z, we can write the value of w as

ou
Applying the boundary conditionw/|,_, = &| ., =0 ,we get

W=—£§ZZ 1%23 ...(37)
2 0OX 3 Ox
Applying equation (34) and equation (37), the shear stress balance boundary

condition at free surface can be given as
oG ¢h a2 b oL ah 1 1.2 0°G 1h3 oL

f=4h——+ ...(38)
OX OX 8x8x 2 ox* 3 ox?
putting equation (29) into equation (19), we get
2
—'[ud —~ @+Ei wdz—1u2 M gy = Iapdz—ja¢dz+Ja—l:dz
ot 2 0xy 20X o OX OX OX
ou .
+—|—dz+|G,sin(8)dz
82;[82 -([ 2 SIn(6)
or
h h h
g_[udz—ua—h+1£ u’dz —Euza—h+wu_—.[6—pdz+3Ah’3@—3qh’2
ot ot 20x 2 oX OX OX
0 0 0 ...(39)
10°G 182 ou

+=— —h®+—+G,sin(d)h
2 OX 3 ox? 0z

by substituting the boundary condition (23) atz =h into equation (39), we obtain
o o " op oh
—Ju dz +—J.u2dz = —j—dz +3Ah* ——-3gh™
oty OX3 5 OX OX

, , ...(40)
+38C23h2+1<9|2_ 6—u+f+G sin(@)h
2 OX 3 Ox 0z
Putting equations (34) and (37) into equation (27), we find the value of p as
2 2 2 2
p:—@z—% 2+16623+iaL 4 166? 4+1 oL /5
X OX 6 O(xt) 12 o(xt) 8 ox 15 ox2
2 2
LT L Tl Y 1A, LAY
10 ox 18 ox° 8\ ox 6 OX OX 18\ ox

-G, cos(d) +c(x,t)
from the boundary condition (25), we have
o*h _ohou ou

=352 28 % & ..(42
P ox? oX 0z  OX (42)

Now, we put equation (32) into equation (41), one can get
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cout)=-3s N g My My 8y 50 8By Ay, 10
ox* ox o oX oX ox  ox 60 )

2 2 2 2 2
1 &L, 1506, 1. 0L, 1 aehs 1,

T120(xt) 8 ox* 15 ax2 10 X 18" o
2

+1[@) he 106Gk s 1 (5L

8\ ox 6ox ox  18l0

..(43)
Substituting the value of c(x,t) into equation (41), we have

h6

j h® + G, cos(@) h

2
p=-3sN M g My %6y 0y &G, 06, d,. d
ox? OX OX OX OX OX OX OX OX
2 2 2 2 2 2
+£ang 1aGh+iaLZ4_iaLh4+1GaG4_1GaGh
6 O(xt) 6 O(xt) 12 o(xt) 12 o(xt) 8  ox? 8  ox?
2 2 2 2 2 2
L0y L@y, 106, 1,06y, 1,5, 1 2Ly,
15 ox 15 0ox 10 ox 10 oXx 18 OX 18 oXx

2
=) Z4+1(66j g loGol . laGal, 1(@) Zm(&tjh

h2

8\ ox 8\ ox 6 OX OX 6 OX OX 18\ ox 18\ ox
-G, cos(d)z + G, cos(f)h ..(44)

now, by differentiating equation (44) and, then integrating equation (44) with respect to
z at z=0 to h with the use of equation (34), we get

h
[ p,dz=-3shh, —2(GH), —2(Lh?), +G,h cos()h,
0

Lo -2,k - -Lag b
2 8 15 10
1

+| ——GL_h® - L LGXXh6—iLLXXh7 ... (45)
18 12 21

+%(G )h® 126G Lh6+i( L, )’h’

36 21

X

now, putting equations (45) and (34) into equation (40), we get

q, + Lot Lot —Lene |- 3Shh, +£Gxxh2 1 L,h®+3Ah~°h,
3 2 5 2 3

—~3gh? +g f +G, sin(0)h—G, cos(6) hh, +2h(Gh),, +3h(Lh?),, ...(46)

1 2 1 1 1
~=G.h*-2Lh+=G..h* L.h®+—=|(GG G ) ht
B i e e Te v SR O

1 6 1 2,7
+25@(LG,), +2(GL,), ~106,L, )n +2—1((LLX (N
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h
where, q=[udz.
0

5. Linear Stability Analysis
The normal mode method [8, 12] can be applied to equations (30), (38) and (46)

h=h,+h, f=f+f, q=0,+q ...(47)
The equilibrium states of equations (30), (38) and (46) are [9]
(h01qo’fo):(lvo’o) ...(48)

Putting the equilibrium states into equations (30), (32), (33), (38) and (46), we get
the following equations

h,a_g ..(49)
ot ox
G(x,t):3q—%f ..(50)
and
3 3
L(x,t)=—=q+—f ...(51
(t)==Za+7 (51)
The shear-stress boundary condition at free surface can be rewritten as
2 2
foaQO0h AL 176 12t &)
OX OX OX OX 2 0x° 30X
and the averaged x-momentum equation (46) gives the form:
g, + YL, =3Sh, +EGXX +lLXx +3Ah, —3q+§ f
3 2 5 ), 2 3 2
+G, sin(8) -G, cos(@)h, +2G,, +2L,, ...(63)

1 2 1 1 2
-—G,——L, +=G,+—L GG G
|30 g gt (ec,).-@,y)
+6(L8,), +2(6L,), -108,L,)+ - {(LL,), - (L))

X

Now, substituting equations (50) and (51) into equations (52) and (53), we obtain
the following system

8 oh, ,0( 3,3 h, 10 1,) 16°( 3 3
f=4 3q——f BT EALNI T ) P T
ox ax a2 a2 2 ) 3 27 4

¢ _j,0a0h _otdh  oqch .of oh 30%q_10%f 10%q 10°f
OX OX  OX OX  OX OX axax 26’x2 A axE 20x 48x
aq oh 8fah+aq

OX OX OX OX OXx?2
and

f=64 ...(54)
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6, 1., 1 3
+|=q°+—f°+—qf | =3Sh,, +3Ah, -39+~
q (Sq TR } oo +3AN =30+
+% L +2G, +2L_ +G,sin(d)-G, cos(6)h,

3 2 529 1 9
0wt a4,y — ffxx - qfxx
7 7 560 3360 560
49 43 a7 » 37 2
+——1"fq,——0q,f —— +—(f
1680 qXX 60 qX X 80( X) 480( X) .
from equations (47) and (48) , we have

h'=h-1, q=q, f =f.

5
frlq, —=
2qXX

1 fXX + 1CBXX'[
4 8

...(55)

...(56)

Putting equations (51), (52) and (56) into equations (49), (54) and (55) with the
neglect of the non-linear terms of equations (49) and (54), the linearization of equation

is obtained and has the form

on + o =0 ...(57)
ot ox
f'=q., ...(58)
and
G = 38N+ 38N, =30+ 1+ La, 4 o+ a -, 59
+G, sin(8) -G, cos(d) h,
The solutions of those disturbances are assumed to be [1, 3, 4]

(h',q', f)=(Hy, Q. f, )exp(wt + ikx) ...(60)
h' =H,e""™ ...(61)
q =Qe" ™ ...(62)
f = f, e ...(63)
putting equations (61), (62) and (63) into equations (57), (58) and (59), we get
O (e )+ 2 Qe ) -0
H,w+Q,ik =0 ...(64)
f, = —k*Q, ...(65)
Q,w = —3Sik*H, + 3AikH, —3Q, +§ fo —ZkZQO —lk2 f,

2" 2 4 ...(66)
—%kZWQ0 +8—10k2vvf0 +G, sin(0) — G, cos(O)H ik
where, H, =—ik% and f, =-k*Q, .(67)

Substituting equation (67) into equation (66), we get

(1+i—(1)k2 +8—10k4jw2 +(3+5k2 +%k4jw+(38k2 ~3A+G,cos(@)k* =0 ...(68)
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Hence, we found that the film is unstable if w>0 only when k <k_, where K_, is

a critical ‘cut-off” wave number, and this is clearly shown in Figure 2. For neutrally
stable wavew =0, then k_ is given by

A 1 %
k. = [(E - EGa Ccos (G)D ...(69)

which is the best result that agrees with the linear results of Hwang and Chen in [7] and
Hwang et al. in [9], when G, -0 .

The maximum growth rate, w of the linear waves occurs for the dominant wave

number, k which is obtained by setting 3—\{(\/ =0 from equation (68). Thus

k= [i(A—lGa cos(H)D2
2S 3

x10°
L T L L T L C
0=0
2.5 H
Hwang et al. 8=pif6
2 0=pil4 |
15F ' \ 0=pi/3 ||
AN G=0
1 - =
0.5 .
z 0 -
0.5+ -
Ak 4
-1.5+~ -
2 -
2.5+ -
r r r r

r r \
0 0.005 0.01 0.015 0.02 0.025 0.03 k 0.035 0.04
K C

Figure 2. The Growth Rate w vs. Wave Number k plotted after
Equation (68) for S=0.1, A=0.0001 and G, = 0.0001 under various 6 .
6. Conclusion

This study analyzed the stability of thin liquid film. Linear stability analysis
reveals the qualitative results. As shown in Figure (2), the film becomes stable to short-
wave-perturbation if k >k, and unstable to long-wave —perturbation when k <k ,

then we conclude that the effect of inclination of thin liquid films is an unstable factor.
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