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ABSTRACT 

In 2005  Wang investigated the zero divisor graphs of degrees 5,6,9 and 10. In 2012 

Shuker and Mohammad investigated the zero divisor graphs of degrees 7 and 8. In this 

paper, we consider zero divisor graphs of commutative rings of degrees 11, 12 and 13. 
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 13و  12, 11تصنيف بيانات قواسم الصفر للحلقات الابدالية ذات الدرجات 

 .د. حسام قاسم محمد أ.م أ.د. نزار حمدون شكر 
 جامعة الموصل ، كلية علوم الحاسبات والرياضيات 

 الملخص
 2012. فييع عييام  10و 9,6,5بيانييات قواسييم اللييلر للحلبييات امبدالييية ميي  الييدرجات Wangدرس  2005فييع عييام 

.فيع ذي ا البحير درسييا بيانيات قواسيم 8 و 7بيانيات قواسيم الليلر لليدرج      Shuker and Mohammadدرس
 .13و  12,11الللر للحلبات امبدالية م  الدرجات 

 قواسم الللر , حلبة , بيان قواسم الللر.  الكلمات المفتاحية :
1. Introduction 

The concept of zero divisor graph of a commutative ring was introduced by Beck 

in [3], he let all elements of the ring be vertices of a graph. In [1] Anderson and 

Livingston introduced and studied the zero divisor graph whose vertices are the non-

zero zero divisors. 

Throughout this paper, all rings are assumed to be commutative rings with 

identity, and Z(R) be the set of zero divisors. We associate a simple graph Γ(R) to a ring 

R with vertices Z(R)*= Z(R)-{0}, the set of all non-zero zero divisors of R. For all 

distinct x,y Z(R)*, the vertices x and y are adjacent if and only if xy=0. In [1] 

Anderson and Livingston proved that for any commutative ring R, Γ(R) is connected. 

In [6], Wang investigated the zero divisor graphs of degree 5, 6, 9 and 10. In [5], 

we consider the zero divisor graphs of degree 7 and 8. In this paper, we extend these 

results to consider the zero divisor graphs of  commutative rings of degrees 11,12 and 

13. 

2. Rings with |Z(R)*|=11 

The main aim of this section is to find all possible zero divisor graphs of 11 

vertices and rings correspond to them. 

Recall that if R is a finite ring, then every element of R either unit or zero divisor 

[2]. In [6] Wang proved the following result. 

Lemma 2.1: Let (R1,m1) and (R2,m2) are local rings, then 

|Z(R1xR2)
*|=|R1|x|m2|+|R2|x|m1|-|m1||m2|-1. ■ 

In [5] we extended Wang's result. 
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Lemma 2.2: If (R1,m1), (R2,m2) and (R3,m3) are finite local rings, then 

|Z(R1xR2xR3)
*|=|R1|x|R2|x|m3|+|Z(R1xR2)|x(|R3|-|m3|)-1 where 

|Z(R1xR2)|=|R1|x|m2|+|R2|x|m1|-|m1|x|m2|.■ 

As a direct consequence to Lemma 2.2, we obtain the following: 

Corollary 2.3: If R1, R2 and R3 are finite fields, then  

|Z(R1xR2xR3)
*|= |R1||R2|+|R1||R3|+|R2||R3|-|R1|-|R2|-|R3|.  ■ 

Corollary 2.4 : If R is a finite ring and RR1xR2xR3, then |Z(R)*|≥13 for some 

local ring Ri but not field. ■ 

Corollary 2.5: If Ri is local not field for some 1≤i1,i2≤3,then |Z(R)*|≥27.■ 

Lemma 2.6: [6] Let R be a ring and R R1xR2xR3, where Ri is local for i=1,2,3, 

then 

1- If |Ri|3 for some i1, i2, then |Z(R)*|13. 

2- If |Ri|4 for some i, then |Z(R)*|12. 

Lemma 2.7: [6] Let R R1xR2xR3xR4, where Ri is local for every i. Then  

|Z(R)*|14. 

 Next, we prove two fundamental lemmas 

Lemma 2.8 : Let R be a ring with |Z(R)*|=11, then R≅R1xR2 , where R1 and R2 

are local rings. 

Proof: Let R  R1 x R2 …x Rn, where each Ri is a local ring. If n ≥ 4 or n=3 with 

Ri not field for some  i=1,2 and 3, then we have a contradiction , by Lemma 2.7 and 

Corollary 2.4 respectively. It is clear that if n=1, then |Z(R)|=12  and hence, it also a 

contradiction so that we can investigate the case when n=3 and Ri are fields for each 

i=1,2,3 .By Corollary 2.3 , |Z(R1xR2xR3)
*|= |R1||R2|+|R1||R3|+|R2||R3|-|R1|-|R2|-|R3|=11. If 

|R1|=|R2|=2, then |R3|=11/3 which is a contradiction. If |R1|=2, |R2|=3, then |R3|=5/2, 

which is a contradiction. If |R1|=2 and |R2|≥4, then by Lemma 2.6(2) |Z(R)*|≥12, which 

is a contradiction. If |R1| and |R2| 3, then by Lemma2.6(1) |Z(R)*|≥13, which is again a 

contradiction.  Therefore, n=2 and, hence RR1xR2. ■ 

Lemma 2.9: Let R be a ring with |Z(R)*|=11. Then, RZ4xZ4, Z4xZ2[X]/(X2), 

Z2[X]/(X2)x Z2[X]/(X2), Z2xZ9, Z2xZ3[X]/(X2), Z2xZ8, Z2xZ2[X]/(X3), 

Z2xZ4[X]/(2X,X2-2), Z2xZ2[X,Y]/(X,Y)3, Z2xZ4[X]/(X2,2X), Z5xZ4, Z5xZ2[X]/(X2), 

Z2xZ11, F4xF9 or Z5xF8. 

Proof: By Lemma 2.8; R≅R1xR2 , where R1,R2 are local rings. If R1 and R2 are 

not fields, then |Z(R1xR2)
*|=|R1|x|m2|+|R2|x|m1|-|m1||m2|-1=11. If |m1|=p , where p is 

prime, then |R1|=p2 [ 6, Lemma 4.8]. If |m1|=2, then |R1|=4 which implies that |R2|=6-

|m2|, therefore |m2|=2 and |R2|=4 so that R Z4xZ4 or Z4xZ2[X]/(X2) or Z2[X]/(X2)x 

Z2[X]/(X2). if |m1|=3, then |R1|=9 which implies that |R2|=4-2|m2|, but |m2|≥2, therefore 

|R2|≤0 which is a contradiction . If |m1|,|m2|≥4, then |R1|,|R2|≥8 so that 11=|Z(R)*|≥47 

which is a contradiction. If R1 is a field and R2 is not a field, then |R2|=12-|m2|(|R1|-1). 

Let |R1|=2,then |R2|=12-|m2|. Therefore, |m2|=3, |R2|=9 or |m2|=4, |R2|=8 and, hence 

RZ2xZ9, Z2xZ3[X]/(X2), Z2xZ8, Z2xZ2[X]/(X3) Z2xZ4[X]/(2X,X2-2), 

Z2xZ2[X,Y]/(X,Y)3 or  Z2xZ4[X]/(X2,2X) . 

Let |R1|=3, then |R2|=12-2|m2|, which is a contradiction. Let |R1|=4: Then, 

 |R2|=12-3|m2|, which is also a contradiction. Let |R1|=5. Then, |R2|=12-4|m2|. Therefore, 

|m2|=2 and |R2|=4 so that RZ5xZ4 or Z5x Z2[X]/(X2). Let |R1|≥7: Then, |R2|=12-6|m2| 

and since |m2|≥2, then |R2|≤0 which is a contradiction. If R1 and R2 are fields, then 

applying Lemma 2.1 |R1|+|R2|=13 and hence |R1|=2, |R2|=11 or |R1|=4, |R2|=9 or |R1|=5, 

|R1|=8. Therefore, RZ2xZ11, F4xF9 or Z5xF8. ■ 

Now, we shall prove the main result of  this section. 
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Theorem 2.10: Let R be a ring with |Z(R) *| =11, then, the graphs depicted in the 

following figures can be realized as Γ(R). 

    

Figure (1) Figure (2) Figure (3) Figure ( 4) 

    

Figure ( 5) Figure ( 6) Figure ( 7 ) Figure ( 8 ) 

Proof: By Lemma 2.7; RZ4xZ4, Z4xZ2[X]/(X2), Z2[X]/(X2)x Z2[X]/(X2), Z2xZ9, 

Z2xZ3[X]/(X2), Z2xZ8, Z2xZ2[X]/(X3), Z2xZ4[X]/(2X,X2-2), Z2xZ2[X,Y]/(X,Y)3, 

Z2xZ4[X]/(X2,2X), Z5xZ4, Z5xZ2[X]/(X2), Z2xZ11, F4xF9 or Z5xF8. Figure (1), can be 

realized as Γ(Z4xZ4) or Γ(Z4xZ2[X]/(X2)) or Γ(Z2[X]/(X2)x Z2[X]/(X2)). Figure (2) , can 

be realized as Γ(Z2xZ9) or Γ(Z2xZ3[X]/(X2)). Figure (3) , can be realized as Γ(Z2xZ8) or 

Γ(Z2xZ2[X]/(X3)) or Z2xZ4[X]/(2X,X2-2). Figure (4) , can be realized as Γ(Z5xZ4) or 

Γ(Z5xZ2[X]/(X2)). Figure (5) , can be realized Γ(Z2xZ4[X]/(2X,X2)) or 

Γ(Z2xZ[X,Y]/(X,Y)2). Figure (6) , can be realized as Γ(Z2xZ11). Figure (7) , can be 

realized as Γ(F4xF9) and Figure(8) , can be realized as Γ(Z5xF8). ■ 

3. Rings with |Z(R)*|=12 

The main aim of this section is to find all possible zero divisor graphs of 12 

vertices and rings correspond to them. 

 We shall start this section with the following lemmas. 

Lemma 3.1 : Let R be a ring with |Z(R)*|=12; if RR1xR2x…Rn, where Ri is a 

local ring for all i≥1 , then n=3 if and only if RZ2xZ2xF4 

Proof: Let R be a ring with |Z(R)*|=12 and let RR1xR2xR3 where Ri is a local 

ring for all i=1,2,3. If Ri is not a field for some 1≤i≤3, then |Z(R)*|≥13 which is a 

contradiction, so that Ri is a field for all 1≤i≤3, then by Corollary2.3, |Z(R1xR2xR3)
*| = 

|R1||R2|+|R1||R3|+|R2||R3|-|R1|-|R2|-|R3|=12. If |R1|=|R2|=2, then |R3|=4, so that 

RZ2xZ2xF4. If |R1|=2 and |R2|=3, then |R3|=13/4 which is a contradiction. If |R1|≥3 and 

|R2|≥3, then by Lemma2.6(1) |Z(R)*|≥13, which is a contradiction. ■ 

Lemma 3.2: Let R be a ring with |Z(R)*|=12, if RR1xR2x…Rn, where Ri is a 

local ring for all i≥1 , then n=2 if and only if R Z3xZ11, Z5xF9 or Z7xZ7 

Proof: Let R be a ring with |Z(R)*|=12 and let RR1 xR2 where R1 and R2 are local 

rings. If R1 and R2 are not fields, then |Z(R1xR2)
*|=|R1|x|m2|+|R2|x|m1|-|m1||m2|-1=12. 

If |m1|=2, then |R1|=4. So that, |R2|=13/2 - |m2|. Since, |m2| is an integer , then |R2| is 

not an integer which is a contradiction.  

If |m1|≥3, then |R1|≥8 and, since |m2|≥2, |R2|≥4 ,then 12=|Z(R)*|≥ 21 which is also a 

contradiction. 

If |R1| is a field and |R2| is not a field, then |R2|+|m2||R1|-|m2|=12 which this leads to 

a contradiction. If R1 and R2 are fields, then |R1|+|R2|=14 which implies that 

|R1|=3,|R2|=11 or |R1|=5,|R2|=9 or |R1|=|R2|=7. Therefore RZ3xZ11, Z5xF9 or Z7x Z7 . ■ 
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Lemma 3.3: Let R be a ring with |Z(R)*|=12. Then, RZ2xZ2xF4, Z3xZ11, Z5xF9, 

Z7xZ7, Z169 or Z13[X]/(X2) 

Proof: Let R  R1 x R2 …x Rn, where Ri is a local ring. If n≥4, then by Lemma 2.7 

|Z(R)*|≥14. If n=3 , then RZ2xZ2xF4. If n=2 , then R Z3xZ11 Z5xF9 or Z7xZ7. If n=1 

and R is a field, then Z(R)={0} which is a contradiction. If R is a local ring, then 

|Z(R)*|=|m|-1=12, so that |m|=13. Therefore, |R|=169, which implies that RZ169 or 

Z13[X]/(X2). ■ 

Theorem 3.4: Let R be a ring with |Z(R)|*=12, then the graphs depicted in the 

following figures can be realized as Γ(R) 

     

Figure (1) Figure (2) Figure (3) Figure (4) Figure (5) 

                                      

Proof: By Lemma 3.3; RZ2xZ2xF4, Z3xZ11, Z5xF9, Z7xZ7, Z169 or Z13[X]/(X2) 

. In Figure (1), can be realized as Γ(Z2xZ2xF4). Figure (2) , can be realized as 

Γ(Z3xZ11). Figure (3) , can be realized as Γ(Z7xZ7). Figure (4) , can be realized as 

Γ(Z7xZ7) . Figure (5) , can be realized as Γ(Z169) or Γ(Z13[X]/(X)2). ■ 

4. Rings with |Z(R)*|=13 

The main aim of this section is to find all possible zero divisor graphs of 13 

vertices and rings correspond to them. 

 We shall start this section with following lemma. 

Lemma 4.1 : Let R be a ring with |Z(R)*|=13, if RR1xR2x…Rn, where Ri is a 

local ring for all i≥1 , then n=3 if and only if RZ2xZ3xZ3, Z2xZ2xZ4 or 

Z2xZ2xZ2[X]/(X2). 

Proof : Let R be a ring with |Z(R)*|=13 and let R≅R1xR2xR3, where Ri local rings 

for all 1 ≤ i ≤ 3 . If Ri is not a field, for some 1 ≤ i1, i2 ≤ 3, then |Z(R1xR2xR3)
*|≥27 

which is a contradiction. 

 If R3 is not a field and R1 and R2 are fields, then |Z(R1xR2)|=|R1|+|R2|-1 and 

|Z(R1xR2xR3)
*|=|R1||R2||m3|+(|R1|+|R2|-1)(|R3|-|m3|)-1 , so that |R1||R2||m3|+(|R1|+|R2|-

1)(|R3|-|m3|)=14 

If |R1|=|R2|=2, then 
3

|m|14
|R| 3

3

−
= which implies that |R3| =4 and |m3|=2. Therefore, 

R≅Z2xZ2xZ4 or Z2xZ2xZ2[X]/(X2) . If |R1|≥2 and |R2|≥3, and since |R3|≥4 and |m3|≥2, 

then 13=|Z(R1xR2xR3)
*|≥2.3.2+(2+3-1)(4-2)-1≥19 which is a contradiction. If Ri is a 

field for all 1 ≤ i ≤ 3, then 

|R1||R2|+|R1||R3|+|R2||R3|-|R1|-|R2|-|R3|=13. If |R1|=|R2|, then |R3| = 13/2 which is a 

contradiction. If |R1|=2, |R2|=3 , then |R3|=3 so that R≅Z2xZ3xZ3. If |R1|=2 and |R2|=4 , 

then |R3|=11/5 which is a contradiction. If |R1|=2 and |R2|=5, then |R3|=5/3 which is a 

contradiction. If |R1|=2 and |R2|≥7 , then |R3|≤1 which is a contradiction. If |R1|≥3 and 

|R2|≥4 , then |R3|≤4/3 which is a contradiction. ■ 

Lemma 4.2 : Let R be a ring with |Z(R)*|=13, if RR1xR2x…Rn, where Ri is a 

local ring for all i≥1 , then n=2 if and only if R Z2xZ13, F4xZ11 or Z7xF8. 

0 
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Proof : Let R be a ring with |Z(R)*|=13 and let R≅R1xR2, where R1 and R2 local 

rings. If R1 and R2 are not fields, then  

|Z(R1xR2)
*|=|R1||m2|+|R2||m1|-|m1||m2|=14. If |m1|=2, then |R1|=4, so that |R2|=7-|m2| 

which is a contradiction. If |m1|,|m2|≥3, then |R1|,|R2|≥8, so that |Z(R1xR2)
*|3.8+8.3-3.3-

1=38 which is a contradiction. If R1 field and R2 local not field, then |R1||m2|+|R2|-

|m2|=14 which implies that |R2|=14-(|R1|-1)|m2|. If |R1|=2, then |R2|=14-|m2| which is a 

contradiction. If |R1|=3, then |R2|=14-2|m2| which is a contradiction. If |R1|=4, then 

|R2|=14-3|m2| which is a contradiction. If |R1|=5, then |R2|=14-4|m2| which is a 

contradiction. If |R1|≥7, then |Z(R1xR2)
*| 15 which is a contradiction. Therefore, R1 and 

R2 are fields, which imply that |R1|+|R2|=15 and, hence |R1|=2, |R2|=13 or |R1|=4, |R2|=11 

or |R1|=7, |R2|=8. Therefore, RZ2xZ13, F4xZ11 or Z7xF8. ■ 

Lemma 4.3: Let R be a ring with |Z(R)*|=13, then R≅Z2xZ2xZ4, 

Z2xZ2xZ2[X]/(X2), R Z2xZ13, F4xZ11 or Z7xF8. 

Proof: Let R  R1 x R2 …x Rn, where Ri is a local ring. If n≥4, then by Lemma 2.7 

|Z(R)*|≥14. If n=3 , then R≅Z2xZ2xZ4 or Z2xZ2xZ2[X]/(X2) Lemma 4.1. If n=2 , then 

R Z2xZ13, F4xZ11 or Z7xF8 Lemma4.2. If n=1 and R is a field, then Z(R)={0} which is 

a contradiction. If R is a local ring, then |Z(R)*|=m-1=13, so that |m|=14 which is also a 

contradiction. ■ 

Theorem 4.4: Let R be a ring with |Z(R)|*=13, then the graphs depicted in the 

following figures can be realized as Γ(R)  

 

 

 
 

Figure (1) Figure (2) Figure (3) Figure (4) 

 

Proof: By Lemma 4.3 R≅Z2xZ2xZ4, Z2xZ2xZ2[X]/(X2), Z2xZ13, F4xZ11 or Z7xF8. 

Figure (1) can be realized as (Z2xZ2xZ4) or (Z2xZ2xZ2[X]/(X)2. Figure (2) can be 

realized as (Z2xZ13). Figure (3) can be realized as (F4xZ11) and Figure (4) can be 

realized as (Z7xZ8). 
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