Classification of Zero Divisor Graphs of Commutative Rings of Degrees 11,12 and 13

Nazar H. Shuker

Husam Q. Mohammad

nazarh_2013@yahoo.com husam_alsabawi@yahoo.com College of Computer Sciences and Mathematics University of Mosul, Iraq

Received on: 6/2/2012

Accepted on: 3/4/2013

In 2005 Wang investigated the zero divisor graphs of degrees 5,6,9 and 10. In 2012 Shuker and Mohammad investigated the zero divisor graphs of degrees 7 and 8. In this paper, we consider zero divisor graphs of commutative rings of degrees 11, 12 and 13. **Key word:** Zero-divisor, Ring, Zero-divisor graph.

ABSTRACT

تصنيف بيانات قواسم الصفر للحلقات الابدالية ذات الدرجات 11, 12 و 13

أ.د. نزار حمدون شكر كلية علوم الحاسبات والرياضيات، جامعة الموصل الملخص

في عام 2005 درس Wang بيانات قواسم الصفر للحلقات الابدالية من الدرجات9,6,5 و 10. في عام 2012 درس Shuker and Mohammad بيانات قواسم الصفر للدرجتين 7 و8 . في هذا البحث درسنا بيانات قواسم الصفر للحلقات الابدالية من الدرجات 12,11 و 13. الكلمات المفتاحية : قواسم الصفر , حلقة , بيان قواسم الصفر .

1. Introduction

The concept of zero divisor graph of a commutative ring was introduced by Beck in [3], he let all elements of the ring be vertices of a graph. In [1] Anderson and Livingston introduced and studied the zero divisor graph whose vertices are the non-zero zero divisors.

Throughout this paper, all rings are assumed to be commutative rings with identity, and Z(R) be the set of zero divisors. We associate a simple graph $\Gamma(R)$ to a ring R with vertices $Z(R)^* = Z(R) - \{0\}$, the set of all non-zero zero divisors of R. For all distinct $x,y \in Z(R)^*$, the vertices x and y are adjacent if and only if xy=0. In [1] Anderson and Livingston proved that for any commutative ring R, $\Gamma(R)$ is connected.

In [6], Wang investigated the zero divisor graphs of degree 5, 6, 9 and 10. In [5], we consider the zero divisor graphs of degree 7 and 8. In this paper, we extend these results to consider the zero divisor graphs of commutative rings of degrees 11,12 and 13.

2. Rings with |Z(R)*|=11

The main aim of this section is to find all possible zero divisor graphs of 11 vertices and rings correspond to them.

Recall that if R is a finite ring, then every element of R either unit or zero divisor [2]. In [6] Wang proved the following result.

Lemma 2.1: Let (R_1,m_1) and (R_2,m_2) are local rings, then $|Z(R_1xR_2)^*| = |R_1|x|m_2| + |R_2|x|m_1| - |m_1||m_2| - 1$.

In [5] we extended Wang's result.

Lemma 2.2: If (R_1,m_1) , (R_2,m_2) and (R_3,m_3) are finite local rings, then $|Z(R_1xR_2xR_3)^*| = |R_1|x|R_2|x|m_3| + |Z(R_1xR_2)|x(|R_3| - |m_3|) - 1$ where

 $|Z(R_1xR_2)| = |R_1|x|m_2| + |R_2|x|m_1| - |m_1|x|m_2|.$

As a direct consequence to Lemma 2.2, we obtain the following:

Corollary 2.3: If R₁, R₂ and R₃ are finite fields, then

 $|Z(R_1xR_2xR_3)^*| = |R_1||R_2| + |R_1||R_3| + |R_2||R_3| - |R_1| - |R_2| - |R_3|. \blacksquare$

Corollary 2.4 : If R is a finite ring and $R \cong R_1 x R_2 x R_3$, then $|Z(R)^*| \ge 13$ for some local ring R_i but not field.

Corollary 2.5: If R_i is local not field for some $1 \le i_1, i_2 \le 3$, then $|Z(R)^*| \ge 27$.

Lemma 2.6: [6] Let R be a ring and R \cong R₁xR₂xR₃, where R_i is local for i=1,2,3, then

1- If $|\mathbf{R}_i| \ge 3$ for some i_1 , i_2 , then $|\mathbf{Z}(\mathbf{R})^*| \ge 13$.

2- If $|\mathbf{R}_i| \ge 4$ for some i, then $|\mathbf{Z}(\mathbf{R})^*| \ge 12$.

Lemma 2.7: [6] Let R $R_1xR_2xR_3xR_4$, where R_i is local for every i. Then $|Z(R)^*| \ge 14$.

Next, we prove two fundamental lemmas

Lemma 2.8 : Let R be a ring with $|Z(R)^*|=11$, then $R\cong R_1xR_2$, where R_1 and R_2 are local rings.

Proof: Let $R \cong R_1 \ge R_2 \ldots \ge R_n$, where each R_i is a local ring. If $n \ge 4$ or n=3 with R_i not field for some i=1,2 and 3, then we have a contradiction , by Lemma 2.7 and Corollary 2.4 respectively. It is clear that if n=1, then |Z(R)|=12 and hence, it also a contradiction so that we can investigate the case when n=3 and R_i are fields for each i=1,2,3. By Corollary 2.3 , $|Z(R_1 \ge R_2 \ge R_3)^*| = |R_1| |R_2| + |R_1| |R_3| + |R_2| |R_3| - |R_1| - |R_2| - |R_3| = 11$. If $|R_1|=|R_2|=2$, then $|R_3|=11/3$ which is a contradiction. If $|R_1|=2$, $|R_2|=3$, then $|R_3|=5/2$, which is a contradiction. If $|R_1|=2$ and $|R_2|\ge 4$, then by Lemma 2.6(2) $|Z(R)^*|\ge 12$, which is a contradiction. If $|R_1|=12$, $|R_2|=13$, which is again a contradiction. Therefore, n=2 and, hence $R\cong R_1 \ge 8$.

Lemma 2.9: Let R be a ring with $|Z(R)^*|=11$. Then, $R\cong Z_4xZ_4$, $Z_4xZ_2[X]/(X^2)$, $Z_2[X]/(X^2)x Z_2[X]/(X^2)$, Z_2xZ_9 , $Z_2xZ_3[X]/(X^2)$, Z_2xZ_8 , $Z_2xZ_2[X]/(X^3)$, $Z_2xZ_4[X]/(2X,X^2-2)$, $Z_2xZ_2[X,Y]/(X,Y)^3$, $Z_2xZ_4[X]/(X^2,2X)$, Z_5xZ_4 , $Z_5xZ_2[X]/(X^2)$, Z_2xZ_{11} , F_4xF_9 or Z_5xF_8 .

Proof: By Lemma 2.8; R≅R₁xR₂, where R₁,R₂ are local rings. If R₁ and R₂ are not fields, then $|Z(R_1xR_2)^*|=|R_1|x|m_2|+|R_2|x|m_1|-|m_1||m_2|-1=11$. If $|m_1|=p$, where p is prime, then $|R_1|=p^2$ [6, Lemma 4.8]. If $|m_1|=2$, then $|R_1|=4$ which implies that $|R_2|=6-|m_2|$, therefore $|m_2|=2$ and $|R_2|=4$ so that R≅ Z_4xZ_4 or Z_4xZ_2[X]/(X²) or Z_2[X]/(X²)x Z_2[X]/(X²). if $|m_1|=3$, then $|R_1|=9$ which implies that $|R_2|=4-2|m_2|$, but $|m_2|\geq 2$, therefore $|R_2|\leq 0$ which is a contradiction . If $|m_1|, |m_2|\geq 4$, then $|R_1|, |R_2|\geq 8$ so that $11=|Z(R)^*|\geq 47$ which is a contradiction. If R₁ is a field and R₂ is not a field, then $|R_2|=12-|m_2|(|R_1|-1)$. Let $|R_1|=2$, then $|R_2|=12-|m_2|$. Therefore, $|m_2|=3$, $|R_2|=9$ or $|m_2|=4$, $|R_2|=8$ and, hence R≅Z_2xZ_9, Z_2xZ_3[X]/(X²), Z_2xZ_8, Z_2xZ_2[X]/(X³) Z_2xZ_4[X]/(2X,X²-2), Z_2xZ_2[X,Y]/(X,Y)³ or Z_2xZ_4[X]/(X²,2X).

Let $|R_1|=3$, then $|R_2|=12-2|m_2|$, which is a contradiction. Let $|R_1|=4$: Then, $|R_2|=12-3|m_2|$, which is also a contradiction. Let $|R_1|=5$. Then, $|R_2|=12-4|m_2|$. Therefore, $|m_2|=2$ and $|R_2|=4$ so that $R\cong Z_5 x Z_4$ or $Z_5 x Z_2 [X]/(X^2)$. Let $|R_1|\ge 7$: Then, $|R_2|=12-6|m_2|$ and since $|m_2|\ge 2$, then $|R_2|\le 0$ which is a contradiction. If R_1 and R_2 are fields, then applying Lemma 2.1 $|R_1|+|R_2|=13$ and hence $|R_1|=2$, $|R_2|=11$ or $|R_1|=4$, $|R_2|=9$ or $|R_1|=5$, $|R_1|=8$. Therefore, $R\cong Z_2 x Z_{11}$, $F_4 x F_9$ or $Z_5 x F_8$.

Now, we shall prove the main result of this section.

Theorem 2.10: Let R be a ring with |Z(R) *| = 11, then, the graphs depicted in the following figures can be realized as $\Gamma(R)$.

Proof: By Lemma 2.7; R≅Z₄xZ₄, Z₄xZ₂[X]/(X²), Z₂[X]/(X²)x Z₂[X]/(X²), Z₂xZ₉, Z₂xZ₃[X]/(X²), Z₂xZ₈, Z₂xZ₂[X]/(X³), Z₂xZ₄[X]/(2X,X²-2), Z₂xZ₂[X,Y]/(X,Y)³, Z₂xZ₄[X]/(X²,2X), Z₅xZ₄, Z₅xZ₂[X]/(X²), Z₂xZ₁₁, F₄xF₉ or Z₅xF₈. Figure (1), can be realized as $\Gamma(Z_4xZ_4)$ or $\Gamma(Z_4xZ_2[X]/(X^2))$ or $\Gamma(Z_2[X]/(X^2)x Z_2[X]/(X^2))$. Figure (2), can be realized as $\Gamma(Z_2xZ_9)$ or $\Gamma(Z_2xZ_3[X]/(X^2))$. Figure (3), can be realized as $\Gamma(Z_2xZ_8)$ or $\Gamma(Z_2xZ_2[X]/(X^3))$ or $Z_2xZ_4[X]/(2X,X^2-2)$. Figure (4), can be realized as $\Gamma(Z_5xZ_4)$ or $\Gamma(Z_5xZ_2[X]/(X^2))$. Figure (5), can be realized $\Gamma(Z_2xZ_4[X]/(2X,X^2))$ or $\Gamma(Z_2xZ[X,Y]/(X,Y)^2)$. Figure (6), can be realized as $\Gamma(Z_5xF_8)$. ■

3. Rings with |Z(R)*|=12

The main aim of this section is to find all possible zero divisor graphs of 12 vertices and rings correspond to them.

We shall start this section with the following lemmas.

Lemma 3.1 : Let R be a ring with $|Z(R)^*|=12$; if $R\cong R_1xR_2x...R_n$, where R_i is a local ring for all $i\ge 1$, then n=3 if and only if $R\cong Z_2xZ_2xF_4$

Proof: Let R be a ring with $|Z(R)^*|=12$ and let $R\cong R_1xR_2xR_3$ where R_i is a local ring for all i=1,2,3. If R_i is not a field for some $1\le i\le 3$, then $|Z(R)^*|\ge 13$ which is a contradiction, so that R_i is a field for all $1\le i\le 3$, then by Corollary2.3, $|Z(R_1xR_2xR_3)^*| = |R_1||R_2|+|R_1||R_3|+|R_2||R_3|-|R_1|-|R_2|-|R_3|=12$. If $|R_1|=|R_2|=2$, then $|R_3|=4$, so that $R\cong Z_2xZ_2xF_4$. If $|R_1|=2$ and $|R_2|=3$, then $|R_3|=13/4$ which is a contradiction. If $|R_1|\ge 3$ and $|R_2|\ge 3$, then by Lemma2.6(1) $|Z(R)^*|\ge 13$, which is a contradiction.

Lemma 3.2: Let R be a ring with $|Z(R)^*|=12$, if $R\cong R_1xR_2x...R_n$, where R_i is a local ring for all $i\ge 1$, then n=2 if and only if $R\cong Z_3xZ_{11}$, Z_5xF_9 or Z_7xZ_7

Proof: Let R be a ring with $|Z(R)^*|=12$ and let $R \cong R_1 x R_2$ where R_1 and R_2 are local rings. If R_1 and R_2 are not fields, then $|Z(R_1xR_2)^*|=|R_1|x|m_2|+|R_2|x|m_1|-|m_1||m_2|-1=12$.

If $|m_1|=2$, then $|R_1|=4$. So that, $|R_2|=13/2 - |m_2|$. Since, $|m_2|$ is an integer, then $|R_2|$ is not an integer which is a contradiction.

If $|m_1|\ge 3$, then $|R_1|\ge 8$ and, since $|m_2|\ge 2$, $|R_2|\ge 4$, then $12=|Z(R)^*|\ge 21$ which is also a contradiction.

If $|R_1|$ is a field and $|R_2|$ is not a field, then $|R_2|+|m_2||R_1|-|m_2|=12$ which this leads to a contradiction. If R_1 and R_2 are fields, then $|R_1|+|R_2|=14$ which implies that $|R_1|=3$, $|R_2|=11$ or $|R_1|=5$, $|R_2|=9$ or $|R_1|=|R_2|=7$. Therefore $R\cong Z_{3x}Z_{11}$, Z_5xF_9 or Z_7x , Z_7 .

Lemma 3.3: Let R be a ring with $|Z(R)^*|=12$. Then, $R\cong Z_2xZ_2xF_4$, Z_3xZ_{11} , Z_5xF_9 , Z_7xZ_7 , Z_{169} or $Z_{13}[X]/(X^2)$

Proof: Let $R \cong R_1 \ge R_2 \ldots \ge R_n$, where R_i is a local ring. If $n \ge 4$, then by Lemma 2.7 $|Z(R)^*|\ge 14$. If n=3, then $R \cong Z_2 \ge Z_2 \ge F_4$. If n=2, then $R \cong Z_3 \ge Z_{11} \ge Z_5 \ge F_9$ or $Z_7 \ge Z_7$. If n=1 and R is a field, then $Z(R)=\{0\}$ which is a contradiction. If R is a local ring, then $|Z(R)^*|=|m|-1=12$, so that |m|=13. Therefore, |R|=169, which implies that $R \cong Z_{169}$ or $Z_{13}[X]/(X^2)$.

Theorem 3.4: Let R be a ring with $|Z(R)|^*=12$, then the graphs depicted in the following figures can be realized as $\Gamma(R)$

Proof: By Lemma 3.3; $R \cong Z_2 x Z_2 x F_4$, $Z_3 x Z_{11}$, $Z_5 x F_9$, $Z_7 x Z_7$, Z_{169} or $Z_{13}[X]/(X^2)$

. In Figure (1), can be realized as $\Gamma(Z_2xZ_2xF_4)$. Figure (2), can be realized as $\Gamma(Z_3xZ_{11})$. Figure (3), can be realized as $\Gamma(Z_7xZ_7)$. Figure (4), can be realized as $\Gamma(Z_7xZ_7)$. Figure (5), can be realized as $\Gamma(Z_{169})$ or $\Gamma(Z_{13}[X]/(X)^2)$.

4. Rings with |**Z**(**R**)*|=13

The main aim of this section is to find all possible zero divisor graphs of 13 vertices and rings correspond to them.

We shall start this section with following lemma.

Lemma 4.1 : Let R be a ring with $|Z(R)^*|=13$, if $R\cong R_1xR_2x...R_n$, where R_i is a local ring for all $i\ge 1$, then n=3 if and only if $R\cong Z_2xZ_3xZ_3$, $Z_2xZ_2xZ_4$ or $Z_2xZ_2xZ_2[X]/(X^2)$.

Proof : Let R be a ring with $|Z(R)^*|=13$ and let $R\cong R_1xR_2xR_3$, where R_i local rings for all $1 \le i \le 3$. If R_i is not a field, for some $1 \le i_1$, $i_2 \le 3$, then $|Z(R_1xR_2xR_3)^*|\ge 27$ which is a contradiction.

If R_3 is not a field and R_1 and R_2 are fields, then $|Z(R_1xR_2)|=|R_1|+|R_2|-1$ and $|Z(R_1xR_2xR_3)^*|=|R_1||R_2||m_3|+(|R_1|+|R_2|-1)(|R_3|-|m_3|)-1$, so that $|R_1||R_2||m_3|+(|R_1|+|R_2|-1)(|R_3|-|m_3|)-1$

If $|R_1| = |R_2| = 2$, then $|R_3| = \frac{14 - |m_3|}{3}$ which implies that $|R_3| = 4$ and $|m_3| = 2$. Therefore,

 $R \cong Z_2 x Z_2 x Z_4$ or $Z_2 x Z_2 x Z_2 [X]/(X^2)$. If $|R_1| \ge 2$ and $|R_2| \ge 3$, and since $|R_3| \ge 4$ and $|m_3| \ge 2$, then $13 = |Z(R_1 x R_2 x R_3)^*| \ge 2.3.2 + (2+3-1)(4-2) - 1 \ge 19$ which is a contradiction. If R_i is a field for all $1 \le i \le 3$, then

 $|R_1||R_2|+|R_1||R_3|+|R_2||R_3|-|R_1|-|R_2|-|R_3|=13$. If $|R_1|=|R_2|$, then $|R_3| = 13/2$ which is a contradiction. If $|R_1|=2$, $|R_2|=3$, then $|R_3|=3$ so that $R\cong Z_2xZ_3xZ_3$. If $|R_1|=2$ and $|R_2|=4$, then $|R_3|=11/5$ which is a contradiction. If $|R_1|=2$ and $|R_2|=5$, then $|R_3|=5/3$ which is a contradiction. If $|R_1|=2$ and $|R_2|\geq7$, then $|R_3|\leq1$ which is a contradiction. If $|R_1|\geq3$ and $|R_2|\geq4$, then $|R_3|\leq4/3$ which is a contradiction.

Lemma 4.2 : Let R be a ring with $|Z(R)^*|=13$, if $R\cong R_1xR_2x...R_n$, where R_i is a local ring for all $i\ge 1$, then n=2 if and only if $R\cong Z_2xZ_{13}$, F_4xZ_{11} or Z_7xF_8 .

Proof: Let R be a ring with $|Z(R)^*|=13$ and let $R\cong R_1xR_2$, where R_1 and R_2 local rings. If R_1 and R_2 are not fields, then

 $|Z(R_1xR_2)^*|=|R_1||m_2|+|R_2||m_1|-|m_1||m_2|=14$. If $|m_1|=2$, then $|R_1|=4$, so that $|R_2|=7-|m_2|$ which is a contradiction. If $|m_1|,|m_2|\ge 3$, then $|R_1|,|R_2|\ge 8$, so that $|Z(R_1xR_2)^*|\ge 3.8+8.3-3.3-1=38$ which is a contradiction. If R_1 field and R_2 local not field, then $|R_1||m_2|+|R_2|-|m_2|=14$ which implies that $|R_2|=14-(|R_1|-1)|m_2|$. If $|R_1|=2$, then $|R_2|=14-|m_2|$ which is a contradiction. If $|R_1|=3$, then $|R_2|=14-2|m_2|$ which is a contradiction. If $|R_1|=4$, then $|R_2|=14-3|m_2|$ which is a contradiction. If $|R_1|=7$, then $|Z(R_1xR_2)^*|\ge 15$ which is a contradiction. Therefore, R_1 and R_2 are fields, which imply that $|R_1|+|R_2|=15$ and, hence $|R_1|=2$, $|R_2|=13$ or $|R_1|=4$, $|R_2|=11$ or $|R_1|=7$, $|R_2|=8$. Therefore, $R\cong Z_2xZ_{13}$, F_4xZ_{11} or Z_7xF_8 .

Lemma 4.3: Let R be a ring with $|Z(R)^*|=13$, then $R\cong Z_2xZ_2xZ_4$, $Z_2xZ_2xZ_2[X]/(X^2)$, $R\cong Z_2xZ_{13}$, F_4xZ_{11} or Z_7xF_8 .

Proof: Let R ≅ R₁ x R₂ ... x R_n, where R_i is a local ring. If n≥4, then by Lemma 2.7 $|Z(R)^*| \ge 14$. If n=3, then R≅Z₂xZ₂xZ₄ or Z₂xZ₂xZ₂[X]/(X²) Lemma 4.1. If n=2, then R≅ Z₂xZ₁₃, F₄xZ₁₁ or Z₇xF₈ Lemma4.2. If n=1 and R is a field, then Z(R)={0} which is a contradiction. If R is a local ring, then $|Z(R)^*|$ =m-1=13, so that |m|=14 which is also a contradiction. ■

Theorem 4.4: Let R be a ring with $|Z(R)|^*=13$, then the graphs depicted in the following figures can be realized as $\Gamma(R)$

Proof: By Lemma 4.3 R \cong Z₂xZ₂xZ₄, Z₂xZ₂xZ₂[X]/(X²), Z₂xZ₁₃, F₄xZ₁₁ or Z₇xF₈. Figure (1) can be realized as $\Gamma(Z_2xZ_2xZ_4)$ or $\Gamma(Z_2xZ_2xZ_2[X]/(X)^2$. Figure (2) can be realized as $\Gamma(Z_2xZ_{13})$. Figure (3) can be realized as $\Gamma(F_4xZ_{11})$ and Figure (4) can be realized as $\Gamma(Z_7xZ_8)$.

<u>REFERENCES</u>

- [1] D.F. Andersen and P. S. Livingston ,(1999) ,"The Zero Divisor Graph of a Commutative Ring". Journal of Algebra 217, pp. 434-447.
- [2] A. Badawi, (2004), "Abstract Algebra Manual: Problems and Solutions 2nd Edition problems and solutions", Nova Science Publishe.
- [3] I. Beck , (1988), "Coloring of Commutative Ring". Journal of Algebra 116, pp. 208-226.
- G. Carbas and D. Williams, (2000), "Rings of Order p⁵.I Nonlocal Rings", Journal of Algebra 231(2), pp. 677-690.
- [5] N.H. Shuker and H. Q. Mohammad , (2012), "Classification of Zero Divisor Graphs of a Commutative Ring with Degree Equal 7 and 8", Accepted on AL-Rafidain Journal of Computer Science and Mathematics.
- [6] J. T. Wang, (2005), "Zero Divisor of Commutative Rings", M.Sc. Thesis at the University of National Chung Cheng, Taiwan.